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Incomputability of Simply Connected Planar

Continua

Takayuki Kihara∗

Abstract

Le Roux and Ziegler asked whether every simply connected compact

nonempty planar Π0

1 set always contains a computable point. In this

paper, we solve the problem of le Roux and Ziegler by showing that there

exists a planar Π0

1 dendroid without computable points. We also provide

several pathological examples of tree-like Π0

1 continua fulfilling certain

global incomputability properties: there is a computable dendrite which

does not ∗-include a Π0

1 tree; there is a Π0

1 dendrite which does not ∗-

include a computable dendrite; there is a computable dendroid which does

not ∗-include a Π0

1 dendrite. Here, a continuum A ∗-includes a member of

a class P of continua if, for every positive real ε, A includes a continuum

B ∈ P such that the Hausdorff distance between A and B is smaller than

ε.

1 Background

Every nonempty open set in a computable metric space (such as Euclidean n-
space Rn) contains a computable point. In contrast, the Non-Basis Theorem
asserts that a nonempty co-c.e. closed set (also called a Π0

1 set) in Cantor space
(hence, even in Euclidean 1-space) can avoid any computable points. Non-
Basis Theorems can shed new light on connections between local and global
properties by incorporating the notions of measure and category. For instance,
Kreisel-Lacombe [6] and Tanaka [17] showed that there is a Π0

1 set with positive
measure that contains no computable point. Recent exciting progress in Com-
putable Analysis [18] naturally raises the question whether Non-Basis Theorems
exist for connected Π0

1 sets. However, we observe that, if a nonempty Π0
1 sub-

set of R1 contains no computable points, then it must be totally disconnected.
Then, in higher dimensional Euclidean space, can there exist a connected Π0

1

set containing no computable points? It is easy to construct a nonempty con-
nected Π0

1 subset of [0, 1]2 without computable points, and a nonempty simply
connected Π0

1 subset of [0, 1]3 without computable points. An open problem,
formulated by Le Roux and Ziegler [13] was whether every nonempty simply
connected compact planar Π0

1 set contains a computable point. As mentioned
in Penrose’s book “Emperor’s New Mind” [12], the Mandelbrot set is an exam-
ple of a simply connected compact planar Π0

1 set which contains a computable
point, and he conjectured that the Mandelbrot set is not computable as a closed
set. Hertling [5] observed that the Penrose conjecture has an implication for a
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famous open problem on local connectivity of the Mandelbrot set. Our interest
is which topological assumption (especially, connectivity assumption) on a Π0

1

set can force it to possess a given computability property. Miller [10] showed
that every Π0

1 sphere in Rn is computable, and so it contains a dense c.e. subset
of computable points. He also showed that every Π0

1 ball in Rn contains a dense
subset of computable points. Iljazović [7] showed that chainable continua (e.g.,
arcs) in certain metric spaces are almost computable, and hence there always is
a dense subset of computable points. In this paper, we show that not every Π0

1

dendrite is almost computable, by using a tree-immune Π0
1 class in Cantor space.

This notion of immunity was introduced by Cenzer, Weber Wu, and the author
[4]. We also provide pathological examples of tree-like Π0

1 continua fulfilling
certain global incomputability properties: there is a computable dendrite which
does not ∗-include a Π0

1 tree; there is a computable dendroid which does not ∗-
include a Π0

1 dendrite. Finally, we solve the problem of Le Roux and Ziegler [13]
by showing that there exists a planar Π0

1 dendroid without computable points.
Indeed, our planar dendroid is contractible. Hence, our dendroid is also the first
example of a contractible Euclidean Π0

1 set without computable points.

2 Preliminaries

Basic Notation: 2<N denotes the set of all finite binary strings. Let X be
a topological space. For a subset Y ⊆ X , cl(Y ) (int(Y ), resp.) denotes the
closure (the interior, resp.) of Y . Let (X ; d) be a metric space. For any x ∈ X
and r ∈ R, B(x; r) denotes the open ball B(x; r) = {y ∈ X : d(x, y) < r}.
Then x is called the center of B(x; r), and r is called the radius of B(x; r).
For a given open ball B = B(x; r), B̂ denotes the corresponding closed ball
B̂ = {y ∈ X : d(x, y) ≤ r}. For a, b ∈ R, [a, b] denotes the closed interval
[a, b] = {x ∈ R : a ≤ x ≤ b}, (a, b) denotes the open interval (a, b) = {x ∈ R :
a < x < b}, and 〈a, b〉 denotes a point of Euclidean plane R2. For X ⊆ Rn,
diam(X) denotes max{d(x, y) : x, y ∈ X}.

Continuum Theory: A continuum is a compact connected metric space. For
basic terminology concerning Continuum Theory, see Nadler [11] and Illanes-
Nadler [8].

Let X be a topological space. The set X is a Peano continuum if it is a
locally connected continuum. The set X is a dendrite if it is a Peano continuum
which contains no Jordan curve. The set X is unicoherent if A∩B is connected
for every connected closed subsets A,B ⊆ X with A ∪ B = X . The set X is
hereditarily unicoherent if every subcontinuum of X is unicoherent. The set X
is a dendroid if it is an arcwise connected hereditary unicoherent continuum.
For a point x of a dendroid X , rX(x) denotes the cardinality of the set of
arc-components of X \ {x}. If rX(x) ≥ 3 then x is said to be a ramification
point of X . The set X is a tree if it is dendrite with finitely many ramification
points. Note that a topological space X is a dendrite if and only if it is a locally
connected dendroid. Hahn-Mazurkiewicz’s Theorem states that a Hausdorff
space X is a Peano continuum if and only if X is an image of a continuous
curve.

Example 1 (Planar Dendroids).

2



Figure 1: The basic
dendrite

Figure 2: The harmonic
comb

Cantor set

Figure 3: The Cantor
fan

1. Put Bt = {2−t} × [0, 2−t]. Then the following set B ⊆ R2 is dendrite.

B =
⋃

t∈N

Bt ∪ ([−1, 1]× {0}).

We call B the basic dendrite. The set Bt is called the t-th rising of B. See
Fig. 1.

2. The set H = cl(({1/n : n ∈ N}× [0, 1])∪([0, 1]×{0})) is called a harmonic
comb. Then H is a dendroid, but not a dendrite. The set {1/n}× [0, 1] is
called the n-th rising of the comb H, and the set [0, 1]× {0} is called the
grip of H. See Fig. 2.

3. Let C ⊆ R1 be the middle third Cantor set. Then the one-point com-
pactification of C × (0, 1] is called the Cantor fan. (Equivalently, it is the
quotient space Cone(C) = (C × [0, 1])/(C × {0}).) The Cantor fan is a
dendroid, but not a dendrite. See Fig. 3.

Let X be a topological space. X is n-connected if it is path-connected and
πi(X) ≡ 0 for any 1 ≤ i ≤ n, where πi(X) is the i-th homotopy group of X . X
is simply connected if X is 1-connected. X is contractible if the identity map on
X is null-homotopic. Note that, if X is contractible, then X is n-connected for
each n ≥ 1. It is easy to see that the dendroids in Example 1 are contractible.

Computability Theory: We assume that the reader is familiar with Com-
putability Theory on the natural numbers N, Cantor space 2N, and Baire space
NN (see also Soare [16]). For basic terminology concerning Computable Analysis,
see Weihrauch [18], Brattka-Weihrauch [3], and Brattka-Presser [2].

Hereafter, we fix a countable base for the Euclidean n-space Rn by ρ =
{B(x; r) : x ∈ Qn & r ∈ Q+}, where Q+ denotes the set of all positive rationals.
Let {ρn}n∈N be an effective enumeration of ρ. We say that a point x ∈ Rn

is computable if the code of its principal filter F(x) = {i ∈ N : x ∈ ρi} is
computably enumerable (hereafter c.e.) A closed subset F ⊆ Rn is Π0

1 if there
is a c.e. set W ⊆ N such that F = X \

⋃

e∈W ρe. A closed subset F ⊆ Rn is
computably enumerable (hereafter c.e.) if {e ∈ N : F ∩ ρe 6= ∅} is c.e. A closed
subset F ⊆ Rn is computable if it is Π0

1 and c.e. on Rn.

Almost Computability: Let A0, A1 be nonempty closed subsets of a metric
space (X, d). Then the Hausdorff distance between A0 and A1 is defined by

dH(A0, A1) = max
i<2

sup
x∈Ai

inf
y∈A1−i

d(x, y).

Let P be a class of continua. We say that a continuum A ∗-includes a member
of P if inf{dH(A,B) : A ⊇ B ∈ P} = 0.

3



Proposition 2. Every Euclidean dendroid ∗-includes a tree.

Proof. Fix a Euclidean dendroid D ⊆ Rn, and a positive rational ε ∈ Q. Then
D is covered by finitely many open rational balls {Bi}i<n of radius ε/2. Choose
di ∈ D∩Bi for each i < n if Bi intersects with D. Note that {B(di; ε)}i<n covers
D. Since D is dendroid, there is a unique arc γi,j ⊆ D connecting di and dj for
each i, j < n. Then, E =

⋃

{i,j}⊆n γi,j is connected and locally connected, since

E is a union of finitely many arcs (i.e., it is a graph, in the sense of Continuum
Theory; see also Nadler [11]). It is easy to see that E has no Jordan curve, since
E is a subset of the dendroid D. Consequently, E is a tree. Moreover, clearly
dH(E,D) < ε, since di ∈ E for each i < n.

The class P has the almost computability property if every A ∈ P ∗-includes
a computable member of P as a closed set. In this case, we simply say that
every A ∈ P is almost computable. Iljazović [7] showed that every Π0

1 chainable
continuum is almost computable, hence every Π0

1 arc is almost computable.

