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Abstract

Le Roux and Ziegler asked whether every simply connected compact
nonempty planar II§ set always contains a computable point. In this
paper, we solve the problem of le Roux and Ziegler by showing that there
exists a planar 119 dendroid without computable points. We also provide
several pathological examples of tree-like II? continua fulfilling certain
global incomputability properties: there is a computable dendrite which
does not #-include a II¢ tree; there is a II dendrite which does not -
include a computable dendrite; there is a computable dendroid which does
not *-include a IIY dendrite. Here, a continuum A s-includes a member of
a class P of continua if, for every positive real €, A includes a continuum
B € P such that the Hausdorff distance between A and B is smaller than
€.

1 Background

Every nonempty open set in a computable metric space (such as Euclidean n-
space R™) contains a computable point. In contrast, the Non-Basis Theorem
asserts that a nonempty co-c.e. closed set (also called a I1{ set) in Cantor space
(hence, even in Euclidean 1-space) can avoid any computable points. Non-
Basis Theorems can shed new light on connections between local and global
properties by incorporating the notions of measure and category. For instance,
Kreisel-Lacombe [6] and Tanaka [I7] showed that there is a I set with positive
measure that contains no computable point. Recent exciting progress in Com-
putable Analysis [18] naturally raises the question whether Non-Basis Theorems
exist for connected 11§ sets. However, we observe that, if a nonempty II{ sub-
set of R! contains no computable points, then it must be totally disconnected.
Then, in higher dimensional Euclidean space, can there exist a connected IT{
set containing no computable points? It is easy to construct a nonempty con-
nected I1{ subset of [0,1]? without computable points, and a nonempty simply
connected 1Y subset of [0,1]® without computable points. An open problem,
formulated by Le Roux and Ziegler [13] was whether every nonempty simply
connected compact planar I1{ set contains a computable point. As mentioned
in Penrose’s book “Emperor’s New Mind’ [12], the Mandelbrot set is an exam-
ple of a simply connected compact planar I1Y set which contains a computable
point, and he conjectured that the Mandelbrot set is not computable as a closed
set. Hertling [5] observed that the Penrose conjecture has an implication for a

*This work was supported by Grant-in-Aid for JSPS fellows.


http://arxiv.org/abs/1110.6140v1

famous open problem on local connectivity of the Mandelbrot set. Our interest
is which topological assumption (especially, connectivity assumption) on a IT{
set can force it to possess a given computability property. Miller [I0] showed
that every I1 sphere in R™ is computable, and so it contains a dense c.e. subset
of computable points. He also showed that every II{ ball in R” contains a dense
subset of computable points. Ijazovié¢ [7] showed that chainable continua (e.g.,
arcs) in certain metric spaces are almost computable, and hence there always is
a dense subset of computable points. In this paper, we show that not every I19
dendrite is almost computable, by using a tree-immune I1{ class in Cantor space.
This notion of immunity was introduced by Cenzer, Weber Wu, and the author
[]. We also provide pathological examples of tree-like II{ continua fulfilling
certain global incomputability properties: there is a computable dendrite which
does not *-include a I1Y tree; there is a computable dendroid which does not *-
include a I1{ dendrite. Finally, we solve the problem of Le Roux and Ziegler [13]
by showing that there exists a planar II{ dendroid without computable points.
Indeed, our planar dendroid is contractible. Hence, our dendroid is also the first
example of a contractible Euclidean ITY set without computable points.

2 Preliminaries

Basic Notation: 2<N denotes the set of all finite binary strings. Let X be
a topological space. For a subset Y C X, ¢l(Y) (int(Y), resp.) denotes the
closure (the interior, resp.) of Y. Let (X;d) be a metric space. For any x € X
and r € R, B(z;r) denotes the open ball B(z;r) = {y € X : d(z,y) < r}.
Then x is called the center of B(x;r), and r is called the radius of B(x;r).
For a given open ball B = B(x;r), B denotes the corresponding closed ball
B ={ye X :dy) <r} Forab e R, [a,b] denotes the closed interval
[a,b] = {x € R:a <z < b}, (a,b) denotes the open interval (a,b) = {z € R:
a < x < b}, and (a,b) denotes a point of Euclidean plane R?. For X C R",
diam(X) denotes max{d(z,y) : x,y € X }.

Continuum Theory: A continuum is a compact connected metric space. For
basic terminology concerning Continuum Theory, see Nadler [IT] and Illanes-
Nadler [§].

Let X be a topological space. The set X is a Peano continuum if it is a
locally connected continuum. The set X is a dendrite if it is a Peano continuum
which contains no Jordan curve. The set X is unicoherent if AN B is connected
for every connected closed subsets A, B C X with AU B = X. The set X is
hereditarily unicoherent if every subcontinuum of X is unicoherent. The set X
is a dendroid if it is an arcwise connected hereditary unicoherent continuum.
For a point z of a dendroid X, rx(z) denotes the cardinality of the set of
arc-components of X \ {z}. If rx(z) > 3 then x is said to be a ramification
point of X. The set X is a tree if it is dendrite with finitely many ramification
points. Note that a topological space X is a dendrite if and only if it is a locally
connected dendroid. Hahn-Mazurkiewicz’s Theorem states that a Hausdorff
space X is a Peano continuum if and only if X is an image of a continuous
curve.

Example 1 (Planar Dendroids).
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1. Put By = {27} x [0,27%]. Then the following set B C R? is dendrite.
B=JBu([-1,1] x {0}).

teN
We call B the basic dendrite. The set By is called the t-th rising of B. See
Fig. @

2. Theset H =cl(({1/n:n € N} x[0,1])U([0,1] x {0})) is called a harmonic
comb. Then H is a dendroid, but not a dendrite. The set {1/n} x [0,1] is
called the n-th rising of the comb H, and the set [0,1] x {0} is called the
grip of H. See Fig.

3. Let C C R! be the middle third Cantor set. Then the one-point com-
pactification of C' x (0,1] is called the Cantor fan. (Equivalently, it is the
quotient space Cone(C) = (C x [0,1])/(C x {0}).) The Cantor fan is a
dendroid, but not a dendrite. See Fig.

Let X be a topological space. X is n-connected if it is path-connected and
m(X) =0 for any 1 <4 < n, where m;(X) is the i-th homotopy group of X. X
is simply connected if X is 1-connected. X is contractible if the identity map on
X is null-homotopic. Note that, if X is contractible, then X is n-connected for
each n > 1. It is easy to see that the dendroids in Example [l are contractible.

Computability Theory: We assume that the reader is familiar with Com-
putability Theory on the natural numbers N, Cantor space 2V, and Baire space
N (see also Soare [16]). For basic terminology concerning Computable Analysis,
see Weihrauch [18], Brattka-Weihrauch [3], and Brattka-Presser [2].

Hereafter, we fix a countable base for the Euclidean n-space R™ by p =
{B(z;r): x € Q" & r € Q" }, where Q1 denotes the set of all positive rationals.
Let {pn}nen be an effective enumeration of p. We say that a point x € R"™
is computable if the code of its principal filter F(z) = {i € N : z € p;} is
computably enumerable (hereafter c.e.) A closed subset F C R™ is I if there
is a c.e. set W C N such that F' = X \ .oy pe- A closed subset F' € R™ is
computably enumerable (hereafter c.e.) if {e € N: FNp. # 0} is c.e. A closed
subset F C R™ is computable if it is II{ and c.e. on R™.

Almost Computability: Let Ay, A1 be nonempty closed subsets of a metric
space (X, d). Then the Hausdorff distance between Ay and A; is defined by

dp (Ao, Ar) = max fél,i. yegii d(z,y).

Let P be a class of continua. We say that a continuum A x-includes a member
of Pif inf{dy(A,B): AD BeP}=0.



Proposition 2. Fvery Fuclidean dendroid x-includes a tree.

