Incomputability of Simply Connected Planar Continua

Takayuki Kihara*

Abstract

Le Roux and Ziegler asked whether every simply connected compact nonempty planar Π_{1}^{0} set always contains a computable point. In this paper, we solve the problem of le Roux and Ziegler by showing that there exists a planar Π_{1}^{0} dendroid without computable points. We also provide several pathological examples of tree-like Π_{1}^{0} continua fulfilling certain global incomputability properties: there is a computable dendrite which does not $*$-include a Π_{1}^{0} tree; there is a Π_{1}^{0} dendrite which does not $*$ include a computable dendrite; there is a computable dendroid which does not $*$-include a Π_{1}^{0} dendrite. Here, a continuum $A *$-includes a member of a class \mathcal{P} of continua if, for every positive real ε, A includes a continuum $B \in \mathcal{P}$ such that the Hausdorff distance between A and B is smaller than ε.

1 Background

Every nonempty open set in a computable metric space (such as Euclidean nspace \mathbb{R}^{n}) contains a computable point. In contrast, the Non-Basis Theorem asserts that a nonempty co-c.e. closed set (also called a Π_{1}^{0} set) in Cantor space (hence, even in Euclidean 1-space) can avoid any computable points. NonBasis Theorems can shed new light on connections between local and global properties by incorporating the notions of measure and category. For instance, Kreisel-Lacombe [6] and Tanaka [17] showed that there is a Π_{1}^{0} set with positive measure that contains no computable point. Recent exciting progress in Computable Analysis [18] naturally raises the question whether Non-Basis Theorems exist for connected Π_{1}^{0} sets. However, we observe that, if a nonempty Π_{1}^{0} subset of \mathbb{R}^{1} contains no computable points, then it must be totally disconnected. Then, in higher dimensional Euclidean space, can there exist a connected Π_{1}^{0} set containing no computable points? It is easy to construct a nonempty connected Π_{1}^{0} subset of $[0,1]^{2}$ without computable points, and a nonempty simply connected Π_{1}^{0} subset of $[0,1]^{3}$ without computable points. An open problem, formulated by Le Roux and Ziegler [13 was whether every nonempty simply connected compact planar Π_{1}^{0} set contains a computable point. As mentioned in Penrose's book "Emperor's New Mind" 12, the Mandelbrot set is an example of a simply connected compact planar Π_{1}^{0} set which contains a computable point, and he conjectured that the Mandelbrot set is not computable as a closed set. Hertling [5] observed that the Penrose conjecture has an implication for a

[^0]famous open problem on local connectivity of the Mandelbrot set. Our interest is which topological assumption (especially, connectivity assumption) on a Π_{1}^{0} set can force it to possess a given computability property. Miller [10] showed that every Π_{1}^{0} sphere in \mathbb{R}^{n} is computable, and so it contains a dense c.e. subset of computable points. He also showed that every Π_{1}^{0} ball in \mathbb{R}^{n} contains a dense subset of computable points. Iljazović [7] showed that chainable continua (e.g., arcs) in certain metric spaces are almost computable, and hence there always is a dense subset of computable points. In this paper, we show that not every Π_{1}^{0} dendrite is almost computable, by using a tree-immune Π_{1}^{0} class in Cantor space. This notion of immunity was introduced by Cenzer, Weber Wu, and the author [4]. We also provide pathological examples of tree-like Π_{1}^{0} continua fulfilling certain global incomputability properties: there is a computable dendrite which does not $*$-include a Π_{1}^{0} tree; there is a computable dendroid which does not $*$ include a Π_{1}^{0} dendrite. Finally, we solve the problem of Le Roux and Ziegler [13] by showing that there exists a planar Π_{1}^{0} dendroid without computable points. Indeed, our planar dendroid is contractible. Hence, our dendroid is also the first example of a contractible Euclidean Π_{1}^{0} set without computable points.

2 Preliminaries

Basic Notation: $2^{<\mathbb{N}}$ denotes the set of all finite binary strings. Let X be a topological space. For a subset $Y \subseteq X, \operatorname{cl}(Y)(\operatorname{int}(Y)$, resp.) denotes the closure (the interior, resp.) of Y. Let $(X ; d)$ be a metric space. For any $x \in X$ and $r \in \mathbb{R}, B(x ; r)$ denotes the open ball $B(x ; r)=\{y \in X: d(x, y)<r\}$. Then x is called the center of $B(x ; r)$, and r is called the radius of $B(x ; r)$. For a given open ball $B=B(x ; r), \hat{B}$ denotes the corresponding closed ball $\hat{B}=\{y \in X: d(x, y) \leq r\}$. For $a, b \in \mathbb{R},[a, b]$ denotes the closed interval $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\},(a, b)$ denotes the open interval $(a, b)=\{x \in \mathbb{R}:$ $a<x<b\}$, and $\langle a, b\rangle$ denotes a point of Euclidean plane \mathbb{R}^{2}. For $X \subseteq \mathbb{R}^{n}$, $\operatorname{diam}(X)$ denotes $\max \{d(x, y): x, y \in X\}$.

Continuum Theory: A continuum is a compact connected metric space. For basic terminology concerning Continuum Theory, see Nadler [11] and IllanesNadler [8.

Let X be a topological space. The set X is a Peano continuum if it is a locally connected continuum. The set X is a dendrite if it is a Peano continuum which contains no Jordan curve. The set X is unicoherent if $A \cap B$ is connected for every connected closed subsets $A, B \subseteq X$ with $A \cup B=X$. The set X is hereditarily unicoherent if every subcontinuum of X is unicoherent. The set X is a dendroid if it is an arcwise connected hereditary unicoherent continuum. For a point x of a dendroid $X, r_{X}(x)$ denotes the cardinality of the set of arc-components of $X \backslash\{x\}$. If $r_{X}(x) \geq 3$ then x is said to be a ramification point of X. The set X is a tree if it is dendrite with finitely many ramification points. Note that a topological space X is a dendrite if and only if it is a locally connected dendroid. Hahn-Mazurkiewicz's Theorem states that a Hausdorff space X is a Peano continuum if and only if X is an image of a continuous curve.

Example 1 (Planar Dendroids).

Figure 1: The basic Figure 2: The harmonic dendrite

1. Put $\mathcal{B}_{t}=\left\{2^{-t}\right\} \times\left[0,2^{-t}\right]$. Then the following set $\mathcal{B} \subseteq \mathbb{R}^{2}$ is dendrite.

$$
\mathcal{B}=\bigcup_{t \in \mathbb{N}} \mathcal{B}_{t} \cup([-1,1] \times\{0\})
$$

We call \mathcal{B} the basic dendrite. The set \mathcal{B}_{t} is called the t-th rising of \mathcal{B}. See Fig. 1
2. The set $\mathcal{H}=\operatorname{cl}((\{1 / n: n \in \mathbb{N}\} \times[0,1]) \cup([0,1] \times\{0\}))$ is called a harmonic comb. Then \mathcal{H} is a dendroid, but not a dendrite. The set $\{1 / n\} \times[0,1]$ is called the n-th rising of the comb \mathcal{H}, and the set $[0,1] \times\{0\}$ is called the grip of \mathcal{H}. See Fig. 2
3. Let $C \subseteq \mathbb{R}^{1}$ be the middle third Cantor set. Then the one-point compactification of $C \times(0,1]$ is called the Cantor fan. (Equivalently, it is the quotient space Cone $(C)=(C \times[0,1]) /(C \times\{0\})$.) The Cantor fan is a dendroid, but not a dendrite. See Fig. 3]

Let X be a topological space. X is n-connected if it is path-connected and $\pi_{i}(X) \equiv 0$ for any $1 \leq i \leq n$, where $\pi_{i}(X)$ is the i-th homotopy group of $X . X$ is simply connected if X is 1-connected. X is contractible if the identity map on X is null-homotopic. Note that, if X is contractible, then X is n-connected for each $n \geq 1$. It is easy to see that the dendroids in Example $\mathbb{\square}$ are contractible.
Computability Theory: We assume that the reader is familiar with Computability Theory on the natural numbers \mathbb{N}, Cantor space $2^{\mathbb{N}}$, and Baire space $\mathbb{N}^{\mathbb{N}}$ (see also Soare [16]). For basic terminology concerning Computable Analysis, see Weihrauch [18, Brattka-Weihrauch [3, and Brattka-Presser [2].

Hereafter, we fix a countable base for the Euclidean n-space \mathbb{R}^{n} by $\rho=$ $\left\{B(x ; r): x \in \mathbb{Q}^{n} \& r \in \mathbb{Q}^{+}\right\}$, where \mathbb{Q}^{+}denotes the set of all positive rationals. Let $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ be an effective enumeration of ρ. We say that a point $x \in \mathbb{R}^{n}$ is computable if the code of its principal filter $\mathcal{F}(x)=\left\{i \in \mathbb{N}: x \in \rho_{i}\right\}$ is computably enumerable (hereafter c.e.) A closed subset $F \subseteq \mathbb{R}^{n}$ is Π_{1}^{0} if there is a c.e. set $W \subseteq \mathbb{N}$ such that $F=X \backslash \bigcup_{e \in W} \rho_{e}$. A closed subset $F \subseteq \mathbb{R}^{n}$ is computably enumerable (hereafter c.e.) if $\left\{e \in \mathbb{N}: F \cap \rho_{e} \neq \emptyset\right\}$ is c.e. A closed subset $F \subseteq \mathbb{R}^{n}$ is computable if it is Π_{1}^{0} and c.e. on \mathbb{R}^{n}.
Almost Computability: Let A_{0}, A_{1} be nonempty closed subsets of a metric space (X, d). Then the Hausdorff distance between A_{0} and A_{1} is defined by

$$
d_{H}\left(A_{0}, A_{1}\right)=\max _{i<2} \sup _{x \in A_{i}} \inf _{y \in A_{1-i}} d(x, y)
$$

Let \mathcal{P} be a class of continua. We say that a continuum $A *$-includes a member of \mathcal{P} if $\inf \left\{d_{H}(A, B): A \supseteq B \in \mathcal{P}\right\}=0$.