3 Incomputability of Dendrites

By Proposition 2, topologically, every planar dendrite ∗-includes a tree. How-
ever, if we try to effectivize this fact, we will find a counterexample.

Theorem 3. Not every computable planar dendrite ∗-includes a Π0
1 tree.

Proof. Let A ⊆ N be an incomputable c.e. set. Thus, there is a total computable
function fA : N → N such that range(fA) = A. We may assume fA(s) ≤ s for
every s ∈ N. Let As denote the finite set {fA(u) : u ≤ s}. Then stA : N → N

is defined as stA(n) = min{s ∈ N : n ∈ As}. Note that stA(n) ≥ n by our
assumption fA(s) ≤ s.

Construction. . Recall the definition of the basic dendrite from Example 1.
We construct a computable dendrite by modifying the basic dendrite B. For
every t ∈ N, we introduce the width of the t-rising w(t) as follows:

w(t) =

{

2−(2+stA(t)), if t ∈ A,

0, otherwise.

Let It be the closed interval [2−t − w(t), 2t + w(t)]. Since stA(n) ≥ n, we
have It ∩ Is = ∅ whenever t 6= s. We observe that {w(t)}t∈N is a uniformly
computable sequence of real numbers. Now we define a computable dendrite
D ⊆ R2 by:

D0
t = ({2−t − w(t)} ∪ {2−t + w(t)})× [0, 2−t]

D1
t = [2−t − w(t), 2−t + w(t)] × {2−t}

D2
t = (2−t − w(t), 2−t + w(t)) × (−1, 2−t)

D =
(

⋃

t∈N

(D0
t ∪D

1
t )
)

∪
(

([−1, 1]× {0}) \
⋃

t∈N

D2
t,m

)

.

We call Dt = D0
t ∪D

1
t the t-th rising of D. See Fig. 4.
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D0

D1

0 1/4 11/2

D2

w(1)

Figure 4: The dendrite D for 0, 2, 4 6∈ A and 1, 3 ∈ A.

Claim. The set D is a dendrite.

To prove D is a Peano continuum, by the Hahn-Mazurkiewicz Theorem, it
suffices to show that D = Im(h) for some continuous curve h : [−1, 1] → R2.
We divide the unit interval [0, 1] into infinitely many parts It = [2−(t+1), 2−t].
Furthermore, we also divide each interval I2t into three parts I02t, I

1
2t, and I

2
2t,

where Ii2t = [(5 − i) · 3−1 · 2−(2t+1), (6 − i) · 3−1 · 2−(2t+1)] for each i < 3. Then
we define a desired curve h as follows.

h(x) moves in































{2−t + w(t)} × [0, 2−t] if x ∈ I02t,

[2−t − w(t), 2−t + w(t)] × {2−t} if x ∈ I12t,

{2−t − w(t)} × [0, 2−t] if x ∈ I22t,

[2−(t+1) + w(t+ 1), 2−t − w(t)] × {0} if x ∈ I2t+1,

[−1, 0]× {0} if x ∈ [−1, 0].

Clearly, h can be continuous, and indeed computable, since the map w : R→
R is computable. It is easy to see that D = Im(h). Moreover, Im(h) contains no
Jordan curve since π0(h(x)) ≤ π0(h(y)) whenever x ≤ y, where π0(p) denotes
the first coordinate of p ∈ R2. Consequently, D is a dendrite.

Moreover, by construction, it is easy to see that D is computable.

Claim. The computable dendrite D does not ∗-include a Π0
1 tree.

Suppose that D contains a Π0
1 subtree T ⊆ D. We consider a rational open

ball Bt with center 〈2−t, 2−t〉 and radius 2−(t+2), for each t ∈ N. Note that
Bt ∩D ⊆ Dt for every t ∈ N. Since T is Π0

1 in R2, B = {t ∈ N : B̂t ∩ T = ∅}
is c.e. If w(t) > 0 (i.e., t ∈ A) then D \ (Dt ∩ Bt) is disconnected. Therefore,
either T ⊆ [−1, 2−t] × R or T ⊆ [2−t, 1] × R holds whenever B̂t ∩ T = ∅ (i.e.,
t ∈ B), since T is connected. Thus, if the condition #(A ∩B) = ℵ0 is satisfied,
then either T ⊆ [−1, 0]×R or T ⊆ [0, 1]×R holds. Consequently, we must have
dH(T,D) ≥ 1.

Therefore, we may assume #A ∩ B < ℵ0. Since A is coinfinite, D has
infinitely many ramification points 〈2−t, 0〉 for t 6∈ A. However, by the definition
of tree, T has only finitely many ramification points. Thus we must have (D0

t ∩
T )\ {〈2−t, 0〉} = ∅ for almost all t 6∈ A. Since B̂t ∩T ⊆ (D0

t ∩T )\ {〈2
−t, 0〉}, we

have t ∈ B for almost all t ∈ N\A. Consequently, we have #((N\A)△B) < ℵ0.
This implies that N \ A is also c.e., since B is c.e. This contradicts that A is
incomputable.
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ψ(〈〉)

ψ(〈0〉) ψ(〈1〉)

ψ(〈00〉) ψ(〈01〉)ψ(〈10〉) ψ(〈11〉)

0 1

1

Figure 5: The plotted tree Ψ(2<N).

Note that a Hausdorff space (hence every metric space) is (locally) arcwise
connected if and only if it is (locally) pathwise connected. However, Miller [10]
pointed out that the effective versions of arcwise connectivity and pathwise con-
nectivity do not coincide. Theorem 3 could give a result on effective connectivity
properties. Note that effectively pathwise connectivity is defined by Brattka [1].
Clearly, the dendrite D is effectively pathwise connected. We now introduce a
new effective version of arcwise connectivity property by thinking arcs as closed
sets. Let A−(X) denote the hyperspace of closed subsets of X with negative
information (see also Brattka [1]).

Definition 4. A computable metric space (X, d, α) is semi-effectively arcwise
connected if there exists a total computable multi-valued function P : X2 ⇒

A−(X) such that P (x, y) is the set of all arcs A whose two end points are x and
y, for any x, y ∈ X .

Obviously D is not semi-effectively arcwise connected. Indeed, for every
ε > 0 there exists x0, x1 ∈ [0, 1] with d(x0, x1) < ε such that 〈x0, 0〉, 〈x1, 0〉 ∈ D
cannot be connected by any Π0

1 arc. Thus, we have the following corollary.

Corollary 1. There exists an effectively pathwise connected Euclidean contin-
uum D such that D is not semi-effectively arcwise connected.

Theorem 5. Not every Π0
1 planar dendrite is almost computable.

To prove Theorem 5, we need to prepare some tools. For a string σ ∈ 2<N,
let lh(σ) denote the length of σ. Then

ψ(σ) =

〈

2−1 · 3−i + 2
∑

i<lh(σ) & σ(i)=1

3−(i+1), 2−lh(σ)

〉

∈ R2.

For two points ~x, ~y ∈ R2, the closed line segment L(~x, ~y) from ~x to ~y is defined
by L(~x, ~y) = {(1 − t)~x + t~y : t ∈ [0, 1]}. For a (possibly infinite) tree T ⊆ 2<N,
we plot an embedded tree Ψ(T ) ⊆ R2 by

Ψ(T ) = cl
(

⋃

{L(ψ(σ), ψ(τ)) : σ, τ ∈ T & lh(σ) = lh(τ) + 1}
)

.

Then Ψ(T ) is a dendrite (but not necessarily a tree, in the sense of Continuum
Theory), for any (possibly infinite) tree T ⊆ 2N. See Fig. 5.

We can easily prove the following lemmata.

Lemma 6. Let T be a subtree of 2<N, and D be a planar subset such that
ψ(〈〉) ∈ D ⊆ Ψ(T ) for the root 〈〉 ∈ 2<N. Then D is a dendrite if and only if D
is homeomorphic to Ψ(S) for a subtree S ⊆ T .
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Proof. The “if” part is obvious. Let D be a dendrite. For a binary string σ
which is not a root, let σ− be an immediate predecessor of σ. We consider the
set S = {〈〉} ∪ {σ ∈ 2<N : σ 6= 〈〉 & D∩ (L(ψ(σ−), ψ(σ)) \ {ψ(σ−)}) 6= ∅}. Since
D is connected, S is a subtree of T . It is easy to see that D is homeomorphic
to Ψ(S).

Lemma 7. Let T be a subtree of 2<N. Then T is Π0
1 (c.e., computable, resp.)

if and only if Ψ(T ) is a Π0
1 (c.e., computable, resp.) dendrite in R2.

Proof. With our definition of Ψ, the dendrite Ψ(2<N) is clearly a computable
closed subset of R2. So, if T is Π0

1, then it is easy to prove that Ψ(T ) is also Π0
1.

Assume that T is a c.e. tree. At stage s, we compute whether L(ψ(σ−), ψ(σ))
intersects with the e-th open rational ball ρe, for any e < s and any string σ
which is already enumerated into T by stage s. If so, we enumerate e into WT

at stage s. Then {e ∈ N : Ψ(T ) ∩ ρe 6= ∅} =WT is c.e.
Assume that Ψ(T ) is Π0

1. We consider an open rational ball B−(σ) =
B(ψ(σ); 2−(lh(σ)+2)) for each σ ∈ 2<N. Note that B̂−(σ) ∩ B̂−(τ) = ∅ for
σ 6= τ . Since Ψ(T ) is Π0

1, T
∗ = {σ ∈ 2<N : Ψ(T ) ∩ B̂−(σ) = ∅} is c.e., and

it is easy to see that T = 2<N \ T ∗. Thus, T is a Π0
1 tree of 2<N. We next

assume that Ψ(T ) is c.e. We can assume that Ψ(T ) contains the root ψ(〈〉),
otherwise T = ∅, and clearly it is c.e. For a binary string σ which is not a root,
let σ− be an immediate predecessor of σ. Pick an open rational ball B+(σ)
such that Ψ(2<N) ∩ B+(σ) ⊆ L(ψ(σ−), ψ(σ)) for each σ. Since Ψ(T ) is c.e.,
T ∗ = {σ ∈ 2<N : Ψ(T ) ∩ B+(σ) 6= ∅} is c.e. If σ is not a root and σ ∈ T then
L(ψ(σ−), ψ(σ)) ⊆ Ψ(T ), so Ψ(T ) ∩ B+(σ) 6= ∅. We observe that if σ 6∈ T then
L(ψ(σ−), ψ(σ)) ∩ Ψ(T ) = ∅, so Ψ(T ) ∩ B+(σ) = ∅. Thus, we have T = T ∗. In
the case that Ψ(T ) is computable, Ψ(T ) is c.e. and Π0

1, hence T is c.e. and Π0
1,

i.e., T is computable.