Proof. Fix a Euclidean dendroid D C R"™, and a positive rational ¢ € Q. Then
D is covered by finitely many open rational balls {B; };<, of radius /2. Choose
d; € DN B, for each i < n if B; intersects with D. Note that { B(d;; €) }i<s covers
D. Since D is dendroid, there is a unique arc y; ; € D connecting d; and d; for
each 7,7 < n. Then, £ = U{m-}gn 7vi,; is connected and locally connected, since
E is a union of finitely many arcs (i.e., it is a graph, in the sense of Continuum
Theory; see also Nadler [I1]). Tt is easy to see that E has no Jordan curve, since
E is a subset of the dendroid D. Consequently, E is a tree. Moreover, clearly
di(E,D) < e, since d; € E for each i < n. O

The class P has the almost computability property if every A € P *-includes
a computable member of P as a closed set. In this case, we simply say that
every A € P is almost computable. Nljazovié [7] showed that every I1{ chainable
continuum is almost computable, hence every II{ arc is almost computable.

3 Incomputability of Dendrites

By Proposition 2 topologically, every planar dendrite *-includes a tree. How-
ever, if we try to effectivize this fact, we will find a counterexample.

Theorem 3. Not every computable planar dendrite x-includes a 119 tree.

Proof. Let A C N be an incomputable c.e. set. Thus, there is a total computable
function f4 : N — N such that range(fa) = A. We may assume f4(s) < s for
every s € N. Let Ay denote the finite set {fa(u) : u < s}. Then st* : N — N
is defined as st*(n) = min{s € N : n € A,}. Note that st*(n) > n by our
assumption f4(s) < s.

Construction. . Recall the definition of the basic dendrite from Example [1
We construct a computable dendrite by modifying the basic dendrite B. For
every t € N, we introduce the width of the t-rising w(t) as follows:

2—(2+stA(t)) iftec A
w(t):{ , 1te A,

0, otherwise.

Let I; be the closed interval [27% — w(t), 2! + w(t)]. Since st?(n) > n, we
have I; N Iy = () whenever ¢ # s. We observe that {w(t)}en is a uniformly
computable sequence of real numbers. Now we define a computable dendrite
D C R? by:

{27 —w®u{2™" +w(t)}) x [0,27]

27" —w(t), 27" +w(t)] x {27}

27" —w(t), 27" +w(t) x (-1,27)
p=(Jmunh)u (=11 x foh\ |J D).

teN teN

DY =
D} =
D} =

We call D, = DY U D} the t-th rising of D. See Fig. [
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Figure 4: The dendrite D for 0,2,4¢ A and 1,3 € A.

Claim. The set D is a dendrite.

To prove D is a Peano continuum, by the Hahn-Mazurkiewicz Theorem, it
suffices to show that D = Im(h) for some continuous curve h : [—1,1] — R?.
We divide the unit interval [0,1] into infinitely many parts I, = [2~(¢+1) 2-1],
Furthermore, we also divide each interval Iy, into three parts I3,, I3,, and I3,
where I3, = [(5 —4)-371- 27D (6 —4) . 371 .27 (2] for each i < 3. Then
we define a desired curve h as follows.

(27 + w(t)} x [0,27] ifo e,
2 - w() 2 b ()] x 27} ifzell,
h(z) moves in < {27t —w(t)} x [0,2 ] if x € I3,
270D fa(t +1),27F —w(t)] x {0} if 2 € Tosyq,
[—1,0] x {0} if z € [-1,0].

Clearly, h can be continuous, and indeed computable, since the map w : R —
R is computable. It is easy to see that D = Im(h). Moreover, Im(h) contains no
Jordan curve since mo(h(z)) < mo(h(y)) whenever © < y, where m(p) denotes
the first coordinate of p € R2. Consequently, D is a dendrite.

Moreover, by construction, it is easy to see that D is computable.
Claim. The computable dendrite D does not #-include a IT9 tree.

Suppose that D contains a I1{ subtree T C D. We consider a rational open
ball B, with center (27%,27%) and radius 2~ (#+?) for each t € N. Note that
B, ND C Dy for every t € N. Since T is IIY in R?, B={t e N: B,NT =}
is c.e. If w(t) > 0 (ie., t € A) then D\ (D; N B;) is disconnected. Therefore,
either T C [-1,27] x R or T' C [27%,1] x R holds whenever B.NT =10 (i.e.,
t € B), since T is connected. Thus, if the condition #(A N B) = N is satisfied,
then either T C [—-1,0] x Ror T' C [0, 1] X R holds. Consequently, we must have
dy (T, D) > 1.

Therefore, we may assume #A N B < Ny. Since A is coinfinite, D has
infinitely many ramification points (27%,0) for t ¢ A. However, by the definition
of tree, T has only finitely many ramification points. Thus we must have (D N
TY\{(27%,0)} = 0 for almost all t € A. Since B,NT C (D?NT)\{(27,0)}, we
have ¢t € B for almost all ¢ € N\ A. Consequently, we have #((N\ A)AB) < N,.
This implies that N\ A is also c.e., since B is c.e. This contradicts that A is
incomputable. O



Figure 5: The plotted tree ¥(2<N).

Note that a Hausdorff space (hence every metric space) is (locally) arcwise
connected if and only if it is (locally) pathwise connected. However, Miller [10]
pointed out that the effective versions of arcwise connectivity and pathwise con-
nectivity do not coincide. Theorem Blcould give a result on effective connectivity
properties. Note that effectively pathwise connectivity is defined by Brattka [1J.
Clearly, the dendrite D is effectively pathwise connected. We now introduce a
new effective version of arcwise connectivity property by thinking arcs as closed
sets. Let A_(X) denote the hyperspace of closed subsets of X with negative
information (see also Brattka [I]).

Definition 4. A computable metric space (X,d, «) is semi-effectively arcwise
connected if there exists a total computable multi-valued function P : X? =
A_(X) such that P(z,y) is the set of all arcs A whose two end points are z and
y, for any z,y € X.

Obviously D is not semi-effectively arcwise connected. Indeed, for every
g > 0 there exists xg, 21 € [0,1] with d(zo,21) < € such that (x¢,0), (z1,0) € D
cannot be connected by any I1{ arc. Thus, we have the following corollary.

Corollary 1. There exists an effectively pathwise connected Fuclidean contin-
uum D such that D is not semi-effectively arcwise connected.
Theorem 5. Not every I1Y planar dendrite is almost computable.

To prove Theorem [, we need to prepare some tools. For a string o € 2<N,
let [h(o) denote the length of 0. Then

Y(o) = <21 37042 > 3<i+1>,2lh<">> e R2,
i<lh(o

) & o(i)=1

For two points 7,7 € R?, the closed line segment L(Z, %) from T to 7 is defined
by L(#,) = {(1 =)+t : t € [0,1]}. For a (possibly infinite) tree T C 2<N,
we plot an embedded tree ¥(7T') C R? by

U(T) = dl (U{L(w(a),qpm) co,7 €T & lh(o) = Ih(r) + 1}) :

Then ¥(T) is a dendrite (but not necessarily a tree, in the sense of Continuum
Theory), for any (possibly infinite) tree T C 2N. See Fig.
We can easily prove the following lemmata.

Lemma 6. Let T be a subtree of 2<N, and D be a planar subset such that

»({)) € D CW(T) for the root {) € 2<N. Then D is a dendrite if and only if D
is homeomorphic to U(S) for a subtree S C T.



Proof. The “if” part is obvious. Let D be a dendrite. For a binary string o
which is not a root, let ¢~ be an immediate predecessor of 0. We consider the
set § = {()}U{o € 2N 0 # () & DN (L((0~ ), (o)) \ {1:(07)}) # 0} Since
D is connected, S is a subtree of T'. It is easy to see that D is homeomorphic
to W(9). O

Lemma 7. Let T be a subtree of 2<N. Then T is I1Y (c.e., computable, resp.)
if and only if U(T) is a 119 (c.e., computable, resp.) dendrite in R?.