Proposition 2. Every Euclidean dendroid *-includes a tree.
Proof. Fix a Euclidean dendroid $D \subseteq \mathbb{R}^{n}$, and a positive rational $\varepsilon \in \mathbb{Q}$. Then D is covered by finitely many open rational balls $\left\{B_{i}\right\}_{i<n}$ of radius $\varepsilon / 2$. Choose $d_{i} \in D \cap B_{i}$ for each $i<n$ if B_{i} intersects with D. Note that $\left\{B\left(d_{i} ; \varepsilon\right)\right\}_{i<n}$ covers D. Since D is dendroid, there is a unique arc $\gamma_{i, j} \subseteq D$ connecting d_{i} and d_{j} for each $i, j<n$. Then, $E=\bigcup_{\{i, j\} \subseteq n} \gamma_{i, j}$ is connected and locally connected, since E is a union of finitely many arcs (i.e., it is a graph, in the sense of Continuum Theory; see also Nadler [11]). It is easy to see that E has no Jordan curve, since E is a subset of the dendroid D. Consequently, E is a tree. Moreover, clearly $d_{H}(E, D)<\varepsilon$, since $d_{i} \in E$ for each $i<n$.

The class \mathcal{P} has the almost computability property if every $A \in \mathcal{P} *$-includes a computable member of \mathcal{P} as a closed set. In this case, we simply say that every $A \in \mathcal{P}$ is almost computable. Iljazović [7] showed that every Π_{1}^{0} chainable continuum is almost computable, hence every Π_{1}^{0} arc is almost computable.

3 Incomputability of Dendrites

By Proposition 2, topologically, every planar dendrite *-includes a tree. However, if we try to effectivize this fact, we will find a counterexample.

Theorem 3. Not every computable planar dendrite *-includes a Π_{1}^{0} tree.
Proof. Let $A \subseteq \mathbb{N}$ be an incomputable c.e. set. Thus, there is a total computable function $f_{A}: \mathbb{N} \rightarrow \mathbb{N}$ such that range $\left(f_{A}\right)=A$. We may assume $f_{A}(s) \leq s$ for every $s \in \mathbb{N}$. Let A_{s} denote the finite set $\left\{f_{A}(u): u \leq s\right\}$. Then st ${ }^{A}: \mathbb{N} \rightarrow \mathbb{N}$ is defined as $\operatorname{st}^{A}(n)=\min \left\{s \in \mathbb{N}: n \in A_{s}\right\}$. Note that $\mathrm{st}^{A}(n) \geq n$ by our assumption $f_{A}(s) \leq s$.

Construction. . Recall the definition of the basic dendrite from Example 1 . We construct a computable dendrite by modifying the basic dendrite \mathcal{B}. For every $t \in \mathbb{N}$, we introduce the width of the t-rising $w(t)$ as follows:

$$
w(t)= \begin{cases}2^{-\left(2+\mathrm{st}^{A}(t)\right)}, & \text { if } t \in A \\ 0, & \text { otherwise }\end{cases}
$$

Let I_{t} be the closed interval $\left[2^{-t}-w(t), 2^{t}+w(t)\right]$. Since st ${ }^{A}(n) \geq n$, we have $I_{t} \cap I_{s}=\emptyset$ whenever $t \neq s$. We observe that $\{w(t)\}_{t \in \mathbb{N}}$ is a uniformly computable sequence of real numbers. Now we define a computable dendrite $D \subseteq \mathbb{R}^{2}$ by:

$$
\begin{aligned}
D_{t}^{0} & =\left(\left\{2^{-t}-w(t)\right\} \cup\left\{2^{-t}+w(t)\right\}\right) \times\left[0,2^{-t}\right] \\
D_{t}^{1} & =\left[2^{-t}-w(t), 2^{-t}+w(t)\right] \times\left\{2^{-t}\right\} \\
D_{t}^{2} & =\left(2^{-t}-w(t), 2^{-t}+w(t)\right) \times\left(-1,2^{-t}\right) \\
D & =\left(\bigcup_{t \in \mathbb{N}}\left(D_{t}^{0} \cup D_{t}^{1}\right)\right) \cup\left(([-1,1] \times\{0\}) \backslash \bigcup_{t \in \mathbb{N}} D_{t, m}^{2}\right) .
\end{aligned}
$$

We call $D_{t}=D_{t}^{0} \cup D_{t}^{1}$ the t-th rising of D. See Fig. 4

Figure 4: The dendrite D for $0,2,4 \notin A$ and $1,3 \in A$.

Claim. The set D is a dendrite.
To prove D is a Peano continuum, by the Hahn-Mazurkiewicz Theorem, it suffices to show that $D=\operatorname{Im}(h)$ for some continuous curve $h:[-1,1] \rightarrow \mathbb{R}^{2}$. We divide the unit interval $[0,1]$ into infinitely many parts $I_{t}=\left[2^{-(t+1)}, 2^{-t}\right]$. Furthermore, we also divide each interval $I_{2 t}$ into three parts $I_{2 t}^{0}, I_{2 t}^{1}$, and $I_{2 t}^{2}$, where $I_{2 t}^{i}=\left[(5-i) \cdot 3^{-1} \cdot 2^{-(2 t+1)},(6-i) \cdot 3^{-1} \cdot 2^{-(2 t+1)}\right]$ for each $i<3$. Then we define a desired curve h as follows.

$$
h(x) \text { moves in } \begin{cases}\left\{2^{-t}+w(t)\right\} \times\left[0,2^{-t}\right] & \text { if } x \in I_{2 t}^{0}, \\ {\left[2^{-t}-w(t), 2^{-t}+w(t)\right] \times\left\{2^{-t}\right\}} & \text { if } x \in I_{2 t}^{1}, \\ \left\{2^{-t}-w(t)\right\} \times\left[0,2^{-t}\right] & \text { if } x \in I_{2 t}^{2}, \\ {\left[2^{-(t+1)}+w(t+1), 2^{-t}-w(t)\right] \times\{0\}} & \text { if } x \in I_{2 t+1}, \\ {[-1,0] \times\{0\}} & \text { if } x \in[-1,0] .\end{cases}
$$

Clearly, h can be continuous, and indeed computable, since the map $w: \mathbb{R} \rightarrow$ \mathbb{R} is computable. It is easy to see that $D=\operatorname{Im}(h)$. Moreover, $\operatorname{Im}(h)$ contains no Jordan curve since $\pi_{0}(h(x)) \leq \pi_{0}(h(y))$ whenever $x \leq y$, where $\pi_{0}(p)$ denotes the first coordinate of $p \in \mathbb{R}^{2}$. Consequently, D is a dendrite.

Moreover, by construction, it is easy to see that D is computable.
Claim. The computable dendrite D does not $*$-include a Π_{1}^{0} tree.
Suppose that D contains a Π_{1}^{0} subtree $T \subseteq D$. We consider a rational open ball B_{t} with center $\left\langle 2^{-t}, 2^{-t}\right\rangle$ and radius $2^{-(t+2)}$, for each $t \in \mathbb{N}$. Note that $B_{t} \cap D \subseteq D_{t}$ for every $t \in \mathbb{N}$. Since T is Π_{1}^{0} in $\mathbb{R}^{2}, B=\left\{t \in \mathbb{N}: \hat{B}_{t} \cap T=\emptyset\right\}$ is c.e. If $w(t)>0$ (i.e., $t \in A)$ then $D \backslash\left(D_{t} \cap B_{t}\right)$ is disconnected. Therefore, either $T \subseteq\left[-1,2^{-t}\right] \times \mathbb{R}$ or $T \subseteq\left[2^{-t}, 1\right] \times \mathbb{R}$ holds whenever $\hat{B}_{t} \cap T=\emptyset$ (i.e., $t \in B)$, since T is connected. Thus, if the condition $\#(A \cap B)=\aleph_{0}$ is satisfied, then either $T \subseteq[-1,0] \times \mathbb{R}$ or $T \subseteq[0,1] \times \mathbb{R}$ holds. Consequently, we must have $d_{H}(T, D) \geq 1$.

Therefore, we may assume $\# A \cap B<\aleph_{0}$. Since A is coinfinite, D has infinitely many ramification points $\left\langle 2^{-t}, 0\right\rangle$ for $t \notin A$. However, by the definition of tree, T has only finitely many ramification points. Thus we must have $\left(D_{t}^{0} \cap\right.$ $T) \backslash\left\{\left\langle 2^{-t}, 0\right\rangle\right\}=\emptyset$ for almost all $t \notin A$. Since $\hat{B}_{t} \cap T \subseteq\left(D_{t}^{0} \cap T\right) \backslash\left\{\left\langle 2^{-t}, 0\right\rangle\right\}$, we have $t \in B$ for almost all $t \in \mathbb{N} \backslash A$. Consequently, we have $\#((\mathbb{N} \backslash A) \triangle B)<\aleph_{0}$. This implies that $\mathbb{N} \backslash A$ is also c.e., since B is c.e. This contradicts that A is incomputable.