Lemma 8. Let D be a computable subdendrite of Ψ(2<N). Then there exists a
computable subtree T+ ⊆ 2<N such that D ⊆ Ψ(T+) and ([0, 1] × {0}) ∩ D =
([0, 1]× {0}) ∩Ψ(T+).

Proof. We can assume ψ(〈〉) ∈ D, otherwise we connect ψ(〈〉) and the root of D
by a subarc of Ψ(2<N). Again we consider an open rational ball B−(σ) =
B(ψ(σ); 2−(lh(σ)+2)), and an open rational ball B+(σ) such that Ψ(2<N) ∩
B+(σ) ⊆ L(ψ(σ−), ψ(σ)) for each σ ∈ 2<N. Since D is Π0

1, U
∗ = {σ ∈ 2<N :

D ∩ B̂−(σ) = ∅} is c.e. Since D is c.e., T ∗ = {σ ∈ 2<N : D ∩ B+(σ) 6= ∅} is
c.e., and it is a tree by Lemma 6. For every σ ∈ 2<N, either D ∩ B̂−(σ) = ∅
or D ∩ B+(σ) 6= ∅ holds. Therefore, we have T ∗ ∪ U∗ = 2<N. Moreover, for
the set of leaves of T ∗, L∗T = {ρ ∈ T ∗ : (∀i < 2) ρ⌢〈i〉 6∈ T ∗}, we observe that
T ∗ ∩ U∗ ⊆ L∗T . Recall that the pointclass Σ0

1 has the reduction property, that
is, for two c.e. sets T ∗ and U∗, there exist c.e. subsets T ⊆ T ∗ and U ⊆ U∗ such
that T ∪ U = T ∗ ∪ U∗ and T ∩ U = ∅. This is because, for σ ∈ T ∗ ∩ U∗, σ is
enumerated into T when σ is enumerated into T ∗ before it is enumerated into
U∗; σ is enumerated into U otherwise. Since T ∗ ∩ U∗ ⊆ L∗T , T must be tree.
Furthermore, T is c.e., and U = 2<N \ T is also c.e. Thus, T is a computable
tree. Therefore, T+ = {σ⌢〈i〉 : σ ∈ T & i < 2} is also a computable tree. Then,
D ⊆ Ψ(T+), and we have ([0, 1] × {0}) ∩D = ([0, 1]× {0}) ∩ Ψ(T+) since the
set of all infinite paths of T and that of T+ coincide.
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Cenzer, Weber and Wu, and the author [4] introduced the notion of tree-
immunity for closed sets in Cantor space 2N. For σ ∈ 2<N, define Iσ as {f ∈
2N : (∀n < lh(σ)) f(n) = σ(n)}. Note that {Iσ : σ ∈ 2<N} is a countable base
for Cantor space.

Definition 9 (Cenzer-Kihara-Weber-Wu [4]). A nonempty closed set F ⊆ 2N is
said to be tree-immune if the tree TF = {σ ∈ 2<N : F ∩ Iσ 6= ∅} ⊆ 2<N contains
no infinite computable subtree.

For a nonempty Π0
1 subset P ⊆ 2N, the corresponding tree TP is Π0

1, and
it has no dead ends. The set of all complete consistent extensions of Peano
Arithmetic is an example of a tree-immune Π0

1 subset of 2N. Tree-immune Π0
1

sets have the following remarkable property.

Lemma 10. Let P be a tree-immune Π0
1 subset of 2N and let D ⊆ Ψ(TP ) be

any computable subdendrite. Then ([0, 1]× {0}) ∩D = ∅ holds.

Proof. By Lemma 8, there exists a computable subtree T ⊆ 2<N such that
D ⊆ Ψ(T ) and Ψ(T ) agrees with D on [0, 1]×{0}. Since D ⊆ Ψ(TP ), and since
TP has no dead ends, T ⊆ TP holds. Since P is tree-immune, T must be finite.
By using weak König’s lemma (or, equivalently, compactness of Cantor space),
T ⊆ 2l holds for some l ∈ N. Thus, D ⊆ Ψ(T ) ⊆ [0, 1]× [2−l, 1] as desired.

Note that if P is a nonempty Π0
1 set in Cantor space 2N, then for every

δ > 0 it holds that ((0, 1)× (0, δ)) ∩Ψ(TP ) 6= ∅. Finally, we are ready to prove
Theorem 5.

Proof of Theorem 5. Again, we adapt the construction in the proof of Theorem
3. We fix a nonempty tree-immune Π0

1 set P ⊆ 2N. For σ ∈ 2<N, put E(σ) =
{τ ∈ 2<N : τ ⊇ σ}. For a Π0

1 tree TP ⊆ 2<N, there exists a computable
function fP : N → 2<N such that TP = 2<N \

⋃

nE(fP (n)) and such that for
each σ ∈ 2<N and s ∈ N we have σ ∈

⋃

t<sE(fP (t)) whenever σ⌢0, σ⌢1 ∈
⋃

t<sE(fP (t)). For such a computable function fP : N → 2<N, we let TP,s

denote 2<N \
⋃

t<sE(fP (t)). Then TP,s is a tree without dead ends, and {TP,s :
s ∈ N} is computable uniformly in s.

Construction. . Let ~e1 denote 〈1, 0〉 ∈ R2. For a tree T ⊆ 2<N and w ∈ Q, we
define Ψ(T ;w), the edge of the fat approximation of the tree T of width w, by

Ψ(T ;w) = cl

(

⋃

{

L
(

ψ(σ) ± (3−|σ| · w)~e1, ψ(τ) ± (3−|τ | · w)~e1
)

: ± ∈ {−,+} & σ, τ ∈ T & lh(σ) = lh(τ) + 1
}

)

.

If limsws = 0 then we have lims Ψ(T ;ws) = Ψ(T ). Moreover, if {ws : s ∈
N} is a uniformly computable sequence of rational numbers, then {Ψ(T ;ws) :
s ∈ N} is also a uniformly computable sequence of computable closed sets.
Additionally, the set Ψ(T ;w, c, t, q), for a tree T ⊆ 2<N, for w, c, q ∈ Q, and for
t ∈ N, is defined by

Ψ(T ;w, c, t, q) =

{〈

c+ q ·

(

x−
1

2

)

,
2− y

2t+1

〉

∈ R2 : 〈x, y〉 ∈ Ψ(T ;w)

}

.
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0 1

1

Figure 6: The fat approximation
Ψ(T ;w).

2−t

2−(t+1)

c

q

Figure 7: The basic object
Ψ(T ;w, c, t, q).

Note that Ψ(T ;w, c, t, q) ⊆ [c− q/2, c+ q/2]× [2−(t+1), 2−t] as in Fig. 7. For
t ∈ N, and for stA(t) = min{s : t ∈ As} in the proof of Theorem 3, let l(t) ∈ 2N

be the leftmost path of TP,stA(t). If stA(t) is undefined (i.e., t 6∈ A) then l(t) is

also undefined. For each t ∈ N we define F (t) = {σ ∈ 2<N : σ ⊆ l(t)} if l(t) is
defined; F (t) = TP otherwise. Then {F (t) : t ∈ N} is a computable sequence
of Π0

1 subsets of 2<N. Furthermore, we have Ψ(F (t)) ∩ ([0, 1]× {0}) 6= ∅, since
F (t) has a path for every t ∈ N. For each t ∈ N, w(t) is defined again as in the
proof of Theorem 3. Now we define a Π0

1 dendrite H ⊆ R2 as follows:

H∗t = Ψ(F (t);w(t), 2−t, t, 2−(t+2))

H0
t = ({2−t − w(t)} ∪ {2−t + w(t)})× [0, 2−(t+1)]

H∗∗t = (2−t − w(t), 2−t + w(t)) × {2−(t+1)}

H2
t = (2−t − w(t), 2−t + w(t)) × (−1, 2−(t+1))

H =
(

⋃

t∈N

(

H∗t ∪H
0
t \ (H

∗∗
t ∪ intH

∗
t )
)

)

∪
(

([−1, 1]× {0}) \
⋃

t∈N

H2
t

)

.

Put Ht = H∗t \ (H
∗∗
t ∪ intH

∗
t ) (see Fig. 8). We can also show that H is a Π0

1

dendrite in the same way as for Theorem 3.

Claim. The Π0
1 dendrite H does not ∗-include a computable dendrite.

Let J be a computable subdendrite ofH . Put S(t) = [3·2−(t+2), 5·2−(t+2)]×
[2−(t+1), 2−t]. Then, we note that J(t) = J ∩S(t) is also a computable dendrite,
since Ht ⊆ S(t) and it is a dendrite. However, by Lemma 10, if t 6∈ A then we
have J(t) ∩ (R× {2−t}) = ∅. So we consider the following set:

C = {t ∈ N : J(t) ∩
(

[3 · 2−(t+2), 5 · 2−(t+2)]× [2−t, 1]
)

= ∅}.