Proof. With our definition of ¥, the dendrite ¥(2<Y) is clearly a computable
closed subset of R2. So, if T"is I19, then it is easy to prove that W(T) is also I19.
Assume that T is a c.e. tree. At stage s, we compute whether L(1(c7),%(0))
intersects with the e-th open rational ball p., for any e < s and any string o
which is already enumerated into T" by stage s. If so, we enumerate e into Wrp
at stage s. Then {e e N: U(T)Np. # 0} = Wr is c.e.

Assume that ¥(T) is 1I9. We consider an open rational ball B_(o) =
B(¢(0); 27 M)+2)) for each o € 2<N. Note that B_(s) N B_(r) = 0 for
o # 7. Since U(T) is 1Y, T* = {0 € 2<N : Y(T) N B_(0) = 0} is c.e., and
it is easy to see that 7" = 2<N\ T*. Thus, T is a II? tree of 2<N. We next
assume that U(T') is c.e. We can assume that ¥(T') contains the root 9 (()),
otherwise T' = (3, and clearly it is c.e. For a binary string ¢ which is not a root,
let 0~ be an immediate predecessor of o. Pick an open rational ball B (o)
such that ¥(2<N) N By (o) C L(¢(07),%(0)) for each 0. Since ¥(T) is c.e.,
T* = {0 € 2<N: W(T) N By (0) # 0} is c.e. If o is not a root and o € T then
L((o7),1(a)) C¥(T), so W(T)N By (o) # 0. We observe that if o € T then
L((o7),¥(a)) NU(T) =0, so ¥(T)N By(o) = 0. Thus, we have T = T*. In
the case that W(T') is computable, ¥(T') is c.e. and II{, hence T is c.e. and IIY,
i.e., T is computable. [l

Lemma 8. Let D be a computable subdendrite of W(2<N). Then there evists a
computable subtree T+ C 2<N such that D C U(T7) and ([0,1] x {0}) N D =
([0, 1] > {0}) N w(TT).

Proof. We can assume 9(()) € D, otherwise we connect 1(()) and the root of D
by a subarc of U(2<N). Again we consider an open rational ball B_(c) =
B(t(0); 2= ()+2)) " and an open rational ball By (o) such that ¥(2<N) N
By(o) € L(y(07),%(0)) for each o € 2<N. Since D is 1Y, U* = {0 € 2<N:
DN B_(0) =0} is ce. Since D is ce., T* = {o € 2N : DN By (o) # 0} is
ce., and it is a tree by Lemma Bl For every o € 2<N, either D N B_(0) = 0
or DN By(c) # 0 holds. Therefore, we have T* U U* = 2<N. Moreover, for
the set of leaves of T*, L, = {p € T* : (Vi < 2) p~ (i) & T*}, we observe that
T*NU* C L%. Recall that the pointclass 39 has the reduction property, that
is, for two c.e. sets T and U™, there exist c.e. subsets T'C T and U C U* such
that TUU = T*UU* and TNU = (). This is because, for ¢ € T*NU*, o is
enumerated into 7" when o is enumerated into 7™ before it is enumerated into
U*; o is enumerated into U otherwise. Since T* N U* C L%, T must be tree.
Furthermore, 7T is c.e., and U = 2<N\ T is also c.e. Thus, T is a computable
tree. Therefore, T = {07 (i) : 0 € T & i < 2} is also a computable tree. Then,
D C U(TT), and we have ([0,1] x {0}) N D = ([0,1] x {0}) N (T'") since the
set of all infinite paths of T" and that of T coincide. O



Cenzer, Weber and Wu, and the author [4] introduced the notion of tree-
immunity for closed sets in Cantor space 2V, For o € 2<N, define I, as {f €
2N . (vn < k(o)) f(n) = o(n)}. Note that {I, : o € 2<} is a countable base
for Cantor space.

Definition 9 (Cenzer-Kihara-Weber-Wu [4]). A nonempty closed set ' C 2" is
said to be tree-immune if the tree Tp = {0 € 2<N: FN I, # 0} C 2<N contains
no infinite computable subtree.

For a nonempty I1Y subset P C 2V, the corresponding tree Tp is II{, and
it has no dead ends. The set of all complete consistent extensions of Peano
Arithmetic is an example of a tree-immune I1§ subset of 2. Tree-immune IT¢
sets have the following remarkable property.

Lemma 10. Let P be a tree-immune 119 subset of 2V and let D C U(Tp) be
any computable subdendrite. Then ([0,1] x {0}) N D =0 holds.

Proof. By Lemma B there exists a computable subtree T C 2<N such that
D C ¥(T) and ¥(T') agrees with D on [0, 1] x {0}. Since D C ¥(7T'p), and since
Tp has no dead ends, T'C Tp holds. Since P is tree-immune, T must be finite.

By using weak Konig’s lemma (or, equivalently, compactness of Cantor space),
T C 2! holds for some [ € N. Thus, D C ¥(T) C [0,1] x [27%,1] as desired. O

Note that if P is a nonempty II{ set in Cantor space 2V, then for every
d > 0 it holds that ((0,1) x (0,4)) N ¥(Tp) # (. Finally, we are ready to prove
Theorem [

Proof of Theorem[d Again, we adapt the construction in the proof of Theorem
We fix a nonempty tree-immune 119 set P C 2Y. For o € 2<N, put E(o) =
{r € 2N : 7 D g}. For aIly tree Tp C 2<N there exists a computable
function fp : N — 2<N such that Tp = 2<N\ {J, E(fp(n)) and such that for
each 0 € 2<N and s € N we have 0 € |J,_, E(fp(t)) whenever 070,071 €
U< E(fp(t)). For such a computable function fp : N — 2<N we let Tp,s
denote 2<M\ {J,_, E(fp(t)). Then Tp is a tree without dead ends, and {Tp,s :
s € N} is computable uniformly in s.

Construction. . Let & denote (1,0) € R%. For a tree T C 2<N and w € Q, we
define U (T;w), the edge of the fat approximation of the tree T of width w, by

(T w) = cl (U {L (1/)(0) + (37191 w)@y, p(r) + (3717 -w)a)
cte{—+t&oTeT &lh(o) lh(T)+1}).

If lims ws = 0 then we have limg U(T;w,) = U(T). Moreover, if {w; : s €
N} is a uniformly computable sequence of rational numbers, then {¥(T;wy) :
s € N} is also a uniformly computable sequence of computable closed sets.
Additionally, the set ¥(T;w, c,t,q), for a tree T C 2<N, for w, ¢, q € Q, and for
t € N, is defined by

U(T;w,c,t,q) = {<c+q- (:c— %) 22:_+i«;> eR?: (z,y) € \I/(T;w)}.
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Figure 6: The fat approximation Figure 7 The basic object
U(T;w). U(T;w,c,t,q).

Note that U (T;w, ¢, t,q) C [c—q/2,c+q/2] x [2~#FD 274 as in Fig. [ For
t € N, and for st (¢) = min{s : t € A,} in the proof of Theorem 3 let I(¢) € 2N
be the leftmost path of Tpgea(y. If st(t) is undefined (i.e., t & A) then I(t) is
also undefined. For each t € N we define F(t) = {o € 2<N : ¢ C ()} if I(t) is
defined; F'(t) = Tp otherwise. Then {F(t) : ¢ € N} is a computable sequence
of T1Y subsets of 2<N. Furthermore, we have W(F(t)) N ([0,1] x {0}) # 0, since
F(t) has a path for every ¢t € N. For each ¢t € N, w(t) is defined again as in the
proof of Theorem Bl Now we define a H(f dendrite H C R? as follows:

Hy = U(F(t);w(t), 27t t,27t+2)
HY = ({27 —w(®)} u{27" +w(t)}) x [0,27 1]
H = (27" —w(t), 27" + w(t) x {271}
= (27" —w(t), 27" +w(t)) x (~1,270FD)
H= ( H*UHO\(H**Uth))) (([ 1,1] x {0})\ UH2)

teN teN

Put H; = H} \ (H;* UintH}) (see Fig.B). We can also show that H is a I19
dendrite in the same way as for Theorem

Claim. The I1{ dendrite H does not *-include a computable dendrite.