Figure 5: The plotted tree $\Psi\left(2^{<N}\right)$.

Note that a Hausdorff space (hence every metric space) is (locally) arcwise connected if and only if it is (locally) pathwise connected. However, Miller [10] pointed out that the effective versions of arcwise connectivity and pathwise connectivity do not coincide. Theorem 3 could give a result on effective connectivity properties. Note that effectively pathwise connectivity is defined by Brattka [1]. Clearly, the dendrite D is effectively pathwise connected. We now introduce a new effective version of arcwise connectivity property by thinking arcs as closed sets. Let $\mathcal{A}_{-}(X)$ denote the hyperspace of closed subsets of X with negative information (see also Brattka [1).

Definition 4. A computable metric space (X, d, α) is semi-effectively arcwise connected if there exists a total computable multi-valued function $P: X^{2} \rightrightarrows$ $\mathcal{A}_{-}(X)$ such that $P(x, y)$ is the set of all $\operatorname{arcs} A$ whose two end points are x and y, for any $x, y \in X$.

Obviously D is not semi-effectively arcwise connected. Indeed, for every $\varepsilon>0$ there exists $x_{0}, x_{1} \in[0,1]$ with $d\left(x_{0}, x_{1}\right)<\varepsilon$ such that $\left\langle x_{0}, 0\right\rangle,\left\langle x_{1}, 0\right\rangle \in D$ cannot be connected by any Π_{1}^{0} arc. Thus, we have the following corollary.
Corollary 1. There exists an effectively pathwise connected Euclidean continuum D such that D is not semi-effectively arcwise connected.

Theorem 5. Not every Π_{1}^{0} planar dendrite is almost computable.
To prove Theorem 5 we need to prepare some tools. For a string $\sigma \in 2^{<\mathbb{N}}$, let $\operatorname{lh}(\sigma)$ denote the length of σ. Then

$$
\psi(\sigma)=\left\langle 2^{-1} \cdot 3^{-i}+2 \sum_{i<\operatorname{lh}(\sigma) \& \sigma(i)=1} 3^{-(i+1)}, 2^{-\ln (\sigma)}\right\rangle \in \mathbb{R}^{2} .
$$

For two points $\vec{x}, \vec{y} \in \mathbb{R}^{2}$, the closed line segment $L(\vec{x}, \vec{y})$ from \vec{x} to \vec{y} is defined by $L(\vec{x}, \vec{y})=\{(1-t) \vec{x}+t \vec{y}: t \in[0,1]\}$. For a (possibly infinite) tree $T \subseteq 2^{<\mathbb{N}}$, we plot an embedded tree $\Psi(T) \subseteq \mathbb{R}^{2}$ by

$$
\Psi(T)=c l(\bigcup\{L(\psi(\sigma), \psi(\tau)): \sigma, \tau \in T \& l h(\sigma)=\operatorname{lh}(\tau)+1\})
$$

Then $\Psi(T)$ is a dendrite (but not necessarily a tree, in the sense of Continuum Theory), for any (possibly infinite) tree $T \subseteq 2^{\mathbb{N}}$. See Fig. 5

We can easily prove the following lemmata.
Lemma 6. Let T be a subtree of $2^{<\mathbb{N}}$, and D be a planar subset such that $\psi\left(\rangle) \in D \subseteq \Psi(T)\right.$ for the root $\left\rangle \in 2^{<\mathbb{N}}\right.$. Then D is a dendrite if and only if D is homeomorphic to $\Psi(S)$ for a subtree $S \subseteq T$.

Proof. The "if" part is obvious. Let D be a dendrite. For a binary string σ which is not a root, let σ^{-}be an immediate predecessor of σ. We consider the set $S=\{\langle \rangle\} \cup\left\{\sigma \in 2^{<\mathbb{N}}: \sigma \neq\langle \rangle \& D \cap\left(L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right) \backslash\left\{\psi\left(\sigma^{-}\right)\right\}\right) \neq \emptyset\right\}$. Since D is connected, S is a subtree of T. It is easy to see that D is homeomorphic to $\Psi(S)$.

Lemma 7. Let T be a subtree of $2^{<\mathbb{N}}$. Then T is Π_{1}^{0} (c.e., computable, resp.) if and only if $\Psi(T)$ is a Π_{1}^{0} (c.e., computable, resp.) dendrite in \mathbb{R}^{2}.

Proof. With our definition of Ψ, the dendrite $\Psi\left(2^{<\mathbb{N}}\right)$ is clearly a computable closed subset of \mathbb{R}^{2}. So, if T is Π_{1}^{0}, then it is easy to prove that $\Psi(T)$ is also Π_{1}^{0}. Assume that T is a c.e. tree. At stage s, we compute whether $L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right)$ intersects with the e-th open rational ball ρ_{e}, for any $e<s$ and any string σ which is already enumerated into T by stage s. If so, we enumerate e into W_{T} at stage s. Then $\left\{e \in \mathbb{N}: \Psi(T) \cap \rho_{e} \neq \emptyset\right\}=W_{T}$ is c.e.

Assume that $\Psi(T)$ is Π_{1}^{0}. We consider an open rational ball $B_{-}(\sigma)=$ $B\left(\psi(\sigma) ; 2^{-(l h(\sigma)+2)}\right)$ for each $\sigma \in 2^{<\mathbb{N}}$. Note that $\hat{B}_{-}(\sigma) \cap \hat{B}_{-}(\tau)=\emptyset$ for $\sigma \neq \tau$. Since $\Psi(T)$ is $\Pi_{1}^{0}, T^{*}=\left\{\sigma \in 2^{<\mathbb{N}}: \Psi(T) \cap \hat{B}_{-}(\sigma)=\emptyset\right\}$ is c.e., and it is easy to see that $T=2^{<\mathbb{N}} \backslash T^{*}$. Thus, T is a Π_{1}^{0} tree of $2^{<\mathbb{N}}$. We next assume that $\Psi(T)$ is c.e. We can assume that $\Psi(T)$ contains the root $\psi(\rangle)$, otherwise $T=\emptyset$, and clearly it is c.e. For a binary string σ which is not a root, let σ^{-}be an immediate predecessor of σ. Pick an open rational ball $B_{+}(\sigma)$ such that $\Psi\left(2^{<\mathbb{N}}\right) \cap B_{+}(\sigma) \subseteq L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right)$ for each σ. Since $\Psi(T)$ is c.e., $T^{*}=\left\{\sigma \in 2^{<\mathbb{N}}: \Psi(T) \cap B_{+}(\sigma) \neq \emptyset\right\}$ is c.e. If σ is not a root and $\sigma \in T$ then $L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right) \subseteq \Psi(T)$, so $\Psi(T) \cap B_{+}(\sigma) \neq \emptyset$. We observe that if $\sigma \notin T$ then $L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right) \cap \Psi(T)=\emptyset$, so $\Psi(T) \cap B_{+}(\sigma)=\emptyset$. Thus, we have $T=T^{*}$. In the case that $\Psi(T)$ is computable, $\Psi(T)$ is c.e. and Π_{1}^{0}, hence T is c.e. and Π_{1}^{0}, i.e., T is computable.

Lemma 8. Let D be a computable subdendrite of $\Psi\left(2^{<\mathbb{N}}\right)$. Then there exists a computable subtree $T^{+} \subseteq 2^{<\mathbb{N}}$ such that $D \subseteq \Psi\left(T^{+}\right)$and $([0,1] \times\{0\}) \cap D=$ $([0,1] \times\{0\}) \cap \Psi\left(T^{+}\right)$.

Proof. We can assume $\psi(\rangle) \in D$, otherwise we connect $\psi(\rangle)$ and the root of D by a subarc of $\Psi\left(2^{<\mathbb{N}}\right)$. Again we consider an open rational ball $B_{-}(\sigma)=$ $B\left(\psi(\sigma) ; 2^{-(l h(\sigma)+2)}\right)$, and an open rational ball $B_{+}(\sigma)$ such that $\Psi\left(2^{<\mathbb{N}}\right) \cap$ $B_{+}(\sigma) \subseteq L\left(\psi\left(\sigma^{-}\right), \psi(\sigma)\right)$ for each $\sigma \in 2^{<\mathbb{N}}$. Since D is $\Pi_{1}^{0}, U^{*}=\left\{\sigma \in 2^{<\mathbb{N}}\right.$: $\left.D \cap \hat{B}_{-}(\sigma)=\emptyset\right\}$ is c.e. Since D is c.e., $T^{*}=\left\{\sigma \in 2^{<\mathbb{N}}: D \cap B_{+}(\sigma) \neq \emptyset\right\}$ is c.e., and it is a tree by Lemma 6. For every $\sigma \in 2^{<\mathbb{N}}$, either $D \cap \hat{B}_{-}(\sigma)=\emptyset$ or $D \cap B_{+}(\sigma) \neq \emptyset$ holds. Therefore, we have $T^{*} \cup U^{*}=2^{<\mathbb{N}}$. Moreover, for the set of leaves of $T^{*}, L_{T}^{*}=\left\{\rho \in T^{*}:(\forall i<2) \rho \frown\langle i\rangle \notin T^{*}\right\}$, we observe that $T^{*} \cap U^{*} \subseteq L_{T}^{*}$. Recall that the pointclass Σ_{1}^{0} has the reduction property, that is, for two c.e. sets T^{*} and U^{*}, there exist c.e. subsets $T \subseteq T^{*}$ and $U \subseteq U^{*}$ such that $T \cup U=T^{*} \cup U^{*}$ and $T \cap U=\emptyset$. This is because, for $\sigma \in T^{*} \cap U^{*}, \sigma$ is enumerated into T when σ is enumerated into T^{*} before it is enumerated into $U^{*} ; \sigma$ is enumerated into U otherwise. Since $T^{*} \cap U^{*} \subseteq L_{T}^{*}, T$ must be tree. Furthermore, T is c.e., and $U=2^{<\mathbb{N}} \backslash T$ is also c.e. Thus, T is a computable tree. Therefore, $T^{+}=\left\{\sigma^{\frown}\langle i\rangle: \sigma \in T \& i<2\right\}$ is also a computable tree. Then, $D \subseteq \Psi\left(T^{+}\right)$, and we have $([0,1] \times\{0\}) \cap D=([0,1] \times\{0\}) \cap \Psi\left(T^{+}\right)$since the set of all infinite paths of T and that of T^{+}coincide.