Since J(t) is uniformly computable in t, the set C is clearly c.e., and we have
N \A ⊆ C. However, if N \A = C, then this contradicts the incomputability of
A. Thus, there must be infinitely many t ∈ A such that t is enumerated into C.
However, if t ∈ A is enumerated into C, it cuts the dendrite H . In other words,
since J ⊆ H is connected, either J ⊆ [−1, 5·2−(t+2)]×R or J ⊆ [3·2−(t+2), 1]×R.
Hence we must have dH(J,H) ≥ 1.

Corollary 2. There exists a nonempty Π0
1 subset of [0, 1]2 which is contractible,

locally contractible, and ∗-includes no connected computable closed subset.
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H0

H1

0 1/4 11/2

H2

w(1)

A copy of Ψ(TP )

Copies of Ψ(TP )

Figure 8: The dendrite H for 0, 2, 4 6∈ A and 1, 3 ∈ A.

4 Incomputability of Dendroids

Theorem 11. Not every computable planar dendroid ∗-includes a Π0
1 dendrite.

Lemma 12. There exists a limit computable function f such that, for every
uniformly c.e. sequence {Un : n ∈ N} of cofinite c.e. sets, we have f(n) ∈ Un

for almost all n ∈ N.

Proof. Let {Ve : e ∈ N} be an effective enumeration of all uniformly c.e. non-
increasing sequences {Un : n ∈ N} of c.e. sets such that minUn ≥ n, where
(Ve)n = Un = {x ∈ N : (n, x) ∈ Ve}. The e-state of y is defined by σ(e, y) =
{i ≤ e : y ∈ (Vi)e}, and the maximal e-state is defined by σ(e) = maxz σ(e, z).
The construction of f : N → N is to maximize the e-state. For each e ∈ N,
f(e) chooses the least y ∈ N having the maximal e-state σ(e, y) = σ(e). Since
{σ(e, y) : e, y ∈ N} is uniformly c.e., and σ(e, y) ∈ 2e, the function e 7→ σ(e) =
maxz σ(e, z) is total limit computable. Thus, f is limit computable. It is easy
to see that lime σ(e)(n) exists for each n ∈ N. Let U = {Un : n ∈ N} be a
uniformly c.e. sequence of cofinite c.e. sets. Then V = {

⋂

m≤n Um : n ∈ N}
is a uniformly c.e. non-increasing sequence of cofinite c.e. sets. Thus, Vi = V
for some index i. Then i ∈ σ(e, y) for almost all e, y ∈ N. This ensures that
i ∈ σ(e) for almost all e ∈ N by our assumption minUn ≥ n. Hence we have
f(n) ∈ Un for almost all n ∈ N.

Remark. The proof of Lemma 12 is similar to the standard construction of a
maximal c.e. set (see Soare [16]). Recall that the principal function of the com-
plement of a maximal c.e. set is dominant, i.e., it dominates all total computable
functions. The limit computable function f in Lemma 12 is also dominant. In-
deed, for any total computable function g, if we set Ug

n = {y ∈ N : y ≥ g(n)}
then {Ug

n : n ∈ N} is a uniformly c.e. sequence of cofinite c.e. sets, and if
f(n) ∈ Ug

n holds then we have f(n) ≥ g(n).

Proof of Theorem 11. Pick a limit computable function f = lims fs in Lemma
12. For every t, u ∈ N, put v(t, u) = 2−s for the least s such that fs(t) = u if
such s exists; v(t, u) = 0 otherwise. Since {fs : s ∈ N} is uniformly computable,
v : N2 → R is computable.

Construction. . For each t ∈ N, the center position of the u-th rising of the
t-th comb is defined as c∗(t, u) = 2−(2t+1) + 2−(2t+u+1), and the width of the

10



0 1/4 11/2

K0

K1

K2

Figure 9: The dendroid K.

Kt,0Kt,1Kt,2

2−2t2−(2t+1)

Figure 10: The harmonic comb Kt for
f0(t) = 0, f1(t) = 0, f2(t) = 2, . . .

u-th rising of the t-th comb is defined as v∗(t, u) = v(t, u) · 2−(2t+u+3). Then,
we define the t-th harmonic comb Kt for each t ∈ N as follows:

K∗t = {2−(2t+1)} × [0, 2−t]

K0
t,u = {c∗(t, u)− v∗(t, u), c∗(t, u) + v∗(t, u)} × [0, 2−t]

K1
t,u = [c∗(t, u)− v∗(t, u), c∗(t, u) + v∗(t, u)]× {2

−t}

K2
t,u = (c∗(t, u)− v∗(t, u), c∗(t, u) + v∗(t, u))× (−1, 2−t)

Kt =

(

K∗t ∪
⋃

i<2

⋃

u∈N

Ki
t,u

)

∪

(

([2−(2t+1), 2−2t]× {0}) \
⋃

u∈N

K2
t,u

)

.

Note that Kt is homeomorphic to the harmonic comb H for each t ∈ N. This
is because, for fixed t ∈ N, since lims fs(t) exists we have v(t, u) = 0 for almost
all u ∈ N. Then the desired computable dendroid is defined as follows.

K = ([−1, 0]× {0}) ∪
⋃

t∈N

(

(

[2−(2t+2), 2−(2t+1)]× {0}
)

∪Kt

)

.

Claim. The set K is a computable dendroid.

ClearlyK is a computable closed set. To show thatK is pathwise connected,
we consider the following subcontinuum K−t , the grip of the comb Kt,m, for each
t ∈ N.

K−t = (
⋃

i<2

⋃

v(t,u)>0

Ki
t,u) ∪

(

([2−(2t+1), 2−2t]× {0}) \
⋃

v(t,u)>0

K2
t,u

)

.

Then K− = ([−1, 0] × {0}) ∪
⋃

t∈N

(

([2−(2t+2), 2−(2t+1)]× {0}) ∪K−t
)

has no
ramification points. We claim that K− is connected and K− is even an arc. To
show this claim, we first observe thatK−t is an arc for any t ∈ N, since v(t, u) > 0
occurs for finitely many u ∈ N. Moreover K−t ⊆ S(t), and limt diam(S(t)) = 0
holds. Therefore, we see that K− is locally connected and, hence, an arc. For
points p, q ∈ K, if p, q ∈ K− then p and q are connected by a subarc of K−. In
the case p ∈ K \K−, the point p lies on K0

t,u for some t, u such that v(t, u) = 0.
If q ∈ K− then there is a subarc A ⊆ K− (one of whose endpoints must
be 〈c∗(t, u), 0〉) such that A ∪ K0

t,u is an arc containing p and q. In the case
q ∈ K \ K−, similarly we can connect p and q by an arc in K. Hence, K is

11



pathwise connected. K is hereditarily unicoherent, since the harmonic comb is
hereditarily unicoherent. Thus, K is a dendroid.

Claim. The computable dendroid K does not ∗-include a Π0
1 dendrite.

What remains to show is that every Π0
1 subdendrite R ⊆ K satisfies dH(R,K)

≥ 1. Let R ⊆ K be a Π0
1 dendrite. Put S(t) = [2−(2t+1), 2−2t]× [0, 2−t]. Since

R is locally connected, R∩S(t) = R∩Kt is also locally connected for each t ∈ N

and m < 2t. Thus, for fixed t ∈ N, let K1∗
t,u = [c∗(t, u) − 2−(2t+u+3), c∗(t, u) +

2−(2t+u+3)]×{2−t}. For any continuum R∗ ⊂ Kt, if R
∗ ∩K1∗

t,u 6= ∅ for infinitely
many u ∈ N, then R∗ must be homeomorphic to the harmonic comb H. Hence,
R∗ is not locally connected. Therefore, we have R ∩ K1∗

t,u = ∅ for almost all
u ∈ N. Since K1∗

t,u and K1∗
s,v is disjoint whenever 〈t, u〉 6= 〈s, v〉, and since R is

Π0
1, we can effectively enumerate Ut = {u ∈ N : R ∩K1∗

t,u = ∅}, i.e., {Ut : t ∈ N}
is uniformly c.e. Moreover, Ut is cofinite for every t ∈ N. Then, by our definition
of f = lims fs in Lemma 12, there exists t∗ ∈ N such that f(t) ∈ Ut for all t ≥ t∗.
Note that v(t, f(t)) > 0 and thus the condition f(t) ∈ Ut (i.e., R ∩K1∗

t,f(t) = ∅)

implies that, for every t ≥ t∗, either R ⊆ [−1, c∗(t, u) + v∗(t, u)] × [0, 1] or
R ⊆ [c∗(t, u) − v∗(t, u), 1] × [0, 1] holds. Thus we obtain the desired condition
dH(R,K) ≥ 1.

Remark. It is easy to see that the dendroid constructed in the proof of Theorem
11 is contractible.

Corollary 3. There exists a nonempty contractible planar computable closed
subset of [0, 1]2 which ∗-includes no Π0

1 subset which is connected and locally
connected.

Theorem 13. Not every nonempty Π0
1 planar dendroid contains a computable

point.

Proof. One can easily construct a Π0
1 Cantor fan F containing at most one

computable point p ∈ F , and such p is the unique ramification point of F .
Our basic idea is to construct a topological copy of the Cantor fan F along a
pathological located arc A constructed by Miller [10, Example 4.1]. We can
guarantee that moving the fan F along the arc A cannot introduce new com-
putable points. Additionally, this moving will make a ramification point p∗ in
a copy of F incomputable.