Let J be a computable subdendrite of H. Put S(t) = [3-2~(t+2) 5.2-(42)] x
[2=(t+1) 271, Then, we note that J(t) = JNS(t) is also a computable dendrite,
since Hy C S(t) and it is a dendrite. However, by Lemma [I0 if ¢ ¢ A then we
have J(t) N (R x {27%}) = 0. So we consider the following set:

C={teN:J(t)n (132704, 5. 27 x 270,1]) = 0},

Since J(t) is uniformly computable in ¢, the set C' is clearly c.e., and we have
N\ A C C. However, if N\ A = C, then this contradicts the incomputability of
A. Thus, there must be infinitely many ¢t € A such that ¢ is enumerated into C.
However, if t € A is enumerated into C, it cuts the dendrite H. In other words,
since J C H is connected, either J C [~1,5-2~ 2] xR or J C [3-2~(#+2) 1]xR.
Hence we must have dg (J, H) > 1. O

Corollary 2. There exists a nonempty I1J subset of [0, 1]? which is contractible,
locally contractible, and *-includes no connected computable closed subset.
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Figure 8: The dendrite H for 0,2,4 ¢ A and 1,3 € A.

A copy of U(Tp)

4 Incomputability of Dendroids

Theorem 11. Not every computable planar dendroid *-includes a 119 dendrite.

Lemma 12. There exists a limit computable function f such that, for every
uniformly c.e. sequence {U, : n € N} of cofinite c.e. sets, we have f(n) € U,
for almost all n € N.

Proof. Let {V. : e € N} be an effective enumeration of all uniformly c.e. non-
increasing sequences {U,, : n € N} of c.e. sets such that minU,, > n, where
(Vo)n = U, = {2 € N: (n,z) € V.}. The e-state of y is defined by o(e,y) =
{i <e:ye(V;)}, and the mazimal e-state is defined by o(e) = max, o(e, z).
The construction of f : N — N is to maximize the e-state. For each e € N,
f(e) chooses the least y € N having the maximal e-state o(e,y) = o(e). Since
{o(e,y) : e,y € N} is uniformly c.e., and o(e,y) € 2°, the function e — o(e) =
max, o(e, z) is total limit computable. Thus, f is limit computable. It is easy
to see that lim. o(e)(n) exists for each n € N. Let U = {U,, : n € N} be a
uniformly c.e. sequence of cofinite c.e. sets. Then V = {(,,-,,Un : n € N}
is a uniformly c.e. non-increasing sequence of cofinite c.e. sets. Thus, V; =V
for some index i. Then i € o(e,y) for almost all e,y € N. This ensures that
i € o(e) for almost all e € N by our assumption minU,, > n. Hence we have
f(n) € U, for almost all n € N. O

Remark. The proof of Lemma [[2] is similar to the standard construction of a
maximal c.e. set (see Soare [16]). Recall that the principal function of the com-
plement of a maximal c.e. set is dominant, i.e., it dominates all total computable
functions. The limit computable function f in Lemma [I2]is also dominant. In-
deed, for any total computable function g, if we set U = {y € N: y > g(n)}
then {U¢ : n € N} is a uniformly c.e. sequence of cofinite c.e. sets, and if
f(n) € Ug holds then we have f(n) > g(n).

Proof of Theorem 1. Pick a limit computable function f = lim, fs in Lemma
For every t,u € N, put v(t,u) = 27° for the least s such that fs(t) = u if
such s exists; v(t,u) = 0 otherwise. Since {fs : s € N} is uniformly computable,
v:N? — R is computable.

Construction. . For each t € N, the center position of the u-th rising of the
t-th comb is defined as c,(t,u) = 2~ Z+1 4 2=CtHut) “and the width of the
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Figure 9: The dendroid K. 9—(2t+D) 9-2t

Figure 10: The harmonic comb K for
fO(t) = Oa fl(t) = Oa fQ(t) =2

u-th rising of the t-th comb is defined as v, (t,u) = v(t,u) - 2~ 3*T4+3) Then,
we define the t-th harmonic comb K; for each ¢t € N as follows:
Kt* — {2—(2t+1)} X [O,Q_t]
KD = {e(t,u) — vt u), eu(t,u) + vi(t,u)} x [0,271]
Ktl,u = [ex(t,u) — vi(t,u), cu(t, u) + vi(t,u)] x {277}

Kgu = (ca(t,u) — vu(t,u), cu(t,u) + vi(t,u)) x (—=1,27F)
(K* v UK ) < (271 272 x o)\ Kh) .
1<2ueN u€eN

Note that K; is homeomorphic to the harmonic comb H for each ¢t € N. This
is because, for fixed ¢t € N, since limg f4(t) exists we have v(t,u) = 0 for almost
all w € N. Then the desired computable dendroid is defined as follows.

K =([-1,00x {opu | (([242”2),2*(2”1)] x {0}) UKt) .

teN

Claim. The set K is a computable dendroid.

Clearly K is a computable closed set. To show that K is pathwise connected,
we consider the following subcontinuum K, , the grip of the comb K ,,, for each

teN.
U U K 2 (2t+1) 2—2t {0} U thu

i<2v(t,u)>0 v(t,u)>0

Then K~ = ([-1,0] x {0}) U U, ey (([273F2,2-C4D] » {0}) UK, ") has no
ramification points. We claim that K~ is connected and K~ is even an arc. To
show this claim, we first observe that K, is an arc for any ¢ € N, since v(¢,u) > 0
occurs for finitely many u € N. Moreover K; C S(t), and lim; diam(S(¢)) = 0
holds. Therefore, we see that K~ is locally connected and, hence, an arc. For
points p,q € K, if p,q € K~ then p and ¢ are connected by a subarc of K. In
the case p € K\ K, the point p lies on K7, for some ¢, u such that v(t,u) = 0.
If ¢ € K~ then there is a subarc A C K~ (one of whose endpoints must
be (c.(t,u),0)) such that AU K7, is an arc containing p and ¢. In the case
g € K\ K, similarly we can connect p and ¢ by an arc in K. Hence, K is
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pathwise connected. K is hereditarily unicoherent, since the harmonic comb is
hereditarily unicoherent. Thus, K is a dendroid.

Claim. The computable dendroid K does not *-include a 119 dendrite.

What remains to show is that every I1{ subdendrite R C K satisfies dy (R, K)
> 1. Let R C K be a II{ dendrite. Put S(t) = [27 31 2721] x [0,27%]. Since
R is locally connected, RNS(t) = RN K, is also locally connected for each t € N
and m < 2. Thus, for fixed t € N, let K}, = [c.(t,u) — 2743 ¢ (¢ u) +
27 @Hut] 5 {274}, For any continuum R* C Ky, if R* N K}, # 0 for infinitely
many u € N, then R* must be homeomorphic to the harmonic comb H. Hence,
R* is not locally connected. Therefore, we have R N K}%, = 0 for almost all
u € N. Since K3, and K% is disjoint whenever (t,u) # (s,v), and since R is
119, we can effectively enumerate Uy = {u € N: RNK/% =0}, i.e., {U;:t € N}
is uniformly c.e. Moreover, U, is cofinite for every t € N. Then, by our definition
of f =limg fs in Lemmal[l2] there exists t* € N such that f(t) € Uy for all ¢ > ¢*.
Note that v(¢, f(¢)) > 0 and thus the condition f(¢) € Uy (i.e., RN K;*}(t) =0)
implies that, for every ¢ > t*, either R C [—1,c.(t,u) + v.(t,u)] x [0,1] or
R C [ei(t,u) — vi(t,u), 1] x [0,1] holds. Thus we obtain the desired condition
du (R, K) > 1. O

Remark. It is easy to see that the dendroid constructed in the proof of Theorem
[l is contractible.

Corollary 3. There exists a nonempty contractible planar computable closed
subset of [0,1]? which *-includes no 119 subset which is connected and locally
connected.

Theorem 13. Not every nonempty 119 planar dendroid contains a computable
point.