Cenzer, Weber and Wu, and the author 4 introduced the notion of treeimmunity for closed sets in Cantor space $2^{\mathbb{N}}$. For $\sigma \in 2^{<\mathbb{N}}$, define I_{σ} as $\{f \in$ $\left.2^{\mathbb{N}}:(\forall n<\operatorname{lh}(\sigma)) f(n)=\sigma(n)\right\}$. Note that $\left\{I_{\sigma}: \sigma \in 2^{<\mathbb{N}}\right\}$ is a countable base for Cantor space.

Definition 9 (Cenzer-Kihara-Weber-Wu [4]). A nonempty closed set $F \subseteq 2^{\mathbb{N}}$ is said to be tree-immune if the tree $T_{F}=\left\{\sigma \in 2^{<\mathbb{N}}: F \cap I_{\sigma} \neq \emptyset\right\} \subseteq 2^{<\mathbb{N}}$ contains no infinite computable subtree.

For a nonempty Π_{1}^{0} subset $P \subseteq 2^{\mathbb{N}}$, the corresponding tree T_{P} is Π_{1}^{0}, and it has no dead ends. The set of all complete consistent extensions of Peano Arithmetic is an example of a tree-immune Π_{1}^{0} subset of $2^{\mathbb{N}}$. Tree-immune Π_{1}^{0} sets have the following remarkable property.

Lemma 10. Let P be a tree-immune Π_{1}^{0} subset of $2^{\mathbb{N}}$ and let $D \subseteq \Psi\left(T_{P}\right)$ be any computable subdendrite. Then $([0,1] \times\{0\}) \cap D=\emptyset$ holds.

Proof. By Lemma 8, there exists a computable subtree $T \subseteq 2^{<\mathbb{N}}$ such that $D \subseteq \Psi(T)$ and $\Psi(T)$ agrees with D on $[0,1] \times\{0\}$. Since $D \subseteq \Psi\left(T_{P}\right)$, and since T_{P} has no dead ends, $T \subseteq T_{P}$ holds. Since P is tree-immune, T must be finite. By using weak König's lemma (or, equivalently, compactness of Cantor space), $T \subseteq 2^{l}$ holds for some $l \in \mathbb{N}$. Thus, $D \subseteq \Psi(T) \subseteq[0,1] \times\left[2^{-l}, 1\right]$ as desired.

Note that if P is a nonempty Π_{1}^{0} set in Cantor space $2^{\mathbb{N}}$, then for every $\delta>0$ it holds that $((0,1) \times(0, \delta)) \cap \Psi\left(T_{P}\right) \neq \emptyset$. Finally, we are ready to prove Theorem 5

Proof of Theorem 5. Again, we adapt the construction in the proof of Theorem 3. We fix a nonempty tree-immune Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$. For $\sigma \in 2^{<\mathbb{N}}$, put $E(\sigma)=$ $\left\{\tau \in 2^{<\mathbb{N}}: \tau \supseteq \sigma\right\}$. For a Π_{1}^{0} tree $T_{P} \subseteq \overline{2}^{<\mathbb{N}}$, there exists a computable function $f_{P}: \mathbb{N} \rightarrow 2^{<\mathbb{N}}$ such that $T_{P}=2^{<\mathbb{N}} \backslash \bigcup_{n} E\left(f_{P}(n)\right)$ and such that for each $\sigma \in 2^{<\mathbb{N}}$ and $s \in \mathbb{N}$ we have $\sigma \in \bigcup_{t<s} E\left(f_{P}(t)\right)$ whenever $\sigma^{\frown} 0, \sigma^{\frown} 1 \in$ $\bigcup_{t<s} E\left(f_{P}(t)\right)$. For such a computable function $f_{P}: \mathbb{N} \rightarrow 2^{<\mathbb{N}}$, we let $T_{P, s}$ denote $2^{<\mathbb{N}} \backslash \bigcup_{t<s} E\left(f_{P}(t)\right)$. Then $T_{P, s}$ is a tree without dead ends, and $\left\{T_{P, s}\right.$: $s \in \mathbb{N}\}$ is computable uniformly in s.

Construction. . Let \vec{e}_{1} denote $\langle 1,0\rangle \in \mathbb{R}^{2}$. For a tree $T \subseteq 2^{<\mathbb{N}}$ and $w \in \mathbb{Q}$, we define $\Psi(T ; w)$, the edge of the fat approximation of the tree T of width w, by

$$
\begin{aligned}
\Psi(T ; w)=c l(\bigcup\{L & \left(\psi(\sigma) \pm\left(3^{-|\sigma|} \cdot w\right) \vec{e}_{1}, \psi(\tau) \pm\left(3^{-|\tau|} \cdot w\right) \vec{e}_{1}\right) \\
& : \pm \in\{-,+\} \& \sigma, \tau \in T \& \operatorname{lh}(\sigma)=\operatorname{lh}(\tau)+1\})
\end{aligned}
$$

If $\lim _{s} w_{s}=0$ then we have $\lim _{s} \Psi\left(T ; w_{s}\right)=\Psi(T)$. Moreover, if $\left\{w_{s}: s \in\right.$ $\mathbb{N}\}$ is a uniformly computable sequence of rational numbers, then $\left\{\Psi\left(T ; w_{s}\right)\right.$: $s \in \mathbb{N}\}$ is also a uniformly computable sequence of computable closed sets. Additionally, the set $\Psi(T ; w, c, t, q)$, for a tree $T \subseteq 2^{<\mathbb{N}}$, for $w, c, q \in \mathbb{Q}$, and for $t \in \mathbb{N}$, is defined by

$$
\Psi(T ; w, c, t, q)=\left\{\left\langle c+q \cdot\left(x-\frac{1}{2}\right), \frac{2-y}{2^{t+1}}\right\rangle \in \mathbb{R}^{2}:\langle x, y\rangle \in \Psi(T ; w)\right\}
$$

Figure 6: The fat approximation Figure 7 : The basic object
$\Psi(T ; w)$ $\Psi(T ; w)$.
 $\Psi(T ; w, c, t, q)$.

Note that $\Psi(T ; w, c, t, q) \subseteq[c-q / 2, c+q / 2] \times\left[2^{-(t+1)}, 2^{-t}\right]$ as in Fig. 7] For $t \in \mathbb{N}$, and for $\operatorname{st}^{A}(t)=\min \left\{s: t \in A_{s}\right\}$ in the proof of Theorem 3, let $l(t) \in 2^{\mathbb{N}}$ be the leftmost path of $T_{P, \mathrm{st}^{A}(t)}$. If $\mathrm{st}^{A}(t)$ is undefined (i.e., $t \notin A$) then $l(t)$ is also undefined. For each $t \in \mathbb{N}$ we define $F(t)=\left\{\sigma \in 2^{<\mathbb{N}}: \sigma \subseteq l(t)\right\}$ if $l(t)$ is defined; $F(t)=T_{P}$ otherwise. Then $\{F(t): t \in \mathbb{N}\}$ is a computable sequence of Π_{1}^{0} subsets of $2^{<\mathbb{N}}$. Furthermore, we have $\Psi(F(t)) \cap([0,1] \times\{0\}) \neq \emptyset$, since $F(t)$ has a path for every $t \in \mathbb{N}$. For each $t \in \mathbb{N}, w(t)$ is defined again as in the proof of Theorem 3. Now we define a Π_{1}^{0} dendrite $H \subseteq \mathbb{R}^{2}$ as follows:

$$
\begin{aligned}
H_{t}^{*} & =\Psi\left(F(t) ; w(t), 2^{-t}, t, 2^{-(t+2)}\right) \\
H_{t}^{0} & =\left(\left\{2^{-t}-w(t)\right\} \cup\left\{2^{-t}+w(t)\right\}\right) \times\left[0,2^{-(t+1)}\right] \\
H_{t}^{* *} & =\left(2^{-t}-w(t), 2^{-t}+w(t)\right) \times\left\{2^{-(t+1)}\right\} \\
H_{t}^{2} & =\left(2^{-t}-w(t), 2^{-t}+w(t)\right) \times\left(-1,2^{-(t+1)}\right) \\
H & =\left(\bigcup_{t \in \mathbb{N}}\left(H_{t}^{*} \cup H_{t}^{0} \backslash\left(H_{t}^{* *} \cup i n t H_{t}^{*}\right)\right)\right) \cup\left(([-1,1] \times\{0\}) \backslash \bigcup_{t \in \mathbb{N}} H_{t}^{2}\right)
\end{aligned}
$$