Fat Approximation. To archive this construction, we consider a fat ap-
proximation of a subset P of the middle third Cantor set C ⊆ R1, by mod-
ifying the standard construction of C. For a tree T ⊆ 2<N, put π(σ) =
3−1+2

∑

i<lh(σ) & σ(i)=1 3
−(i+2) for σ ∈ T , and J(σ) = [π(σ)−3−(lh(σ)+1), π(σ)+

2 · 3−(lh(σ)+1)]. If a binary string σ is incomparable with a binary string τ
then J(σ) ∩ J(τ) = ∅. We extend π to a homeomorphism π∗ between Cantor
space 2N and C ∩ [1/3, 2/3] by defining π∗(f) = 3−1 + 2

∑

f(i)=1 3
−(i+2) for

f ∈ 2N. Let P ∗ ⊆ 2N be a nonempty Π0
1 set without computable elements.

Then there exists a computable tree TP such that P ∗ is the set of all paths
of TP , since P

∗ is Π0
1. A fat approximation {Ps : s ∈ N} of P = π∗(P

∗) is
defined as Ps =

⋃

{J(σ) : lh(σ) = s & σ ∈ TP }. Then {Ps : s ∈ N} is a com-
putable decreasing sequence of computable closed sets, and we have P =

⋂

s Ps.
Since P is a nonempty bounded closed subset of a real line R1, both minP

12



∆01(a, b; q, r)

∆10(a, b; q, r)

a a+ q

b

b+ r

Figure 11: The cubes ∆ij(a, b, q, r).

a a+ q

b

b+ r

A copy of R

Figure 12: [x](R; a, b; q, r) for R =
[1/6, 1/2]

and maxP exist. By the same reason, both l−s = minPs and r+s = maxPs

also exist, for each s ∈ N, and lims l
−
s = minP and lims r

+
s = maxP , where

{ls : s ∈ N} is increasing, and {rs : s ∈ N} is decreasing. Let ls = l−s + 3−(s+1)

and rs = r+s −3
−(s+1). We also set l∗s = l−s +3−(s+2) and rs = r+s −3

−(s+2). Note
that ls < rs, lims ls = minP , and lims rs = maxP . Since minP,maxP ∈ P
and P contains no computable points, minP and maxP are non-computable,
and so ls < minP < maxP < rs holds for any s ∈ N. The fat approximation
of P has the following remarkable property:

[l−s , ls] ⊆ Ps, [l
−
s , ls] ∩ P = ∅, [rs, r

+
s ] ⊆ Ps, and [rs, r

+
s ] ∩ P = ∅.

To simplify the construction, we may also assume that P has the following
property:

P = {1− x ∈ R : x ∈ P}

Because, for any Π0
1 subset A ⊆ C, the Π0

1 set A∗ = {x/3 : x ∈ A} ∪ {1− x/3 :
x ∈ A} ⊆ C has that property.

Basic Notation. For each i, j < 2, for each a, b ∈ R2, and for each q, r ∈ R,
the 2-cube ∆ij(a, b; q, r) ⊆ [a, a+ q]× [b, b+ r] is defined as the smallest convex
set containing the three points {(a, b), (a+ q, b), (a, b+ r), (a+ q, b+ r)} \ {(a+
(1− i)q, b+ (1− j)r)}. Namely,

∆ij(a, b; q, r) = {〈(−1)
ix+ a+ iq, (−1)jy + b+ jr〉 ∈ R2

: x, y ≥ 0 & rx+ qy ≤ qr}.

For a set R ⊆ R1 and real numbers r, y ∈ R, put Θ(R; r, y) = {rx+ y ∈ R : x ∈
R}. Clearly Θ(R; r, y) is computably homeomorphic to R. Let four symbols
x, q, y, and p denote 〈10, 01〉, 〈01, 10〉, 〈00, 11〉, and 〈11, 00〉, respectively. For
v ∈ {x, q, y, p} and for any R ⊆ [0, 1], a, b ∈ R2, and q, r ∈ R, we define
[v](R; a, b; q, r) ⊆ [a, a+ q]× [b, b+ r] as follows:

[v](R; a, b; q, r) =
(

([a, a+ q]×Θ(R; r, b)) ∩∆v(0)(a, b; q, r)
)

∪
(

(Θ(R; q, a)× [b, b+ r]) ∩∆v(1)(a, b; q, r)
)

.

Sublemma 1. [v](P ; a, b; q, r) is computably homeomorphic to P × [0, 1]. In
particular, [v](P ; a, b; q, r) contains no computable points.

To simplify our argument, we use the normalization P̃ s
t of Pt for t ≥ s,

that is defined by P̃ s
t = {(x − l−s )/(r

+
s − l

−
s ) ∈ R : x ∈ Pt}, for each s ∈ N.
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Note that P̃ s
t ⊆ [0, 1] for t ≥ s, and 0, 1 ∈ P̃ s

s holds for each s ∈ N. Put
[v]st ([a, a + q] × [b, b + r]) = [v](P̃ s

t ; a, b; q, r) for t ≥ s. We also introduce the
following two notions:

[−]st ([a, a+ q]× [b, b+ r]) = [a, a+ q]×Θ(P̃ s
t ; r, b);

[ | ]st ([a, a+ q]× [b, b+ r]) = Θ(P̃ s
t ; q, a)× [b, b+ r].

Here we code two symbols − and | as 0 and 1 respectively.

Sublemma 2. [v]st ([a, a+ q]× [b, b+ r]) ⊆ [a, a+ q]× [b, b+ r], and [v]st ([a, a+
q]× [b, b+ r]) intersects with the boundary of [a, a+ q]× [b, b+ r].

Sublemma 3. There is a computable homeomorphism between [v]st (a, b; q, r)
and Pt × [0, 1] for any t ∈ N. Therefore,

⋂

t[v]
s
t (a, b; q, r) is computably homeo-

morphic to P × [0, 1].

Blocks. A block is a set Z ⊆ R2 with a bounding box Box(Z) = [a, a + q] ×
[b, b + r]. Each δ ∈ 22 is called a direction, and directions 〈00〉, 〈01〉, 〈10〉,
and 〈11〉 are also denoted by [←], [→], [↓], and [↑], respectively. For δ ∈ 22,
δ◦ = 〈δ(0), 1 − δ(0)〉 is called the reverse direction of δ. Put Line(Z; [←]) =
{a}× [b, b+ r]; Line(Z; [→]) = {a+ q}× [b, b+ r]; Line(Z; [↓]) = [a, a+ q]×{b};
Line(Z; [↑]) = [a, a+ q]×{b+ r}. Assume that a class Z of blocks is given. We

introduce a relation
δ

99K on Z for each direction δ. Fix a block Zfirst ∈ Z, and

we call it the first block. Then we declare that
[←]
99KZfirst holds. We inductively

define the relation
δ

99K on Z. If Z
δ

99KZ0 (resp. Z0
δ

99KZ) for some Z and δ, then

we also write it as
δ

99KZ0 (resp. Z0
δ

99K). For any two blocks Z0 and Z1, the

relation Z0
δ

99KZ1 holds if the following three conditions are satisfied:

1. Z0 ∩ Z1 = Line(Z0; δ) ∩ Z0 = Line(Z1; δ
◦) ∩ Z1 6= ∅.

2.
ε

99KZ0 has been already satisfied for some direction ε.

3. Z1
ε

99KZ0 does not satisfied for any direction ε

If Z0
δ

99KZ1 for some δ, then we say that Z1 is a successor of Z0 (Z0 is a prede-
cessor of Z1), and we also write it as Z099KZ1.

We will construct a partial computable function Z : N3 → A(R2) with a
computable function k : N → N and dom(Z) = {(u, i, t) ∈ N3 : u ≤ t & i <
k(u)} such that Z(u, i, t) is a block with a bounding box for any (u, i, t) ∈
dom(Z), and the block Z(u, i, t) is computably homeomorphic to Pt × [0, 1]
uniformly in (u, i, t). Here A(R2) is the hyperspace of all closed subsets in R2

with positive and negative information. For each stage t, Zt(u) = {Z(t, u, i) :
i < k(u)} for each u ≤ t is defined. Let Z(u) denote the finite set {λt.Z(t, u, i) :
i < k(u)} of functions, for each u ∈ N. The relation 99K induces a pre-ordering
≺ on

⋃

u∈N Z(u) as follows: Z0 ≺ Z1 if there is a finite path from Z0(t) to
Z1(t) on the finite directed graph (

⋃

u≤tZt(u), 99K) at some stage t ∈ N. We
will assure that ≺ is a well-ordering of order type ω, and Z0 ≺ Z1 whenever
Z0 ∈ Z(u), Z1 ∈ Z(v), and u < v. In particular, for every Z ∈

⋃

u∈N Z(u),
the predecessor Zpre of Z and the successor Zsuc of Z under ≺ are uniquely

determined. If Zpre(t)
δ

99KZ(t)
ε

99KZsuc(t), then we say that Z moves from δ to
ε, and that 〈δ, ε〉 is the direction of Z.
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Z1
Z2

Figure 13: Example 14.

Example 14. Fig. 13 is an example satisfying
[←]
99KZfirst

[←]
99KZ0

[↓]
99KZ1

[→]
99KZ2.

Destination Point. Basically, our construction is similar as the construction
by Miller [10]. Pick the standard homeomorphism ρ between 2N and the middle
third Cantor set, i.e., ρ(M) = 2

∑

i∈M (1/3)i+1 for M ⊆ N, and pick a non-
computable c.e. set B ⊆ N and put γ = ρ(B). We will construct a Cantor
fan so that the first coordinate of the unique ramification point is γ, hence
the fan will have a non-computable ramification point. Let {Bs : s ∈ N} be a
computable enumeration of B, and let ns denote the element enumerated into B
at stage s, where we may assume just one element is enumerated into B at each
stage. Put γmin

s = ρ(Bs) and γ
max
s = ρ(Bs ∪ {i ∈ N : i ≥ ns}). Note that γ is

not computable, and so γmin
s 6= γ and γmax

s 6= γ for any s ∈ N. This means that
for every s ∈ N there exists t > s such that γmin

s 6= γmin
t and γmax

s 6= γmax
t . By

this observation, without loss of generality, we can assume that γmin
s 6= γmin

t and
γmax
s 6= γmax

t whenever s 6= t. We can also assume 1/3 ≤ γmin
s ≤ γmax

s ≤ 2/3 for
any s ∈ N.