Proof. One can easily construct a IIY Cantor fan F containing at most one
computable point p € F, and such p is the unique ramification point of F.
Our basic idea is to construct a topological copy of the Cantor fan F' along a
pathological located arc A constructed by Miller [10, Example 4.1]. We can
guarantee that moving the fan F' along the arc A cannot introduce new com-
putable points. Additionally, this moving will make a ramification point p* in
a copy of F' incomputable.

Fat Approximation. To archive this construction, we consider a fat ap-
proximation of a subset P of the middle third Cantor set C C R!, by mod-
ifying the standard construction of C. For a tree T C 2<N_ put n(0) =
37423 h(o) & o(i)=1 3=+ for o € T, and J(0) = [r(0) =3~ @+ (o)
2. 3*(”1(")“)]. If a binary string o is incomparable with a binary string 7
then J(o) N J(7) = (. We extend 7 to a homeomorphism 7. between Cantor
space 2V and C' N [1/3,2/3] by defining m.(f) = 37" + 23y, 370+ for
f € 2Y. Let P* C 2% be a nonempty II{ set without computable elements.
Then there exists a computable tree Tp such that P* is the set of all paths
of Tp, since P* is IIY. A fat approzimation {Ps : s € N} of P = m.(P*) is
defined as P, = |J{J(0) : lh(0) = s & 0 € Tp}. Then {P; : s € N} is a com-
putable decreasing sequence of computable closed sets, and we have P = (), Ps.
Since P is a nonempty bounded closed subset of a real line R', both min P
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Figure 11: The cubes Aj;(a,b,q,7). [1/6,1/2]
and max P exist. By the same reason, both [ = min Py and r] = max P;
also exist, for each s € N, and limg [ = min P and limsr} = max P, where

{l, : s € N} is increasing, and {r, : s € N} is decreasing. Let I, = I + 3~ (s+1)
and r, = 7 =376t We also set I* = 17 +37 %2 and r, = rF —37+2), Note
that I3 < rg, limgl; = min P, and lim; s = max P. Since min P,maxP € P
and P contains no computable points, min P and max P are non-computable,
and so [ < min P < max P < rs holds for any s € N. The fat approximation
of P has the following remarkable property:

[ls_vlS]gP57 [lS_JS]ﬁP:(ZJ, [Tsﬂ"j]gpﬁ and [T&T;_]HP:@'

To simplify the construction, we may also assume that P has the following
property:

P={1-z€R:z€P}
Because, for any I1{ subset A C C, the 119 set A* = {z/3: 2 € A}U{l —2/3:
x € A} C C has that property.

Basic Notation. For each i, < 2, for each a,b € R?, and for each ¢,r € R,
the 2-cube Aj;(a,b;q,r) C [a,a+¢] x [b,b+ 1] is defined as the smallest convex
set containing the three points {(a,b), (a + ¢,b), (a,b+7),(a+q,b+7)} \ {(a +
(1 =4)g,b+ (1 —j)r)}. Namely,

Aij(a,b;q,7) = {((=1)'z +a+ig, (~1)'y + b+ jr) € R
cx,y > 0& re + qy < gqr}.
For a set R C R! and real numbers r,y € R, put O(R;r,y) = {re +y €R:x €
R}. Clearly ©(R;r,y) is computably homeomorphic to R. Let four symbols
L, ', 1, and " denote (10,01), (01,10), (00,11), and (11,00), respectively. For
v € {L,7,5,"} and for any R C [0,1], a,b € R?, and ¢,r € R, we define
[v](R;a,b;q,7) C [a,a+ q] x [b,b+ 7] as follows:
[W](Rya,b5q,7) = (([a,a+ g x O(R;7,0)) N Ayo)(a,biq, 7))
U((O(R:q,a) x [b,b+7]) N Ay (a, by g,7)).

Sublemma 1. [v](P;a,b;q,r) is computably homeomorphic to P x [0,1]. In
particular, [v](P;a,b;q,r) contains no computable points.

To simplify our argument, we use the normalization ]Sts of P, for t > s,
that is defined by P = {(x —I7)/(rf —1;) € R: z € P}, for each s € N.

13



Note that P C [0,1] for t > s, and 0,1 € P? holds for each s € N. Put
[v]([a,a + q] X [b,b+1]) = [ ](Pt ;a,b;q,r) for t > s. We also introduce the
following two notions:
()i (la,a +q] x [b.b+7]) = [a,a + ] x O(F;7,b);
[173(la,a+q] x [b,b+7]) = O(FF3 ,0) x [b,b+ 7).

Here we code two symbols — and | as 0 and 1 respectively.

Sublemma 2. [v]i([a,a+q] x [b,b+7]) C [a,a+¢q] x [b,b+7], and [v]i([a,a+

q] x [b,b+r]) intersects with the boundary of [a,a+ q] x [b,b+ 7]

Sublemma 3. There is a computable homeomorphism between [v];(a,b;q,r)
and P; x [0,1] for any t € N. Therefore, (,[v](a,b;q,r) is computably homeo-
morphic to P x [0,1].

Blocks. A block is a set Z C R? with a bounding box Box(Z) = [a,a + q] X

[b,b+ r]. Each § € 22 is called a direction, and directions (00), (01), <1 >

and (11) are also denoted by [«], [=], [{], and [1], respectively. For § € 2
D) =

5° = (6(0),1 — 6(0)) is called the reverse direction of 6. Put Line(Z
{a} x [b,b+rl; Line(Z; [+]) = {a-+ g} x [b.b-+ 1]; Line(Z: [}]) = [a,a + q] x {b};
Line(Z;[1]) = [a,a + q] x {b+r}. Assume that a class Z of blocks is given. We

introduce a relation —§+ on Z for each direction §. Fix a block Zg.t € Z, and
we call it the first block. Then we declare that P:])Zﬁrst holds. We inductively
define the relation -°» on Z. If Z—é-)ZO (resp. Zo—é-)Z) for some Z and ¢, then
we also write it as —éeZO (resp. Zo—ée). For any two blocks Zy and Z, the

s
relation Zy--+Z7 holds if the following three conditions are satisfied:
1. ZO N Z1 = Line(Zo; 5) N ZO = Line(Zl; 50) N Z1 7£ @
2. f-)ZO has been already satisfied for some direction ¢.

3. Z1-25Zy does not satisfied for any direction e

If Z0—§->Z1 for some 0, then we say that Z; is a successor of Zy (Z is a prede-
cessor of Z1), and we also write it as Zp--+2;.

We will construct a partial computable function Z : N* — A(R?) with a
computable function k¥ : N — N and dom(Z) = {(u,i,t) e N> :u <t & i <
k(u)} such that Z(u,i,t) is a block with a bounding box for any (u,i,t) €
dom(Z), and the block Z(u,i,t) is computably homeomorphic to P; x [0,1]
uniformly in (u,4,t). Here A(R?) is the hyperspace of all closed subsets in R?
with positive and negative information. For each stage t, Zi(u) = {Z(t,u,1) :
i < k(u)} for each u < t is defined. Let Z(u) denote the finite set {\t.Z (¢, u, 1) :
i < k(u)} of functions, for each u € N. The relation --» induces a pre-ordering
< on J,eny Z(u) as follows: Zy < Z; if there is a finite path from Zy(t) to
Z1(t) on the finite directed graph (|J,, Z¢(u),--+) at some stage t € N. We
will assure that < is a well-ordering of order type w, and Zy < Z; whenever
Zy € Z(u), Z1 € Z(v), and u < v. In particular, for every Z € |J, oy Z(u),
the predecessor Zp.. of Z and the successor Zg,. of Z under < are uniquely

determined. If Zpre(t)—g-)Z(t)—f-)Zsuc(t), then we say that Z mowves from 6 to
e, and that (9, ¢) is the direction of Z.

14



Figure 13: Example [T4]

. . ce 1] 1, B, =]
Example 14. Fig. [3lis an example satisfying --3Zg,st--+Zp--+Z1--+Z5.