Put $H_{t}=H_{t}^{*} \backslash\left(H_{t}^{* *} \cup i n t H_{t}^{*}\right)$ (see Fig. (8). We can also show that H is a Π_{1}^{0} dendrite in the same way as for Theorem 3)

Claim. The Π_{1}^{0} dendrite H does not $*$-include a computable dendrite.
Let J be a computable subdendrite of H. Put $S(t)=\left[3 \cdot 2^{-(t+2)}, 5 \cdot 2^{-(t+2)}\right] \times$ $\left[2^{-(t+1)}, 2^{-t}\right]$. Then, we note that $J(t)=J \cap S(t)$ is also a computable dendrite, since $H_{t} \subseteq S(t)$ and it is a dendrite. However, by Lemma 10, if $t \notin A$ then we have $J(t) \cap\left(\mathbb{R} \times\left\{2^{-t}\right\}\right)=\emptyset$. So we consider the following set:

$$
C=\left\{t \in \mathbb{N}: J(t) \cap\left(\left[3 \cdot 2^{-(t+2)}, 5 \cdot 2^{-(t+2)}\right] \times\left[2^{-t}, 1\right]\right)=\emptyset\right\}
$$

Since $J(t)$ is uniformly computable in t, the set C is clearly c.e., and we have $\mathbb{N} \backslash A \subseteq C$. However, if $\mathbb{N} \backslash A=C$, then this contradicts the incomputability of A. Thus, there must be infinitely many $t \in A$ such that t is enumerated into C. However, if $t \in A$ is enumerated into C, it cuts the dendrite H. In other words, since $J \subseteq H$ is connected, either $J \subseteq\left[-1,5 \cdot 2^{-(t+2)}\right] \times \mathbb{R}$ or $J \subseteq\left[3 \cdot 2^{-(t+2)}, 1\right] \times \mathbb{R}$. Hence we must have $d_{H}(J, H) \geq 1$.

Corollary 2. There exists a nonempty Π_{1}^{0} subset of $[0,1]^{2}$ which is contractible, locally contractible, and $*$-includes no connected computable closed subset.

Figure 8: The dendrite H for $0,2,4 \notin A$ and $1,3 \in A$.

4 Incomputability of Dendroids

Theorem 11. Not every computable planar dendroid $*$-includes $a \Pi_{1}^{0}$ dendrite.
Lemma 12. There exists a limit computable function f such that, for every uniformly c.e. sequence $\left\{U_{n}: n \in \mathbb{N}\right\}$ of cofinite c.e. sets, we have $f(n) \in U_{n}$ for almost all $n \in \mathbb{N}$.

Proof. Let $\left\{V_{e}: e \in \mathbb{N}\right\}$ be an effective enumeration of all uniformly c.e. nonincreasing sequences $\left\{U_{n}: n \in \mathbb{N}\right\}$ of c.e. sets such that $\min U_{n} \geq n$, where $\left(V_{e}\right)_{n}=U_{n}=\left\{x \in \mathbb{N}:(n, x) \in V_{e}\right\}$. The e-state of y is defined by $\sigma(e, y)=$ $\left\{i \leq e: y \in\left(V_{i}\right)_{e}\right\}$, and the maximal e-state is defined by $\sigma(e)=\max _{z} \sigma(e, z)$. The construction of $f: \mathbb{N} \rightarrow \mathbb{N}$ is to maximize the e-state. For each $e \in \mathbb{N}$, $f(e)$ chooses the least $y \in \mathbb{N}$ having the maximal e-state $\sigma(e, y)=\sigma(e)$. Since $\{\sigma(e, y): e, y \in \mathbb{N}\}$ is uniformly c.e., and $\sigma(e, y) \in 2^{e}$, the function $e \mapsto \sigma(e)=$ $\max _{z} \sigma(e, z)$ is total limit computable. Thus, f is limit computable. It is easy to see that $\lim _{e} \sigma(e)(n)$ exists for each $n \in \mathbb{N}$. Let $U=\left\{U_{n}: n \in \mathbb{N}\right\}$ be a uniformly c.e. sequence of cofinite c.e. sets. Then $V=\left\{\bigcap_{m \leq n} U_{m}: n \in \mathbb{N}\right\}$ is a uniformly c.e. non-increasing sequence of cofinite c.e. sets. Thus, $V_{i}=V$ for some index i. Then $i \in \sigma(e, y)$ for almost all $e, y \in \mathbb{N}$. This ensures that $i \in \sigma(e)$ for almost all $e \in \mathbb{N}$ by our assumption $\min U_{n} \geq n$. Hence we have $f(n) \in U_{n}$ for almost all $n \in \mathbb{N}$.

Remark. The proof of Lemma 12 is similar to the standard construction of a maximal c.e. set (see Soare [16). Recall that the principal function of the complement of a maximal c.e. set is dominant, i.e., it dominates all total computable functions. The limit computable function f in Lemma 12 is also dominant. Indeed, for any total computable function g, if we set $U_{n}^{g}=\{y \in \mathbb{N}: y \geq g(n)\}$ then $\left\{U_{n}^{g}: n \in \mathbb{N}\right\}$ is a uniformly c.e. sequence of cofinite c.e. sets, and if $f(n) \in U_{n}^{g}$ holds then we have $f(n) \geq g(n)$.

Proof of Theorem [11. Pick a limit computable function $f=\lim _{s} f_{s}$ in Lemma 12. For every $t, u \in \mathbb{N}$, put $v(t, u)=2^{-s}$ for the least s such that $f_{s}(t)=u$ if such s exists; $v(t, u)=0$ otherwise. Since $\left\{f_{s}: s \in \mathbb{N}\right\}$ is uniformly computable, $v: \mathbb{N}^{2} \rightarrow \mathbb{R}$ is computable.

Construction. . For each $t \in \mathbb{N}$, the center position of the u-th rising of the t-th comb is defined as $c_{*}(t, u)=2^{-(2 t+1)}+2^{-(2 t+u+1)}$, and the width of the

Figure 9: The dendroid K.

Figure 10: The harmonic comb K_{t} for $f_{0}(t)=0, f_{1}(t)=0, f_{2}(t)=2, \ldots$
u-th rising of the t-th comb is defined as $v_{*}(t, u)=v(t, u) \cdot 2^{-(2 t+u+3)}$. Then, we define the t-th harmonic comb K_{t} for each $t \in \mathbb{N}$ as follows:

$$
\begin{aligned}
K_{t}^{*} & =\left\{2^{-(2 t+1)}\right\} \times\left[0,2^{-t}\right] \\
K_{t, u}^{0} & =\left\{c_{*}(t, u)-v_{*}(t, u), c_{*}(t, u)+v_{*}(t, u)\right\} \times\left[0,2^{-t}\right] \\
K_{t, u}^{1} & =\left[c_{*}(t, u)-v_{*}(t, u), c_{*}(t, u)+v_{*}(t, u)\right] \times\left\{2^{-t}\right\} \\
K_{t, u}^{2} & =\left(c_{*}(t, u)-v_{*}(t, u), c_{*}(t, u)+v_{*}(t, u)\right) \times\left(-1,2^{-t}\right) \\
K_{t} & =\left(K_{t}^{*} \cup \bigcup_{i<2} \bigcup_{u \in \mathbb{N}} K_{t, u}^{i}\right) \cup\left(\left(\left[2^{-(2 t+1)}, 2^{-2 t}\right] \times\{0\}\right) \backslash \bigcup_{u \in \mathbb{N}} K_{t, u}^{2}\right) .
\end{aligned}
$$

Note that K_{t} is homeomorphic to the harmonic comb \mathcal{H} for each $t \in \mathbb{N}$. This is because, for fixed $t \in \mathbb{N}$, since $\lim _{s} f_{s}(t)$ exists we have $v(t, u)=0$ for almost all $u \in \mathbb{N}$. Then the desired computable dendroid is defined as follows.

$$
K=([-1,0] \times\{0\}) \cup \bigcup_{t \in \mathbb{N}}\left(\left(\left[2^{-(2 t+2)}, 2^{-(2 t+1)}\right] \times\{0\}\right) \cup K_{t}\right) .
$$

Claim. The set K is a computable dendroid.
Clearly K is a computable closed set. To show that K is pathwise connected, we consider the following subcontinuum K_{t}^{-}, the grip of the comb $K_{t, m}$, for each $t \in \mathbb{N}$.

$$
K_{t}^{-}=\left(\bigcup_{i<2} \bigcup_{v(t, u)>0} K_{t, u}^{i}\right) \cup\left(\left(\left[2^{-(2 t+1)}, 2^{-2 t}\right] \times\{0\}\right) \backslash \bigcup_{v(t, u)>0} K_{t, u}^{2}\right)
$$

Then $K^{-}=([-1,0] \times\{0\}) \cup \bigcup_{t \in \mathbb{N}}\left(\left(\left[2^{-(2 t+2)}, 2^{-(2 t+1)}\right] \times\{0\}\right) \cup K_{t}^{-}\right)$has no ramification points. We claim that K^{-}is connected and K^{-}is even an arc. To show this claim, we first observe that K_{t}^{-}is an arc for any $t \in \mathbb{N}$, since $v(t, u)>0$ occurs for finitely many $u \in \mathbb{N}$. Moreover $K_{t}^{-} \subseteq S(t)$, and $\lim _{t} \operatorname{diam}(S(t))=0$ holds. Therefore, we see that K^{-}is locally connected and, hence, an arc. For points $p, q \in K$, if $p, q \in K^{-}$then p and q are connected by a subarc of K^{-}. In the case $p \in K \backslash K^{-}$, the point p lies on $K_{t, u}^{0}$ for some t, u such that $v(t, u)=0$. If $q \in K^{-}$then there is a subarc $A \subseteq K^{-}$(one of whose endpoints must be $\left.\left\langle c_{*}(t, u), 0\right\rangle\right)$ such that $A \cup K_{t, u}^{0}$ is an arc containing p and q. In the case $q \in K \backslash K^{-}$, similarly we can connect p and q by an arc in K. Hence, K is
pathwise connected. K is hereditarily unicoherent, since the harmonic comb is hereditarily unicoherent. Thus, K is a dendroid.