Stage 0. We now start to construct a Π0
1 Cantor fan Q =

⋂

s∈NQs. At the first
stage 0, and for each t ≥ 0, we define the following sets:

Zst
0,t = [−]st ([γ

min
0 , γmax

0 ]× [l−0 , r
+
0 ]); Z

end
0 = [γmin

0 − 1/3, γmin
0 ]× [l−0 , r

+
0 ].

Moreover, we set Q0 = Zst
0,0 ∪Z

end
0 . By our choice of P0, actually Q0 = [γmin

0 −

1/3, γmax
0 ] × [l−0 , r

+
0 ]. Z

st
0,0 is called the straight block from 2/3 to 1/3 at stage

0, and Zend
0 is called the end box at stage 0. The bounding box of the block

Zst
0 is defined by [γmin

0 , γmax
0 ] × [l−0 , r

+
0 ]. The collection of 0-blocks at stage t is

Zt(0) = {Zst
0,t}. We declare that Zst

0 is the first block, and that
[←]
99KZst

0 .

Stage s+1. Inductively assume that we have already constructed the collection
of u-blocks Zt(u) at stage t ≥ u is already defined for every u ≤ s. For any u,
we think of the collection Z(u) = {Zt(u) : t ≥ u} as a finite set {Zu

i }i<#Zu(u)

of computable functions Zu
i : {t ∈ N : t ≥ u} →

⋃

tZt(u) such that Zt(u) =
{Zu

i (t) : i < #Zu(u)} for each t ≥ u. We inductively assume that the collection
Z(u) = {Zt(u) : t ≥ u} satisfies the following conditions:

(IH1) For each Z ∈ Z(u) and for each t ≥ v ≥ u, Z(t) ⊆ Z(v).

(IH2) There is a computable function f : R2 → R2 such that f ↾
⋃⋃

u≤s Zt(u)
is a homeomorphism between

⋃⋃

u≤s Zt(u) and Pt × [0, 1] for any t ≥ s.
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A copy of Ps

γmax
sγmin

s

ζy + zl−s

y + zls

y + zrs

y + zr+s
Zst
sZend

s

Figure 14: The active block Zst
s ∪ Z

end
s at stage s.

(IH3) There are y, z, ζ ∈ Q such that the blocks Zst
s,t and Zend

s are constructed
as follows:

Zst
s,t = [−]st ([γ

min
s , γmax

s ]× [y + zl−s , y + zr+s ]);

Zend
s = [γmin

s − ζ, γmin
s ]× [y + zl−s , y + zr+s ].

Here, a computable closed set Qs, an approximation of our Π0
1 Cantor fan

Q at stage s, is defined by Qs = Zend
s ∪

⋃⋃

u≤sZs(u).

Non-injured Case. First we consider the case [γmin
s+1, γ

max
s+1 ] ⊆ [γmin

s , γmax
s ], i.e.,

this is the case that our construction is not injured at stage s+1. In this case, we
construct (s+1)-blocks in the active block Zst

s ∪Z
end
s . We will define Zt(s, i, j)

and Box(s, i, j) = Box(Zt(s, i, j)) for each j < 6. The first two corner blocks at
stage t ≥ s+ 1 are defined by:

Box(s, 0) =[γmin
s − ζ, γmin

s ]× [y + zl−s , y + zr∗s ],

Zt(s, 0) =[x]st ([γ
min
s − ζ, γmin

s ]× [y + zl−s , y + zr+s ]) ∩ Box(s, 0),

Box(s, 1) =[γmin
s − ζ, γmin

s ]× [y + zr∗s , y + zr+s ],

Zt(s, 1) =[p]st (Box(s, 1)).

Sublemma 4. Zt(s, 0) ∪ Zt(s, 1) ⊆ Zend
s for any t ≥ s+ 1.

Sublemma 5. Zst
s,t

[←]
99KZt(s, 0)

[↑]
99KZt(s, 1), for any t ≥ s+ 1.

The next block is a straight block from γmin
s to γmax

s+1 which is defined as
follows:

Box(s, 2) =[γmin
s , γmax

s ]× [y + zr∗s , y + zr+s ].

Zt(s, 2) =[−](Boxt(s, 2)).

For given a, b, α, β ∈ Q, we can calculate N0,s(a, b;α, β) and N1,s(a, b;α, β)
satisfying N0,s(a, b;α, β) + N1,s(a, b;α, β) · l−s = a + bα, and N0,s(a, b;α, β) +
N1,s(a, b;α, β)·r

+
s = a+bβ. Put y⋆ = N0,s(y, z; r

∗
s , r

+
s ), and z

⋆ = N1,s(y, z; r
∗
s , r

+
s ).

Sublemma 6. Box(s, 2) = [γmin
s , γmax

s ]× [y⋆ + z⋆l−s , y
⋆ + z⋆r+s ].
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γmax
sγmin

s

ζ
y + zl−s

y + zls

y + zrs

y + zr+s

Zs(s, 1)

Zs(s, 0)

Figure 15: The first two corner blocks Zs(s, 0) and Zs(s, 1).

Put ζ⋆ = (γmax
s − γmax

s+1 )/3
s. Note that ζ⋆ > 0 since γmax

s > γmax
s+1 . We then

again define corner blocks.

Box(s, 3) =[γmax
s+1 , γ

max
s+1 + ζ⋆]× [y⋆ + z⋆l−s , y

⋆ + z⋆r∗s ],

Zt(s, 3) =[y]st ([γ
max
s+1 , γ

max
s+1 + ζ⋆]× [y⋆ + z⋆l−s , y

⋆ + z⋆r+s ]) ∩ Box(s, 3),

Box(s, 4) =[γmax
s+1 , γ

max
s+1 + ζ⋆]× [y⋆ + z⋆r∗s , y

⋆ + z⋆r+s ],

Zt(s, 4) =[q]st (Box(s, 4)).

Next, a straight block from γmin
s to γmax

s+1 is defined as follows:

Box(s, 5) = [γmin
s+1, γ

max
s+1 ]× [y⋆ + z⋆r∗s , y

⋆ + z⋆r+s ],

Zt(s, 5) = [−]st [Box(s, 5)].

Put y⋆⋆ = N0,s(y
⋆, z⋆; r∗s , r

+
s ), and z

⋆⋆ = N1,s(y
⋆, z⋆; r∗s , r

+
s ).

Sublemma 7. Box(s, 5) = [γmin
s , γmax

s ]× [y⋆⋆ + z⋆⋆l−s , y
⋆⋆ + z⋆⋆r+s ].

Put ζ⋆⋆ = (γmin
s+1 − γ

min
s )/3s. Note that ζ⋆⋆ > 0 since γmin

s+1 > γmax
s . The end

box at stage s+ 1 is:

Z(s, 6) = [γmin
s+1 − ζ

⋆⋆, γmin
s+1]× [y⋆⋆ + z⋆⋆l−s , y

⋆⋆ + z⋆⋆r+s ].

Then put Zst
s+1,t = Zt(s, 5), Z

st
s+1 = Zst

s+1,s+1, and Z
end
s+1 = Z(s, 6). The active

block at stage s+1 is the set Zst
s+1,s+1∪Z

end
s+1, and the collection of (s+1)-blocks

at stage t is defined by Zt(s + 1) = {Zt(s, i) : i ≤ 5}. Clearly, our definition
satisfies the induction hypothesis (IH3) at stage s+ 1.

Sublemma 8. Zt(s, i) ⊆ Zv(s, i) for each t ≥ v ≥ s+ 1 and i ≤ 5.

Sublemma 9. For any t ≥ s+ 1,

Zst
s,t

[←]
99KZt(s, 0)

[↑]
99KZt(s, 1)

[→]
99KZt(s, 2)

[→]
99KZt(s, 3)

[↑]
99KZt(s, 4)

[←]
99KZt(s, 5).

Proof. It follows straightforwardly from the definition of these blocks Zt(s, i),
and Sublemma 6 and 7.

Sublemma 10.
⋃

2≤i≤6 Zt(s, i) ⊆ Zst
s ∩ [γ

min
s , γmax

s ]×(y+zrs, y+zr
+
s ]. Hence,

(

⋃

2≤i≤6 Zt(s, i)
)

∩ Zst
s,s+1 = ∅
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γmax
sγmin

s γmin
s+1 γmax

s+1

Figure 16: Zs(s− 1, 5) ∪
⋃

Zs(s+ 1).

γmax
sγmin

s γmin
s+1 γmax

s+1

A copy of Ps+1

y + zl−s+1

y + zl+s+1

Figure 17: Zs+1(s−1, 5)∪
⋃

Zs+1(s+
1).

Consequently, we can show the following extension property.

Sublemma 11. Assume that we have a computable function fs : R
2 → R2 such

that fs ↾
⋃⋃

u≤s Zt(u) is a computable homeomorphism between
⋃⋃

u≤s Zt(u)
and Pt × [1/(s+ 2), 1] for any t ≥ s. Then we can effectively find a computable
function fs+1 : R2 → R2 extending fs ↾

⋃⋃

u≤s Zs+1(u) such that fs+1 ↾
⋃⋃

u≤s+1 Zt(u) is a computable homeomorphism between
⋃⋃

u≤s+1Zt(u) and
Pt × [1/(s+ 3), 1] for any t ≥ s+ 1.