Destination Point. Basically, our construction is similar as the construction
by Miller [I0]. Pick the standard homeomorphism p between 2" and the middle
third Cantor set, ie., p(M) = 2% ,.,,(1/3)""! for M C N, and pick a non-
computable c.e. set B C N and put v = p(B). We will construct a Cantor
fan so that the first coordinate of the unique ramification point is v, hence
the fan will have a non-computable ramification point. Let {B; : s € N} be a
computable enumeration of B, and let ng denote the element enumerated into B
at stage s, where we may assume just one element is enumerated into B at each
stage. Put v = p(By) and vy = p(B; U {i € N:i > ng}). Note that ~ is
not computable, and so y™* # v and 48 £ « for any s € N. This means that
for every s € N there exists t > s such that Y% £ 4min gnd qmax £ ymax By
this observation, without loss of generality, we can assume that vy 2 4™t and
ymax o£ ymax whenever s # t. We can also assume 1/3 < yin < qmax < 9 /3 for

any s € N.

Stage 0. We now start to construct a I1{ Cantor fan Q = Neen @s- At the first
stage 0, and for each ¢ > 0, we define the following sets:

255 = [ (08" 28] < llg g 1) 26" = [ = 1/3,%™] x [l 7.

Moreover, we set Qo = ngo U Z&™d. By our choice of Py, actually Qg = [y" —
1/3,98%] x [lg . rg ] Zgf is called the straight block from 2/3 to 1/3 at stage
0, and Zg“d is called the end box at stage 0. The bounding box of the block
75t is defined by [y, inaX] x [I57,7d]. The collection of 0-blocks at stage t is
Z2,(0) = {Z5"}. We declare that Zg' is the first block, and that —[t])ZSt.

Stage s+ 1. Inductively assume that we have already constructed the collection
of u-blocks Z;(u) at stage t > u is already defined for every u < s. For any u,
we think of the collection Z(u) = {Z(u) : t > u} as a finite set {Z}'}icuz, ()
of computable functions Z* : {t € N : ¢t > u} — (J, Z¢(u) such that Z,(u) =
{ZM(t) i < #2Z,(u)} for each t > u. We inductively assume that the collection
Z(u) = {Zi(u) : t > u} satisfies the following conditions:

(IH1) For each Z € Z(u) and for each t > v > u, Z(t) C Z(v).

)
(TH2) There is a computable function f : R?* — R? such that f [ UU,<, Z¢(u)

is a homeomorphism between |JJ,, «, Z:(u) and P; x [0,1] for any ¢ > s.

u<s

15



end st
y+2r;|_ Zs Zs
Y+ z2rst---

«—A copy of Ps

y+zlst-
y+ 2l .

,ymm ,ymax

S S

Figure 14: The active block Z5* U Z¢"d at stage s.

(IH3) There are y, z,¢ € Q such that the blocks Zift and Z*4 are constructed
as follows:

Z3 = [l (™ ™) x [y + 217,y + 2rd));
Z3 = [y — (A x [y + 217y + 2rd).

Here, a computable closed set Qs, an approzimation of our 119 Cantor fan
Q at stage s, is defined by Q, = Z* U Ungs Z(u).

max min . max

Non-injured Case. First we consider the case [y™1, 7% C [yin, y1ax] je.,
this is the case that our construction is not injured at stage s+1. In this case, we
construct (s + 1)-blocks in the active block Z5* U Z¢"d. We will define Z(s, i, j)
and Box(s, i, j) = Box(Z:(s,1,j)) for each j < 6. The first two corner blocks at
stage t > s + 1 are defined by:

Box(s, 0) =[y&"™ — ¢, "] x [y + 215,y + 2r}],

Zi(s,0) =[5 (v = ¢,y x [y + 215,y + 2r]) N Box(s,0),
Box(s, 1) =[y"™ — ¢, 7™ x [y + 2r},y + 2rf],

Zi(s,1) =["l;(Box(s, 1))

Sublemma 4. Z;(s,0) U Z;(s,1) € Z¢* for any t > s + 1.

Sublemma 5. ngt—[t])Zt(s, 0)—[I]->Zt(5, 1), for any t > s+ 1.

The next block is a straight block from ™ to Yoy which is defined as
follows:

Box(s, 2) =[y"", 48] x [y + 210,y + 2r]].
Zi(s,2) =[=](Boxs(s, 2)).

For given a,b,a,8 € Q, we can calculate Ny s(a,b; o, 3) and Ni s(a,b;a, )
satisfying No s(a,b; o, ) + N1 s(a, by, 8) - I = a + ba, and Ny s(a, b;a, 5) +
Nis(a,b;a, B)rf = a+bB. Put y* = Ny s(y, z; 75, r8), and 2* = Ny s(y, 2575, rF).

178y 'S 1 syt s

Sublemma 6. Box(s,2) = [y ymaX] x [y* + 2%, y* + 2*rf].
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Figure 15: The first two corner blocks Z4(s,0) and Zs(s, 1).

Put ¢* = (7" — v7%)/3°. Note that ¢* > 0 since 7" > v, We then
again define corner blocks.

) =T A+ CI X [y + 2705y + 27,
) =7 (5 e + Ol ™ + 2710,y + 27 ]) N Box(s, 3),
) =l v+ Clx Wy + 2yt 4 2]

[

max

Next, a straight block from y™* to ~© "4 is defined as follows:

Box(s,5) = [Y2{1, v x [yt + 2k yf + 27T,
Zy(s,5) = [~];[Box(s, 5)].

Put y** = No s(y*, 2*;rk,rh), and 2** = Ny (y*, 255, r).

1Syt s 18yt s

Sublemma 7. Box(s,5) = [y ymax] x [y** 4 2%y 4 2]

S

Put (** = (y21 — y™n) /3%, Note that (** > 0 since 111 > 4™ The end
box at stage s+ 1 is:

Z(s,6) = [y — ¢, ye] x [y + 20yt + 2T

Then put Z5%, , = Z(s,5), 254, = Z5', .41, and Z29 = Z(s,6). The active
block at stage s+1 is the set Z3%, 1y UZES‘;{, and the collection of (s+1)-blocks
at stage t is defined by Zi(s + 1) = {Zi(s,i) : i < 5}. Clearly, our definition
satisfies the induction hypothesis (IH3) at stage s + 1.

Sublemma 8. Z;(s,i) C Z,(s,i) for eacht > v >s+1 and i < 5.
Sublemma 9. For anyt>s+1,

Z:ftﬂzt(s, 0)-15 2,05, 1) 23 2,06, 2) 23 2, (5,3) T 245, ) 5 245, 5).

Proof. Tt follows straightforwardly from the definition of these blocks Z;(s, 1),
and Sublemma [@] and [ O

Sublemma 10. | J,_; ¢ Zi(s,7) C ZS*N[y™in ymaX] x (y+zrg, y+2r]]. Hence,
(Uzgz'g(s Zt(Svi)) NZr =10
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Consequently, we can show the following extension property.

Sublemma 11. Assume that we have a computable function fs : R? — R? such
that fs [ UUyu<s Z¢(u) is a computable homeomorphism between |JJ, <, Z¢+(u)
and P; x [1/(s+2),1] for any t > s. Then we can effectively find a computable
function fsp1 : R? — R? extending fs | UU, <, Zs+1(w) such that feyr |
UUu<sr1 Z2t(u) is a computable homeomorphism between | JU, <, Z¢(u) and
Py x [1/(s+3),1] for any t > s+ 1. B

Proof. By Sublemma 5] @ and O

By Sublemma [§ and [[T] induction hypothesis (IH1) and (IH2) are satisfied.
Since ZPGUU Zs41(s+1) € Z5'UZg™ by Sublemma@and [0 and |J Z,41(u) €
U Zs(u) for each u < s, by induction hypothesis (IH1), we have the following:

Q=230 U 2w cziuzroJU 2. ce.

u<s+1 u<s

Injured Case. Secondly we consider the case that our construction s in-
jured. This means that [yT1,yM2X] ¢ [ymin 4max] - Ip this case, indeed, we
have [y, y22] N [y2?, y2#] = (. Fix the greatest stage p < s such that

[V, ] € [y, 4] occurs. We again, inside the end box Z¢! at stage
s, define corner blocks Z;(s,0) and Z:(s,1) as non-injuring stage, whereas the
construction of Z;(s, ) for i > 2 differs from non-injuring stage. The end box of
our construction at stage s+ 1 will turn back along all blocks belonging Z(u) for
p < u < s in the reverse ordering of <. Let {Z; : i < kqy1} be an enumeration
of all blocks in Z;(u) for p < u < s, under the reverse ordering of <. In other
words, Z; is the successor block of Z;1 under --», for each i < ks41 — 1. There
are two kind of blocks; one is a straight block, and another is a corner block. We
will define blocks Z;(s,,7) for i < ks11 and j < 3. Now we check the direction

(0;,€;) of Z;. Here, we may consistently assume that the condition Z; —[Tl holds.