Claim. The computable dendroid K does not $*$-include a Π_{1}^{0} dendrite.
What remains to show is that every Π_{1}^{0} subdendrite $R \subseteq K$ satisfies $d_{H}(R, K)$ ≥ 1. Let $R \subseteq K$ be a Π_{1}^{0} dendrite. Put $S(t)=\left[2^{-(2 t+1)}, 2^{-2 t}\right] \times\left[0,2^{-t}\right]$. Since R is locally connected, $R \cap S(t)=R \cap K_{t}$ is also locally connected for each $t \in \mathbb{N}$ and $m<2^{t}$. Thus, for fixed $t \in \mathbb{N}$, let $K_{t, u}^{1 *}=\left[c_{*}(t, u)-2^{-(2 t+u+3)}, c_{*}(t, u)+\right.$ $\left.2^{-(2 t+u+3)}\right] \times\left\{2^{-t}\right\}$. For any continuum $R^{*} \subset K_{t}$, if $R^{*} \cap K_{t, u}^{1 *} \neq \emptyset$ for infinitely many $u \in \mathbb{N}$, then R^{*} must be homeomorphic to the harmonic comb \mathcal{H}. Hence, R^{*} is not locally connected. Therefore, we have $R \cap K_{t, u}^{1 *}=\emptyset$ for almost all $u \in \mathbb{N}$. Since $K_{t, u}^{1 *}$ and $K_{s, v}^{1 *}$ is disjoint whenever $\langle t, u\rangle \neq\langle s, v\rangle$, and since R is Π_{1}^{0}, we can effectively enumerate $U_{t}=\left\{u \in \mathbb{N}: R \cap K_{t, u}^{1 *}=\emptyset\right\}$, i.e., $\left\{U_{t}: t \in \mathbb{N}\right\}$ is uniformly c.e. Moreover, U_{t} is cofinite for every $t \in \mathbb{N}$. Then, by our definition of $f=\lim _{s} f_{s}$ in Lemma 12, there exists $t^{*} \in \mathbb{N}$ such that $f(t) \in U_{t}$ for all $t \geq t^{*}$. Note that $v(t, f(t))>0$ and thus the condition $f(t) \in U_{t}$ (i.e., $\left.R \cap K_{t, f(t)}^{1 *}=\emptyset\right)$ implies that, for every $t \geq t^{*}$, either $R \subseteq\left[-1, c_{*}(t, u)+v_{*}(t, u)\right] \times[0,1]$ or $R \subseteq\left[c_{*}(t, u)-v_{*}(t, u), 1\right] \times[0,1]$ holds. Thus we obtain the desired condition $d_{H}(R, K) \geq 1$.

Remark. It is easy to see that the dendroid constructed in the proof of Theorem 11 is contractible.

Corollary 3. There exists a nonempty contractible planar computable closed subset of $[0,1]^{2}$ which $*$-includes no Π_{1}^{0} subset which is connected and locally connected.

Theorem 13. Not every nonempty Π_{1}^{0} planar dendroid contains a computable point.

Proof. One can easily construct a Π_{1}^{0} Cantor fan F containing at most one computable point $p \in F$, and such p is the unique ramification point of F. Our basic idea is to construct a topological copy of the Cantor fan F along a pathological located arc A constructed by Miller [10, Example 4.1]. We can guarantee that moving the fan F along the arc A cannot introduce new computable points. Additionally, this moving will make a ramification point p^{*} in a copy of F incomputable.
Fat Approximation. To archive this construction, we consider a fat approximation of a subset P of the middle third Cantor set $C \subseteq \mathbb{R}^{1}$, by modifying the standard construction of C. For a tree $T \subseteq 2^{<\bar{N}}$, put $\pi(\sigma)=$ $3^{-1}+2 \sum_{i<l h(\sigma) \& \sigma(i)=1} 3^{-(i+2)}$ for $\sigma \in T$, and $J(\sigma)=\left[\pi(\sigma)-3^{-(l h(\sigma)+1)}, \pi(\sigma)+\right.$ $\left.2 \cdot 3^{-(l h(\sigma)+1)}\right]$. If a binary string σ is incomparable with a binary string τ then $J(\sigma) \cap J(\tau)=\emptyset$. We extend π to a homeomorphism π_{*} between Cantor space $2^{\mathbb{N}}$ and $C \cap[1 / 3,2 / 3]$ by defining $\pi_{*}(f)=3^{-1}+2 \sum_{f(i)=1} 3^{-(i+2)}$ for $f \in 2^{\mathbb{N}}$. Let $P^{*} \subseteq 2^{\mathbb{N}}$ be a nonempty Π_{1}^{0} set without computable elements. Then there exists a computable tree T_{P} such that P^{*} is the set of all paths of T_{P}, since P^{*} is Π_{1}^{0}. A fat approximation $\left\{P_{s}: s \in \mathbb{N}\right\}$ of $P=\pi_{*}\left(P^{*}\right)$ is defined as $P_{s}=\bigcup\left\{J(\sigma): \operatorname{lh}(\sigma)=s \& \sigma \in T_{P}\right\}$. Then $\left\{P_{s}: s \in \mathbb{N}\right\}$ is a computable decreasing sequence of computable closed sets, and we have $P=\bigcap_{s} P_{s}$. Since P is a nonempty bounded closed subset of a real line \mathbb{R}^{1}, both min P

Figure 12: $[](R ; a, b ; q, r)$ for $R=$
Figure 11: The cubes $\Delta_{i j}(a, b, q, r)$. $[1 / 6,1 / 2]$
and $\max P$ exist. By the same reason, both $l_{s}^{-}=\min P_{s}$ and $r_{s}^{+}=\max P_{s}$ also exist, for each $s \in \mathbb{N}$, and $\lim _{s} l_{s}^{-}=\min P$ and $\lim _{s} r_{s}^{+}=\max P$, where $\left\{l_{s}: s \in \mathbb{N}\right\}$ is increasing, and $\left\{r_{s}: s \in \mathbb{N}\right\}$ is decreasing. Let $l_{s}=l_{s}^{-}+3^{-(s+1)}$ and $r_{s}=r_{s}^{+}-3^{-(s+1)}$. We also set $l_{s}^{*}=l_{s}^{-}+3^{-(s+2)}$ and $r_{s}=r_{s}^{+}-3^{-(s+2)}$. Note that $l_{s}<r_{s}, \lim _{s} l_{s}=\min P$, and $\lim _{s} r_{s}=\max P$. Since min $P, \max P \in P$ and P contains no computable points, $\min P$ and $\max P$ are non-computable, and so $l_{s}<\min P<\max P<r_{s}$ holds for any $s \in \mathbb{N}$. The fat approximation of P has the following remarkable property:

$$
\left[l_{s}^{-}, l_{s}\right] \subseteq P_{s},\left[l_{s}^{-}, l_{s}\right] \cap P=\emptyset,\left[r_{s}, r_{s}^{+}\right] \subseteq P_{s}, \quad \text { and }\left[r_{s}, r_{s}^{+}\right] \cap P=\emptyset
$$

To simplify the construction, we may also assume that P has the following property:

$$
P=\{1-x \in \mathbb{R}: x \in P\}
$$

Because, for any Π_{1}^{0} subset $A \subseteq C$, the Π_{1}^{0} set $A^{*}=\{x / 3: x \in A\} \cup\{1-x / 3$: $x \in A\} \subseteq C$ has that property.
Basic Notation. For each $i, j<2$, for each $a, b \in \mathbb{R}^{2}$, and for each $q, r \in \mathbb{R}$, the 2 -cube $\Delta_{i j}(a, b ; q, r) \subseteq[a, a+q] \times[b, b+r]$ is defined as the smallest convex set containing the three points $\{(a, b),(a+q, b),(a, b+r),(a+q, b+r)\} \backslash\{(a+$ $(1-i) q, b+(1-j) r)\}$. Namely,

$$
\begin{aligned}
\Delta_{i j}(a, b ; q, r)= & \left\{\left\langle(-1)^{i} x+a+i q,(-1)^{j} y+b+j r\right\rangle \in \mathbb{R}^{2}\right. \\
& : x, y \geq 0 \& r x+q y \leq q r\} .
\end{aligned}
$$

For a set $R \subseteq \mathbb{R}^{1}$ and real numbers $r, y \in \mathbb{R}$, put $\Theta(R ; r, y)=\{r x+y \in \mathbb{R}: x \in$ $R\}$. Clearly $\Theta(R ; r, y)$ is computably homeomorphic to R. Let four symbols $\llcorner\urcorner,$,$\lrcorner , and \ulcorner$ denote $\langle 10,01\rangle,\langle 01,10\rangle,\langle 00,11\rangle$, and $\langle 11,00\rangle$, respectively. For $v \in\{\llcorner\urcorner,\lrcorner,,\ulcorner \}$ and for any $R \subseteq[0,1], a, b \in \mathbb{R}^{2}$, and $q, r \in \mathbb{R}$, we define $[v](R ; a, b ; q, r) \subseteq[a, a+q] \times[b, b+r]$ as follows:

$$
\begin{aligned}
{[v](R ; a, b ; q, r)=} & \left(([a, a+q] \times \Theta(R ; r, b)) \cap \Delta_{v(0)}(a, b ; q, r)\right) \\
& \cup\left((\Theta(R ; q, a) \times[b, b+r]) \cap \Delta_{v(1)}(a, b ; q, r)\right)
\end{aligned}
$$

Sublemma 1. $[v](P ; a, b ; q, r)$ is computably homeomorphic to $P \times[0,1]$. In particular, $[v](P ; a, b ; q, r)$ contains no computable points.