Proof. By Sublemma 5, 9, and 10.

By Sublemma 8 and 11, induction hypothesis (IH1) and (IH2) are satisfied.
Since Zend

s+1∪
⋃

Zs+1(s+1) ⊆ Zst
s ∪Z

end
s by Sublemma 4 and 10, and

⋃

Zs+1(u) ⊆
⋃

Zs(u) for each u ≤ s, by induction hypothesis (IH1), we have the following:

Qs+1 = Zend
s+1 ∪

⋃ ⋃

u≤s+1

Zs+1(u) ⊆ Z
st
s ∪ Z

end
s ∪

⋃ ⋃

u≤s

Zs(u) ⊆ Qs.

Injured Case. Secondly we consider the case that our construction is in-
jured. This means that [γmin

s+1, γ
max
s+1 ] 6⊆ [γmin

s , γmax
s ]. In this case, indeed, we

have [γmin
s+1, γ

max
s+1 ] ∩ [γmin

s , γmax
s ] = ∅. Fix the greatest stage p ≤ s such that

[γmin
s+1, γ

max
s+1 ] ⊆ [γmin

p , γmax
p ] occurs. We again, inside the end box Zend

s at stage
s, define corner blocks Zt(s, 0) and Zt(s, 1) as non-injuring stage, whereas the
construction of Zt(s, i) for i ≥ 2 differs from non-injuring stage. The end box of
our construction at stage s+1 will turn back along all blocks belonging Zs(u) for
p < u ≤ s in the reverse ordering of ≺. Let {Zi : i < ks+1} be an enumeration
of all blocks in Zs(u) for p < u ≤ s, under the reverse ordering of ≺. In other
words, Zi is the successor block of Zi+1 under 99K, for each i < ks+1− 1. There
are two kind of blocks; one is a straight block, and another is a corner block. We
will define blocks Zt(s, i, j) for i < ks+1 and j < 3. Now we check the direction

〈δi, εi〉 of Zi. Here, we may consistently assume that the condition Z0

[←]
99K holds.

Subcase 1. If δi(0) = εi(0) then Zi is a straight block. In this case, we
only construct Zt(s, i, 0). Since Zi is straight, there are yi, zi, α, β ∈ Q and
u ≤ s such that, for Bi(0) = [α, β] and Bi(1) = [yi + zil

−
u , yi + zir

+
u ] such that

Box(Zi) = Bi(δi(0))×Bi(1−δi(0)). If δi(1) = 0, then set y⋆i = N0,s(yi, zi; l
−
s , l
∗
s)

and z⋆i = N1,s(yi, zi; l
−
s , l
∗
s). If δi(1) = 1, then set y⋆i = N0,s(yi, zi; r

−
s , r

+
s ) and
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[→]
99KZi

[→]
99K

βα

yi + zil
−
u

yi + zir
+
u

yi + zir
+
s

yi + zil
−
s

Figure 18: The block Zi.

[→]
99KZi

[→]
99K

Zi
Zs(s, i, 0)

[←]
99KZt(s, i, 0)

[←]
99K

Figure 19: The block Zt(s, i, 0).

z⋆i = N1,s(yi, zi; r
∗
s , r

+
s ). Then, we define Zt(s, i, 0) as the following straight

block:

B⋆
i (0) = Bi(0); B⋆

i (1) = [y⋆i + z⋆i l
−
s , y

⋆
i + z⋆i r

+
s ];

Zt(s, i, 0) = [δi(0)]
s
t (B

⋆
i (δi(0))×B

⋆
i (1 − δi(0))).

Here, Box(Zt(s, i, 0)) is defined by B⋆
i (δi(0))×B

⋆
i (1− δi(0)).

Sublemma 12. Zt(s, i, 0) ⊆ Zi.

Proof. By our definition of N0,s and N1,s, we have B⋆
i (1) = [yi + zil

−
s , yi + zil

∗
s ]

or B⋆
i (1) = [yi + zir

∗
s , yi + zir

+
s ].

Subcase 2. If δi(0) 6= δi(2) then Zi is a corner block. We will construct
three blocks; one corner block Zt(s, i, 0), and two straight blocks Zt(s, i, 1) and
Zt(s, i, 2). We may assume that Zi is of the following form:

Zi = [e]us ([xi + ζil
−
u , xi + ζir

+
u ]× [yi + zil

−
u , yi + zir

+
u ]),

or Zi = [e]us ([xi + ζil
−
u , xi + ζir

+
u ]× [yi + zil

−
u , yi + zir

+
u ])

∩ ([xi + ζil
−
u , xi + ζir

+
u ]× [yi + zil

−
u , yi + zir

∗
u])

Set z = 0 if the former case occurs; otherwise, set z = 1. Let {pn : n < 6} be an
enumeration of {l−u , l

−
s , l
∗
s , r
∗
s , r

+
s , r

+
u } in increasing order, and let p6 be r∗u. First

we compute the value rot = 2|εi(0)−|δi(1)−εi(1)||+1. Note that rot ∈ {1, 3},
and, if Zi rotates clockwise then rot = 1; and if Zi rotates counterclockwise

then rot = 3. If
[→]
99KZi or Zi

[→]
99K, then put D(0) = 1; otherwise put D(0) = 3. If

[↓]
99KZi or Zi

[↓]
99K, then put D(1) = 1; otherwise put D(1) = 3. If

[→]
99KZi or Zi

[←]
99K,

then put E(0) = 0; otherwise put E(0) = 5 − rot. If
[↑]
99KZi or Zi

[↓]
99K, then put

E(1) = 0; otherwise put E(1) = 5− rot. Then we now define Zt(s, i, j) for j < 3
as follows:

Box(s, i, 0) = [xi + ζipD(0), xi + ζipD(0)+2]× [yi + zipD(1), yi + zipD(1)+2],

Box(s, i, 1) = [xi + ζipE(0), xi + ζipE(0)+rot]× [yi + zipD(1), yi + zipD(1)+2],

Box(s, i, 2) = [xi + ζipD(0), xi + ζipD(0)+2]× [yi + zipE(1), yi + zipE(1)+rot+z],

Zt(s, i, 0) = [e]st (Box(s, i, 0)),

Zt(s, i, 1) = [−]st (Box(s, i, 1)),

Zt(s, i, 2) = [ | ]st (Box(s, i, 2)).

19



Zi

Zs(s, i, 2)

Zs(s, i, 1)

Zs(s, i, 0)

Zs(s, i, 2)
↓

99KZs(s, i, 0)
→
99KZs(s, i, 1)

Figure 20: rot = 1.

Zi

Zs(s, i, 1)

Zs(s, i, 2)

Zs(s, i, 0)

Zs(s, i, 1)
←
99KZs(s, i, 0)

↑
99KZs(s, i, 2)

Figure 21: rot = 3.

Intuitively, D(0) = 1 (resp. D(0) = 3) indicates that Zt(s, i, 0) passes the
west (resp. the east) of Zi; D(1) = 1 (resp. D(1) = 3) indicates that Zt(s, i, 0)
passes the south (resp. the north) of Zi; E(0) = 0 (resp. E(0) = 5 − rot)
indicates that Zt(s, i, 1) passes the west (resp. the east) border of the bounding
box of Zi; and E(1) = 0 (resp. E(1) = 5− rot) indicates that Zt(s, i, 2) passes
the south (resp. the north) border of the bounding box of Zi. Note that the
corner block Zt(s, i, 0) leaves Zi on his right, and Zt(s, i, 0) has the reverse
direction to Zi.

Sublemma 13. Zt(s, i, 2− δi(0))
ε◦

99KZt(s, i, 0)
δ◦

99KZt(s, t, 1 + δi(0)).

Sublemma 14. Zt(s, i, j) ⊆ Zi.

For each i < ks+1, we have already constructed Zt(s + 1; i) = {Zt(s, i, j) :
j < 3}. All of these blocks constructed at the current stage are included in
Zend
s ∪

⋃⋃

p<u≤sZs(u). Let Z0[i] (resp. Z1[i]) be the ≺-least (resp. the ≺-
greatest) element of {λt.Zt(s, i, j) : j < 3}. It is not hard to see that our
construction ensures the following condition.

Sublemma 15. Z1
t [i]99KZ

0
t [i+ 1].

Thus,
⋃

i<ks+1
Zt(s + 1; i) is computably homeomorphic to Pt × [0, 1], uni-

formly in t ≥ s+ 1. Therefore, we can connect blocks Zs(s, i) for i < ks+1, and
we succeed to return back on the current approximation of the ≺-greatest p-
block Zs(p) = Zst

p,s ∈ Zs(p). Then we construct blocks Zt(s, k) for 2 ≤ k ≤ 6 on
the block Zs(p). The construction is essentially similar as the non-injuring case.
By induction hypothesis (IH3), we note that Zs(p) must be of the following
form for some yp, zp ∈ Q:

Zs(p) = [−]ps([γ
min
p , γmax

p ]× [yp + zpl
−
p , yp + zpr

+
p ]).

On Zs(p), we define a straight block from γmin
p to γmax

s+1 as follows:

Zt(s, 2) = [−]ps([γ
min
p , γmax

s+1 ]× [yp + zpr
∗
s , yp + zpr

+
s ]).

Here, by our assumption, γmax
s+1 < γmax

p holds since γmax
s+1 ≤ γmax

p . The blocks
Zt(s, k) for 3 ≤ k ≤ 6 are defined as in the same method as non-injuring case.
The active block at stage s + 1 is Zs+1(s, 5), and the end box at stage s + 1
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Overview of the upside of the frontier p-block.
γmin
s+1 γmax

s+1

γmin
p γmax

p

γmin
s γmax

s

The active block Zst
s−1.