Subcase 1. If 4;(0) = £;(0) then Z; is a straight block. In this case, we
only construct Z;(s,i,0). Since Z; is straight, there are y;, z;, o, 8 € Q and
u < s such that, for B;(0) = [o, 8] and B;(1) = [y; + 2l ,yi + zir;}] such that
BOX(Zi) = Bi((Sz(O)) XBz(lf(st(O)) If 51(1) = 0, then set y: = NO,s(yi; 235 l;, l:)
and z¥ = Ny s(yi, 25,05, 1%). If §;(1) = 1, then set y* = Nos(yi, zi;75 , 75 ) and

18
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-=37;-->
Yi + Zﬂ"i_ _[T_])Zt(sa Z O)yj'])
vtz D

s : Z ZS(S’Z.’O)
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yi + 25|
yi+ il | L | Ll Ll

-=37;-->
) B Figure 19: The block Z(s,1,0).

Figure 18: The block Z;.

= Nis(yi,zi;rki,rF). Then, we define Z;(s,4,0) as the following straight
block

B (0) = Bi(0);  Bf(1) = [y + 215,y + 2r];
Zy(s,1,0) = [6:(0)]7 (B (6:(0)) x Bi (1 = 6:(0))).
Here, Box(Z:(s,1,0)) is defined by B} (4;(0)) x Bf (1 — 6;(0)).
Sublemma 12. Z;(s,4,0) C Z;.

Proof. By our definition of Ny s and Ny 4, we have Bf (1) = [y; + zil, , yi + 2il}]
or Bf(1) = [yi + zir%,yi + zir]]. O

Subcase 2. If §;(0) # 6;(2) then Z; is a corner block. We will construct
three blocks; one corner block Z;(s,14,0), and two straight blocks Z;(s,,1) and
Z(s,1,2). We may assume that Z; is of the following form:

Zi = [e]“([wi + Gily s i + Grid] X [y + 2zl yi + 2irid]),
or Z; = [e]§([xi + Gily, , xi + Cﬂ’:] X i + zily ,yi + Zﬂ}ﬂ)
N ([zi + Gly @i + Gl x [yi + zily , yi + 2ir))

Set z = 0 if the former case occurs; otherwise, set z = 1. Let {p,, : n < 6} be an
enumeration of {7, 17,15, 5 rT, r;‘} in increasing order, and let pg be 7. First
we compute the value rot = 2|¢;(0) —[0;(1) —e;(1)||+ 1. Note that rot € {1,3},
and, if Z; rotates clockwise then rot = 1; and if Z; rotates counterclockwise

(=] (—] .
then rot = 3. If --+Z; or Z;--», then put D(0) = 1; otherwise put D(0) = 3. If

o 27, or Z;- " ]-) then put D(1) = 1; otherwise put D(1) = 3. If —[—J)Z or Z; Eﬁ)

then put F(0) = 0; otherwise put F(0) =5 — rot. If —[—]-)Zi or ZZ-—[—]-), then put

E(1) = 0; otherwise put E(1) = 5—rot. Then we now define Z;(s, 1, j) for j < 3
as follows:

Box(s,i,0) = [x; + (ipp(o), Ti + CGiPp(0y+2] X [Yi + 2iPD(1), Yi + 2iPD(1)+2]s
Box(s,i,1) = [x; + CGiPE(0), Ti + CiPEO)+rot] X [Yi + 2iPD(1), Yi + ZiPD(1)42]5
Box(s,4,2) = [x; + GiPp(0), Ti + CiPp(0y+2] X [Yi + 2iPE(1)s Vi + 2iPEQ1)+rot+2),

Z(s,1,0) = [e]; (Box(s, 4, 0)),

Zi(s,i,1) = [—]; (Box(s, 1, 1)),

Zi(s,1,2) = [ | ];(Box(s, ,2)).
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Zs(8,1,0)

Zs(s,1,1)

' \Zs(s,i,l)

. . T .
Zo(5,6,2)-527,(5,1,0)23Z4 (5,5, 1) Zs(5,0,1)-"3Z(s,,0) -2 Z4(s,1,2)
Figure 20: rot = 1. Figure 21: rot = 3.

Intuitively, D(0) = 1 (resp. D(0) = 3) indicates that Z;(s,i,0) passes the
west (resp. the east) of Z;; D(1) =1 (resp. D(1) = 3) indicates that Z:(s,,0)
passes the south (resp. the north) of Z;; E(0) = 0 (resp. E(0) = 5 — rot)
indicates that Z;(s,1i,1) passes the west (resp. the east) border of the bounding
box of Z;; and E(1) =0 (resp. E(1) = 5 — rot) indicates that Z;(s,4,2) passes
the south (resp. the north) border of the bounding box of Z;. Note that the
corner block Zi(s,i,0) leaves Z; on his right, and Z:(s,4,0) has the reverse
direction to Z;.

Sublemma 13. Z,(s,i,2 — 6;(0))=+Zi(5,7,0)~-+Zy(s,t, 1 + 6:(0)).
Sublemma 14. Z:(s,i,j) C Z;.

For each ¢ < ksi1, we have already constructed Z;(s + 1;4) = {Z:(s,4,7) :
j < 3}. All of these blocks constructed at the current stage are included in
ZPMUUU,ycucs Zs(u). Let 2% (vesp. Z'[i]) be the <-least (resp. the <-
greatest) element of {At.Z;(s,4,5) : j < 3}. It is not hard to see that our
construction ensures the following condition.

Sublemma 15. Z}[i]--+Z[i + 1].

Thus, Ui<ks+1
formly in ¢ > s+ 1. Therefore, we can connect blocks Zs(s,4) for i < ks41, and
we succeed to return back on the current approximation of the <-greatest p-
block Z,(p) = Z3', € Z.(p). Then we construct blocks Z;(s, k) for 2 <k < 6 on
the block Z(p). The construction is essentially similar as the non-injuring case.
By induction hypothesis (IH3), we note that Zs(p) must be of the following
form for some y,, 2, € Q:

Z(s 4 1;4) is computably homeomorphic to P; x [0, 1], uni-

Zs(p) = [FI (R 7™ [yp + 2l yp + 275 ).

max

On Z4(p), we define a straight block from ’y;,nin to v as follows:

Z4(s5,2) = [=1 (™, 75 X [yp + 273, yp + 2577 ])-

max max max

Here, by our assumption, v} < 7, holds since v < 7,**. The blocks
Zi(s, k) for 3 < k < 6 are defined as in the same method as non-injuring case.
The active block at stage s + 1 is Zs11(s,5), and the end box at stage s + 1
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Overview of the upside of the frontier p-block.

,ymin ,ymax ")/?}i}n} P)/;{flx
S, .18

L — The active block Z5 .
P)/Irln‘ln ;nax

Figure 22: Outline of our construction of the injured case.

is Zs11(s,6). (s + 1)-blocks at stage t are Zy(s,i) for i < 6, and Z(s,1,J) for
i < ksy1 and j < 3 if it is constructed. Zi(s + 1) denotes the collection of
(s 4 1)-blocks at stage t.