To simplify our argument, we use the normalization \tilde{P}_{t}^{s} of P_{t} for $t \geq s$, that is defined by $\tilde{P}_{t}^{s}=\left\{\left(x-l_{s}^{-}\right) /\left(r_{s}^{+}-l_{s}^{-}\right) \in \mathbb{R}: x \in P_{t}\right\}$, for each $s \in \mathbb{N}$.

Note that $\tilde{P}_{t}^{s} \subseteq[0,1]$ for $t \geq s$, and $0,1 \in \tilde{P}_{s}^{s}$ holds for each $s \in \mathbb{N}$. Put $[v]_{t}^{s}([a, a+q] \times[b, b+r])=[v]\left(\tilde{P}_{t}^{s} ; a, b ; q, r\right)$ for $t \geq s$. We also introduce the following two notions:

$$
\begin{aligned}
{[-]_{t}^{s}([a, a+q] \times[b, b+r]) } & =[a, a+q] \times \Theta\left(\tilde{P}_{t}^{s} ; r, b\right) ; \\
{[\mid]_{t}^{s}([a, a+q] \times[b, b+r]) } & =\Theta\left(\tilde{P}_{t}^{s} ; q, a\right) \times[b, b+r] .
\end{aligned}
$$

Here we code two symbols - and \mid as 0 and 1 respectively.
Sublemma 2. $[v]_{t}^{s}([a, a+q] \times[b, b+r]) \subseteq[a, a+q] \times[b, b+r]$, and $[v]_{t}^{s}([a, a+$ $q] \times[b, b+r])$ intersects with the boundary of $[a, a+q] \times[b, b+r]$.
Sublemma 3. There is a computable homeomorphism between $[v]_{t}^{s}(a, b ; q, r)$ and $P_{t} \times[0,1]$ for any $t \in \mathbb{N}$. Therefore, $\bigcap_{t}[v]_{t}^{s}(a, b ; q, r)$ is computably homeomorphic to $P \times[0,1]$.
Blocks. A block is a set $Z \subseteq \mathbb{R}^{2}$ with a bounding box $\operatorname{Box}(Z)=[a, a+q] \times$ $[b, b+r]$. Each $\delta \in 2^{2}$ is called a direction, and directions $\langle 00\rangle,\langle 01\rangle,\langle 10\rangle$, and $\langle 11\rangle$ are also denoted by $[\leftarrow],[\rightarrow],[\downarrow]$, and $[\uparrow]$, respectively. For $\delta \in 2^{2}$, $\delta^{\circ}=\langle\delta(0), 1-\delta(0)\rangle$ is called the reverse direction of δ. Put Line $(Z ;[\leftarrow])=$ $\{a\} \times[b, b+r] ; \operatorname{Line}(Z ;[\rightarrow])=\{a+q\} \times[b, b+r] ; \operatorname{Line}(Z ;[\downarrow])=[a, a+q] \times\{b\} ;$ $\operatorname{Line}(Z ;[\uparrow])=[a, a+q] \times\{b+r\}$. Assume that a class \mathcal{Z} of blocks is given. We introduce a relation $\stackrel{\delta}{\rightarrow}$ on \mathcal{Z} for each direction δ. Fix a block $Z_{\text {first }} \in \mathcal{Z}$, and we call it the first block. Then we declare that $\xrightarrow[-]{[\leftarrow]} Z_{\text {first }}$ holds. We inductively define the relation $\stackrel{\delta}{\rightarrow}$ on \mathcal{Z}. If $Z \xrightarrow{\delta} Z_{0}$ (resp. $Z_{0} \stackrel{\delta}{-}$) Z) for some Z and δ, then we also write it as $\stackrel{\delta}{\rightarrow} Z_{0}$ (resp. $Z_{0} \stackrel{\delta}{\rightarrow}$). For any two blocks Z_{0} and Z_{1}, the relation $Z_{0} \xrightarrow{\delta} \rightarrow Z_{1}$ holds if the following three conditions are satisfied:

1. $Z_{0} \cap Z_{1}=\operatorname{Line}\left(Z_{0} ; \delta\right) \cap Z_{0}=\operatorname{Line}\left(Z_{1} ; \delta^{\circ}\right) \cap Z_{1} \neq \emptyset$.
2. $\stackrel{\varepsilon}{-} \rightarrow Z_{0}$ has been already satisfied for some direction ε.
3. $Z_{1} \stackrel{\varepsilon}{-} \xrightarrow{\rightarrow} Z_{0}$ does not satisfied for any direction ε

If $Z_{0} \xrightarrow{\delta} \rightarrow Z_{1}$ for some δ, then we say that Z_{1} is a successor of Z_{0} (Z_{0} is a predecessor of Z_{1}), and we also write it as $Z_{0--} Z_{1}$.

We will construct a partial computable function $\mathcal{Z}: \mathbb{N}^{3} \rightarrow \mathcal{A}\left(\mathbb{R}^{2}\right)$ with a computable function $k: \mathbb{N} \rightarrow \mathbb{N}$ and $\operatorname{dom}(\mathcal{Z})=\left\{(u, i, t) \in \mathbb{N}^{3}: u \leq t \& i<\right.$ $k(u)\}$ such that $\mathcal{Z}(u, i, t)$ is a block with a bounding box for any $(u, i, t) \in$ $\operatorname{dom}(\mathcal{Z})$, and the block $\mathcal{Z}(u, i, t)$ is computably homeomorphic to $P_{t} \times[0,1]$ uniformly in (u, i, t). Here $\mathcal{A}\left(\mathbb{R}^{2}\right)$ is the hyperspace of all closed subsets in \mathbb{R}^{2} with positive and negative information. For each stage $t, \mathcal{Z}_{t}(u)=\{\mathcal{Z}(t, u, i)$: $i<k(u)\}$ for each $u \leq t$ is defined. Let $\mathcal{Z}(u)$ denote the finite set $\{\lambda t . \mathcal{Z}(t, u, i)$: $i<k(u)\}$ of functions, for each $u \in \mathbb{N}$. The relation \rightarrow induces a pre-ordering \prec on $\bigcup_{u \in \mathbb{N}} \mathcal{Z}(u)$ as follows: $Z_{0} \prec Z_{1}$ if there is a finite path from $Z_{0}(t)$ to $Z_{1}(t)$ on the finite directed graph $\left(\bigcup_{u \leq t} \mathcal{Z}_{t}(u), \rightarrow\right)$ at some stage $t \in \mathbb{N}$. We will assure that \prec is a well-ordering of order type ω, and $Z_{0} \prec Z_{1}$ whenever $Z_{0} \in \mathcal{Z}(u), Z_{1} \in \mathcal{Z}(v)$, and $u<v$. In particular, for every $Z \in \bigcup_{u \in \mathbb{N}} \mathcal{Z}(u)$, the predecessor $Z_{\text {pre }}$ of Z and the successor $Z_{\text {suc }}$ of Z under \prec are uniquely determined. If $Z_{\text {pre }}(t) \stackrel{\delta}{\rightarrow} Z(t) \stackrel{\varepsilon}{-} Z_{\text {suc }}(t)$, then we say that Z moves from δ to ε, and that $\langle\delta, \varepsilon\rangle$ is the direction of Z.

Figure 13: Example 14

Example 14. Fig. 13 is an example satisfying $\xrightarrow[-]{[\leftarrow]} Z_{\text {first }} \stackrel{[\leftarrow]}{\rightarrow} Z_{0} \xrightarrow{[\downarrow]} Z_{1} \xrightarrow{[\rightarrow]} Z_{2}$.
Destination Point. Basically, our construction is similar as the construction by Miller [10. Pick the standard homeomorphism ρ between $2^{\mathbb{N}}$ and the middle third Cantor set, i.e., $\rho(M)=2 \sum_{i \in M}(1 / 3)^{i+1}$ for $M \subseteq \mathbb{N}$, and pick a noncomputable c.e. set $B \subseteq \mathbb{N}$ and put $\gamma=\rho(B)$. We will construct a Cantor fan so that the first coordinate of the unique ramification point is γ, hence the fan will have a non-computable ramification point. Let $\left\{B_{s}: s \in \mathbb{N}\right\}$ be a computable enumeration of B, and let n_{s} denote the element enumerated into B at stage s, where we may assume just one element is enumerated into B at each stage. Put $\gamma_{s}^{\min }=\rho\left(B_{s}\right)$ and $\gamma_{s}^{\max }=\rho\left(B_{s} \cup\left\{i \in \mathbb{N}: i \geq n_{s}\right\}\right)$. Note that γ is not computable, and so $\gamma_{s}^{\min } \neq \gamma$ and $\gamma_{s}^{\max } \neq \gamma$ for any $s \in \mathbb{N}$. This means that for every $s \in \mathbb{N}$ there exists $t>s$ such that $\gamma_{s}^{\min } \neq \gamma_{t}^{\min }$ and $\gamma_{s}^{\max } \neq \gamma_{t}^{\max }$. By this observation, without loss of generality, we can assume that $\gamma_{s}^{\min } \neq \gamma_{t}^{\min }$ and $\gamma_{s}^{\max } \neq \gamma_{t}^{\max }$ whenever $s \neq t$. We can also assume $1 / 3 \leq \gamma_{s}^{\min } \leq \gamma_{s}^{\max } \leq 2 / 3$ for any $s \in \mathbb{N}$.