Figure 22: Outline of our construction of the injured case.

is Zs+1(s, 6). (s + 1)-blocks at stage t are Zt(s, i) for i < 6, and Zt(s, i, j) for
i < ks+1 and j < 3 if it is constructed. Zt(s + 1) denotes the collection of
(s+ 1)-blocks at stage t.

Sublemma 16. Zend
s+1 ∪

⋃

Zs+1(s+ 1) ⊆ Zend
s ∪

⋃⋃

p≤u≤sZs(u).

Thus we again have the following:

Qs+1 = Zend
s+1 ∪

⋃ ⋃

u≤s+1

Zs+1(u) ⊆ Z
st
s ∪ Z

end
s ∪

⋃ ⋃

u≤s

Zs(u) ⊆ Qs.

Sublemma 17. Assume that we have a computable function fs : R
2 → R2 such

that fs ↾
⋃⋃

u≤s Zt(u) is a computable homeomorphism between
⋃⋃

u≤s Zt(u)
and Pt × [1/(s+ 2), 1] for any t ≥ s. Then we can effectively find a computable
function fs+1 : R2 → R2 extending fs ↾

⋃⋃

u≤s Zs+1(u) such that fs+1 ↾
⋃⋃

u≤s+1 Zt(u) is a computable homeomorphism between
⋃⋃

u≤s+1Zt(u) and
Pt × [1/(s+ 3), 1] for any t ≥ s+ 1.

Finally we put Q =
⋂

s∈NQs and Z∗ =
⋃

u∈N Z(u). The construction is
completed.

Verification. Now we start to verify our construction.

Lemma 15. Q is Π0
1.

Sublemma 18.
⋂

t∈N

⋃

Z∈Z∗ Zt =
⋃

Z∈Z∗

⋂

t∈N Zt.

Proof. The intersection Zs(p) ∩ Zi
s for i < 2 is included in some line segment

Li ∈ {[0, 1]× {b}, {b}× [0, 1] : b ∈ R}, and Zs(p) ∩ Li = Zs(p) ∩ Zi
s holds.

Sublemma 19.
⋃

Z∈Z(u)

⋂

t∈N Zt is computably homeomorphic to [0, 1] × P ,
for each u ∈ N.

Proof. By the induction hypothesis (IH2).

Sublemma 20.
⋃

Z∈Z∗

⋂

t∈N Zt is homeomorphic to (0, 1]× P .

Proof. By Sublemma 11 and 17.
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Lemma 16. Q is homeomorphic to a Cantor fan.

Proof. By Sublemma 18, there exists a real y0 ∈ R such that the following holds:

Q =

(

⋃

Z∈Z∗

⋂

t∈N

Zt

)

∪ {〈γ, y0〉}.

Therefore, by Sublemma 20, Q is homeomorphic to the one-point compactifica-
tion of (0, 1]× P .

Lemma 17. Q contains no computable point.

Proof. By Sublemma 19,
⋃

Z∈Z∗

⋂

t∈N Zt contains no computable point.

By Lemmata 15, 16, and 17, Q is the desired dendroid.

Remark. Since dendroids are compact and simply connected, Theorem 13 is
the solution to the question of Le Roux and Ziegler [13]. Indeed, the dendroid
constructed in the proof of Theorem 13 is contractible.

Corollary 4. Not every nonempty contractible Π0
1 subset of [0, 1]2 contains a

computable point.

Question 18. Does every locally connected planar Π0
1 set contain a computable

point?

5 Immediate Consequences

5.1 Effective Hausdorff Dimension

For basic definition and properties of the the effective Hausdorff dimension of a
point of Euclidean plane, see Lutz-Weihrauch [9]. For any I ⊆ [0, 2], let DIMI

denote the set of all points in R2 whose effective Hausdorff dimensions lie in
I. Lutz-Weihrauch [9] showed that DIM[1,2] is path-connected, but DIM(1,2] is

totally disconnected. In particular, DIM(1,2] has no nondegenerate connected
subset. It is easy to see that DIM(0,2] has no nonempty Π0

1 simple curve, since
every Π0

1 simple curve contains a computable point, and the effective Hausdorff
dimension of each computable point is zero.

Theorem 19. DIM[1,2] has a nondegenerate contractible Π0
1 subset.

Proof. For any strictly increasing computable function f : N→ N with f(0) = 0
and any infinite binary sequence α ∈ 2N, put ιf (α) =

∏

i∈N〈α(i), α(f(i)), α(f(i)+
1), . . . , α(f(i+1)− 1)〉, where σ× τ denotes the concatenation of binary strings
σ and τ . Then, r : 2N → R is defined as r(α) =

∑

i∈N(α(i) · 2
−(i+1)). Note

that α 6= β and r(α) = r(β) hold if and only if there is a common initial seg-
ment σ ∈ 2<N of α and β such that σ0 and σ1 are initial segments of α and
β respectively, and that α(m) = 1 and β(m) = 0 for any m > lh(σ), where
lh(σ) denotes the length of σ. In this case, we say that α sticks to β on σ. If
r(α) 6= r(β), then clearly r ◦ ιf (α) 6= r ◦ ιf (β). Assume that α sticks to β on
σ. Then there are m0 < m1 such that ιf (α)(m0) = ιf (α)(m1) = α(lh(σ)) = 0
and ιf (β)(m0) = ιf (β)(m1) = β(lh(σ)) = 1 by our definition of ιf . Therefore,
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ιf (α) does not stick to ιf (β). Hence, r ◦ ιf (α) 6= r ◦ ιf (β) whenever α 6= β.
Actually, r ◦ ιf : 2N → R is a computable embedding. For each n ∈ N, put
kf (n) = #{s : f(s) < n}. Then, there is a constant c ∈ N such that, for any
α ∈ 2N and n ∈ N, we have K(ιf (α) ↾ n+ kf (n) + 1) ≥ K(α ↾ n)− c, where K
denotes the prefix-free Kolmogorov complexity. Therefore, for any sufficiently
fast-growing function f : N → N and any Martin-Löf random sequence α ∈ 2N,
the effective Hausdorff dimension of r◦ιf (α) must be 1. Thus, for any nonempty
Π0

1 set R ⊆ 2N consisting of Martin-Löf random sequences, {0} × (r ◦ ιf (R)) is

a Π0
1 subset of DIM{1}. Let Q be the dendroid constructed from P = r ◦ ιf (R)

as in the proof of Theorem 13, where we choose γ = ρ(B) as Chaitin’s halting
probability Ω. For every point 〈x0, x1〉 ∈ Q, the effective Hausdorff dimension
of xi for some i < 2 is equivalent to that of an element of P or that of Ω.
Consequently, Q ⊆ DIM[1,2].

5.2 Reverse Mathematics

Theorem 20. For every Π0
1 set P ⊆ 2N, there is a contractible planar Π0

1 set
Q such that Q is Turing-degree-isomorphic to P , i.e., {degT (x) : x ∈ P} =
{degT (x) : x ∈ D}.

Proof. We choose B as a c.e. set of the same degree with the leftmost path of
P . Then, the dendroid Q constructed from P and B as in the proof of Theorem
13 is the desired one.

A compact Π0
1 subset P of a computable topological space is Muchnik com-

plete if every element of P computes the set of all theorems of T for some
consistent complete theory T containing Peano arithmetic. By Scott Basis The-
orem (see Simpson [15]), P is Muchnik complete if and only if P is nonempty
and every element of P computes an element of any nonempty Π0

1 set Q ⊆ 2N.

Corollary 5. There is a Muchnik complete contractible planar Π0
1 set.

A compact Π0
1 subset P of a computable topological space is Medvedev com-

plete (see also Simpson [15]) if there is a uniform computable procedure Φ such
that, for any name x ∈ NN of an element of P , Φ(x) is the set of all theorems
of T for some consistent complete theory T containing Peano arithmetic.

Question 21. Does there exist a Medvedev complete simply connected planar
Π0

1 set? Does there exist a Medvedev complete contractible Euclidean Π0
1 set?

Our Theorem 13 also provides a reverse mathematical consequence. For
basic notation for Reverse Mathematics, see Simpson [14]. Let RCA0 denote the
subsystem of second order arithmetic consisting of IΣ0

1 (Robinson arithmetic
with induction for Σ0

1 formulas) and ∆0
1-CA (comprehension for ∆0

1 formulas).
Over RCA0, we say that a sequence (Bi)i∈N of open rational balls is flat if there is
a homeomorphism between

⋃

i<nBi and the open square (0, 1)2 for any n ∈ N.
It is easy to see that RCA0 proves that every flat cover of [0, 1] has a finite
subcover.

Theorem 22. The following are equivalent over RCA0.

1. Weak König’s Lemma: every infinite binary tree has an infinite path.
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2. Every open cover of [0, 1] has a finite subcover.

3. Every flat open cover of [0, 1]2 has a finite subcover.

Proof. The equivalence of the item (1) and (2) is well-known. It is not hard to see
that RCA0 proves the existence of the sequence {Qs}s∈N as in our construction
of the dendroid Q in Theorem 13, by formalizing our proof in Theorem 13 in
RCA0. Here we may assume that {Qs}s∈N is constructed from the set of all
infinite paths of a given infinite binary tree T ⊆ 2<N, and a c.e. complete set
B ⊆ N. Note that

⋃

s<t([0, 1]
2 \Qs) does not cover [0, 1]

2 for every t ∈ N. Over
RCA0, there is a flat sequence {[0, 1]2 \Q∗s}s∈N of open rational balls such that
⋂

s<tQ
∗
s ⊇

⋂

s<tQs for any t ∈ N, and that an open rational ball U is removed
from some Q∗s if and only if an open rational ball U is removed from some Qu.
However, if T has no infinite path, then Q has no element. In other words,
{[0, 1]2 \Q∗s}s∈N covers [0, 1]2.
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