Sublemma 16. ZS UJ 241 (s +1) € 2z Ul Up<ucs Zs(u).
Thus we again have the following:

Qi =2z3ul U 2w cziuziulJ U 2w € Q..

u<s+1 u<s

Sublemma 17. Assume that we have a computable function fs : R? — R? such
that fs | UU,<s Zt(u) is a computable homeomorphism between | J U, <, Z¢(u)
and P; x [1/(s+2),1] for any t > s. Then we can effectively find a computable
function fsp1 @ R? — R? extending fs | UU, <, Zs+1(w) such that feyr |
UUu<sr1 2e(u) is a computable homeomorphism between U, <, Z¢(u) and

P, x [1/(s+3),1] for anyt > s+ 1.

Finally we put @ = ),y @s and Z2* = (J, oy Z(u). The construction is
completed.

Verification. Now we start to verify our construction.

Lemma 15. Q is I19.

Sublemma 18. (,cx Uzcz- Zt = Uzez- Nien Zt-

Proof. The intersection Zs(p) N Z% for i < 2 is included in some line segment
L; € {[0,1] x {b},{b} x [0,1] : b € R}, and Zs(p) N L; = Zs(p) N Z¢ holds. O

Sublemma 19. U,z ien Zt is computably homeomorphic to [0,1] x P,
for each u € N.

Proof. By the induction hypothesis (IH2). O
Sublemma 20. U, z. [,y 2t is homeomorphic to (0,1] x P.
Proof. By Sublemma [[] and [[7 O
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Lemma 16. @ is homeomorphic to a Cantor fan.

Proof. By SublemmalI8 there exists a real 59 € R such that the following holds:

0= ( U N zt> O}

ZeZ* teN

Therefore, by Sublemma 20 @) is homeomorphic to the one-point compactifica-
tion of (0,1] x P. O

Lemma 17. @ contains no computable point.
Proof. By Sublemma M3, |J,¢ 2. [\;cn Z¢ contains no computable point. O
By Lemmata [I35] [[6] and I7 Q is the desired dendroid. O

Remark. Since dendroids are compact and simply connected, Theorem [I3] is
the solution to the question of Le Roux and Ziegler [13]. Indeed, the dendroid
constructed in the proof of Theorem [I3]is contractible.

Corollary 4. Not every nonempty contractible 119 subset of [0,1]? contains a
computable point.

Question 18. Does every locally connected planar 119 set contain a computable
point?

5 Immediate Consequences

5.1 Effective Hausdorflf Dimension

For basic definition and properties of the the effective Hausdorff dimension of a
point of Euclidean plane, see Lutz-Weihrauch [9]. For any I C [0, 2], let DIM!
denote the set of all points in R? whose effective Hausdorff dimensions lie in
1. Lutz-Weihrauch [9] showed that DIM!? s path-connected, but DIM 2] g
totally disconnected. In particular, DIM®? has no nondegenerate connected
subset. It is easy to see that DIM(®? has no nonempty II{ simple curve, since
every I1Y simple curve contains a computable point, and the effective Hausdorff
dimension of each computable point is zero.

Theorem 19. DIM™M? has a nondegenerate contractible 19 subset.

Proof. For any strictly increasing computable function f: N — N with f(0) =0
and any infinite binary sequence a € 2%, put ¢ () = [[;cn(a(i), a(f(3)), a(f (i) +
1),...,a(f(i+1)—1)), where o x 7 denotes the concatenation of binary strings
o and 7. Then, r : 2% — R is defined as r(a) = 3, cn(a(i) - 270FD). Note
that o # 8 and r(«) = r(8) hold if and only if there is a common initial seg-
ment o € 2<N of @ and B such that 00 and o1 are initial segments of o and
B respectively, and that a(m) = 1 and 8(m) = 0 for any m > lh(c), where
Ih(o) denotes the length of o. In this case, we say that « sticks to 8 on o. If
r(a) # r(B8), then clearly r o tp(a) # roty(B). Assume that « sticks to S on
o. Then there are my < m; such that ¢f(a)(mo) = ty(e)(m1) = a(lh(o)) =0
and ¢ (8)(mg) = t(B)(m1) = B(lh(c)) = 1 by our definition of ¢y. Therefore,
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tf(a) does not stick to ¢f(f). Hence, r o tf(e) # r o 15(8) whenever a # f.
Actually, r o : 2% — R is a computable embedding. For each n € N, put
kr(n) = #{s : f(s) < n}. Then, there is a constant ¢ € N such that, for any
a €2V and n € N, we have K (ty(a) [ n+kg(n) +1) > K(a | n) — ¢, where K
denotes the prefix-free Kolmogorov complexity. Therefore, for any sufficiently
fast-growing function f : N — N and any Martin-Lof random sequence o € 2V,
the effective Hausdorff dimension of 7ot ¢(«) must be 1. Thus, for any nonempty
9 set R C 2" consisting of Martin-Lof random sequences, {0} x (1 o tf(R)) is
a 119 subset of DIM'!}. Let @ be the dendroid constructed from P =7 o ¢(R)
as in the proof of Theorem [I[3] where we choose v = p(B) as Chaitin’s halting
probability Q. For every point (zg,21) € @, the effective Hausdorff dimension
of x; for some ¢ < 2 is equivalent to that of an element of P or that of (.
Consequently, @ C DIM!2), [l

5.2 Reverse Mathematics

Theorem 20. For every 19 set P C 2N, there is a contractible planar 119 set
Q such that Q is Turing-degree-isomorphic to P, i.e., {degp(z) : v € P} =
{degy(z) : x € D}.

Proof. We choose B as a c.e. set of the same degree with the leftmost path of
P. Then, the dendroid @ constructed from P and B as in the proof of Theorem
is the desired one. O

A compact 1Y subset P of a computable topological space is Muchnik com-
plete if every element of P computes the set of all theorems of T for some
consistent complete theory T" containing Peano arithmetic. By Scott Basis The-
orem (see Simpson [15]), P is Muchnik complete if and only if P is nonempty
and every element of P computes an element of any nonempty I1{ set @ C 2V,

Corollary 5. There is a Muchnik complete contractible planar 11§ set.

A compact I1{ subset P of a computable topological space is Medvedev com-
plete (see also Simpson [I5]) if there is a uniform computable procedure ® such
that, for any name z € NY of an element of P, ®(x) is the set of all theorems
of T for some consistent complete theory T containing Peano arithmetic.

Question 21. Does there exist a Medvedev complete simply connected planar
19 set? Does there exist a Medvedev complete contractible Euclidean 119 set?

Our Theorem also provides a reverse mathematical consequence. For
basic notation for Reverse Mathematics, see Simpson [14]. Let RCAq denote the
subsystem of second order arithmetic consisting of I%¢ (Robinson arithmetic
with induction for X{ formulas) and A$-CA (comprehension for AY formulas).
Over RCA(, we say that a sequence (B;);en of open rational balls is flat if there is
a homeomorphism between | J, _,, B; and the open square (0,1)? for any n € N.
It is easy to see that RCAg proves that every flat cover of [0,1] has a finite
subcover.

Theorem 22. The following are equivalent over RCAg.

1. Weak Kénig’s Lemma: every infinite binary tree has an infinite path.
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2. Every open cover of [0,1] has a finite subcover.
3. Every flat open cover of [0,1]? has a finite subcover.

Proof. The equivalence of the item (1) and (2) is well-known. It is not hard to see
that RCAq proves the existence of the sequence {Qs}sen as in our construction
of the dendroid @ in Theorem [I3] by formalizing our proof in Theorem [I3] in
RCA(. Here we may assume that {Qs}sen is constructed from the set of all
infinite paths of a given infinite binary tree T C 2<N, and a c.e. complete set
B C N. Note that (J,,([0,1]*\ Qs) does not cover [0,1]* for every t € N. Over
RCAy, there is a flat sequence {[0,1]? \ Q% }sen of open rational balls such that

s<t Q5 2 (y<y Qs for any ¢ € N, and that an open rational ball U is removed
from some @} if and only if an open rational ball U is removed from some Q).
However, if T has no infinite path, then ) has no element. In other words,
{[0,1]2\ Q% }sen covers [0,1]2. O
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