Stage 0 . We now start to construct a Π_{1}^{0} Cantor fan $Q=\bigcap_{s \in \mathbb{N}} Q_{s}$. At the first stage 0 , and for each $t \geq 0$, we define the following sets:

$$
Z_{0, t}^{\text {st }}=[-]_{t}^{s}\left(\left[\gamma_{0}^{\min }, \gamma_{0}^{\max }\right] \times\left[l_{0}^{-}, r_{0}^{+}\right]\right) ; Z_{0}^{\text {end }}=\left[\gamma_{0}^{\min }-1 / 3, \gamma_{0}^{\min }\right] \times\left[l_{0}^{-}, r_{0}^{+}\right]
$$

Moreover, we set $Q_{0}=Z_{0,0}^{\text {st }} \cup Z_{0}^{\text {end }}$. By our choice of P_{0}, actually $Q_{0}=\left[\gamma_{0}^{\mathrm{min}}-\right.$ $\left.1 / 3, \gamma_{0}^{\max }\right] \times\left[l_{0}^{-}, r_{0}^{+}\right] . \quad Z_{0,0}^{\text {st }}$ is called the straight block from $2 / 3$ to $1 / 3$ at stage 0 , and $Z_{0}^{\text {end }}$ is called the end box at stage 0 . The bounding box of the block $Z_{0}^{\text {st }}$ is defined by $\left[\gamma_{0}^{\min }, \gamma_{0}^{\max }\right] \times\left[l_{0}^{-}, r_{0}^{+}\right]$. The collection of 0 -blocks at stage t is $\mathcal{Z}_{t}(0)=\left\{Z_{0, t}^{\text {st }}\right\}$. We declare that $Z_{0}^{\text {st }}$ is the first block, and that $\stackrel{[\leftarrow]}{\rightarrow} Z_{0}^{\text {st }}$.

Stage $s+1$. Inductively assume that we have already constructed the collection of u-blocks $\mathcal{Z}_{t}(u)$ at stage $t \geq u$ is already defined for every $u \leq s$. For any u, we think of the collection $\mathcal{Z}(u)=\left\{\mathcal{Z}_{t}(u): t \geq u\right\}$ as a finite set $\left\{Z_{i}^{u}\right\}_{i<\# \mathcal{Z}_{u}(u)}$ of computable functions $Z_{i}^{u}:\{t \in \mathbb{N}: t \geq u\} \rightarrow \bigcup_{t} \mathcal{Z}_{t}(u)$ such that $\mathcal{Z}_{t}(u)=$ $\left\{Z_{i}^{u}(t): i<\# \mathcal{Z}_{u}(u)\right\}$ for each $t \geq u$. We inductively assume that the collection $\mathcal{Z}(u)=\left\{\mathcal{Z}_{t}(u): t \geq u\right\}$ satisfies the following conditions:
(IH1) For each $Z \in \mathcal{Z}(u)$ and for each $t \geq v \geq u, Z(t) \subseteq Z(v)$.
(IH2) There is a computable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f \upharpoonright \bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ is a homeomorphism between $\bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ and $P_{t} \times[0,1]$ for any $t \geq s$.

Figure 14: The active block $Z_{s}^{\text {st }} \cup Z_{s}^{\text {end }}$ at stage s.
(IH3) There are $y, z, \zeta \in \mathbb{Q}$ such that the blocks $Z_{s, t}^{\text {st }}$ and $Z_{s}^{\text {end }}$ are constructed as follows:

$$
\begin{aligned}
Z_{s, t}^{\mathrm{st}} & =[-]_{t}^{s}\left(\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right] \times\left[y+z l_{s}^{-}, y+z r_{s}^{+}\right]\right) \\
Z_{s}^{\text {end }} & =\left[\gamma_{s}^{\min }-\zeta, \gamma_{s}^{\min }\right] \times\left[y+z l_{s}^{-}, y+z r_{s}^{+}\right]
\end{aligned}
$$

Here, a computable closed set Q_{s}, an approximation of our Π_{1}^{0} Cantor fan Q at stage s, is defined by $Q_{s}=Z_{s}^{\text {end }} \cup \bigcup \bigcup_{u \leq s} \mathcal{Z}_{s}(u)$.

Non-injured Case. First we consider the case $\left[\gamma_{s+1}^{\min }, \gamma_{s+1}^{\max }\right] \subseteq\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right]$, i.e., this is the case that our construction is not injured at stage $s+1$. In this case, we construct $(s+1)$-blocks in the active block $Z_{s}^{\text {st }} \cup Z_{s}^{\text {end }}$. We will define $Z_{t}(s, i, j)$ and $\operatorname{Box}(s, i, j)=\operatorname{Box}\left(Z_{t}(s, i, j)\right)$ for each $j<6$. The first two corner blocks at stage $t \geq s+1$ are defined by:

$$
\begin{aligned}
\operatorname{Box}(s, 0) & =\left[\gamma_{s}^{\min }-\zeta, \gamma_{s}^{\min }\right] \times\left[y+z l_{s}^{-}, y+z r_{s}^{*}\right] \\
Z_{t}(s, 0) & =\left[\llcorner]_{t}^{s}\left(\left[\gamma_{s}^{\min }-\zeta, \gamma_{s}^{\min }\right] \times\left[y+z l_{s}^{-}, y+z r_{s}^{+}\right]\right) \cap \operatorname{Box}(s, 0)\right. \\
\operatorname{Box}(s, 1) & =\left[\gamma_{s}^{\min }-\zeta, \gamma_{s}^{\min }\right] \times\left[y+z r_{s}^{*}, y+z r_{s}^{+}\right] \\
Z_{t}(s, 1) & =\left[\ulcorner]_{t}^{s}(\operatorname{Box}(s, 1)) .\right.
\end{aligned}
$$

Sublemma 4. $Z_{t}(s, 0) \cup Z_{t}(s, 1) \subseteq Z_{s}^{\text {end }}$ for any $t \geq s+1$.
Sublemma 5. $Z_{s, t^{-} \rightarrow}^{\text {st }} \stackrel{[\leftarrow]}{ } Z_{t}(s, 0) \xrightarrow{[\uparrow]} Z_{t}(s, 1)$, for any $t \geq s+1$.
The next block is a straight block from $\gamma_{s}^{\min }$ to $\gamma_{s+1}^{\max }$ which is defined as follows:

$$
\begin{aligned}
\operatorname{Box}(s, 2) & =\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right] \times\left[y+z r_{s}^{*}, y+z r_{s}^{+}\right] \\
Z_{t}(s, 2) & =[-]\left(\operatorname{Box}_{t}(s, 2)\right) .
\end{aligned}
$$

For given $a, b, \alpha, \beta \in \mathbb{Q}$, we can calculate $N_{0, s}(a, b ; \alpha, \beta)$ and $N_{1, s}(a, b ; \alpha, \beta)$ satisfying $N_{0, s}(a, b ; \alpha, \beta)+N_{1, s}(a, b ; \alpha, \beta) \cdot l_{s}^{-}=a+b \alpha$, and $N_{0, s}(a, b ; \alpha, \beta)+$ $N_{1, s}(a, b ; \alpha, \beta) \cdot r_{s}^{+}=a+b \beta$. Put $y^{\star}=N_{0, s}\left(y, z ; r_{s}^{*}, r_{s}^{+}\right)$, and $z^{\star}=N_{1, s}\left(y, z ; r_{s}^{*}, r_{s}^{+}\right)$.
Sublemma 6. $\operatorname{Box}(s, 2)=\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right] \times\left[y^{\star}+z^{\star} l_{s}^{-}, y^{\star}+z^{\star} r_{s}^{+}\right]$.

Figure 15: The first two corner blocks $Z_{s}(s, 0)$ and $Z_{s}(s, 1)$.

Put $\zeta^{\star}=\left(\gamma_{s}^{\max }-\gamma_{s+1}^{\max }\right) / 3^{s}$. Note that $\zeta^{\star}>0$ since $\gamma_{s}^{\max }>\gamma_{s+1}^{\max }$. We then again define corner blocks.

$$
\begin{aligned}
\operatorname{Box}(s, 3) & =\left[\gamma_{s+1}^{\max }, \gamma_{s+1}^{\max }+\zeta^{\star}\right] \times\left[y^{\star}+z^{\star} l_{s}^{-}, y^{\star}+z^{\star} r_{s}^{*}\right], \\
Z_{t}(s, 3) & =[\lrcorner]_{t}^{s}\left(\left[\gamma_{s+1}^{\max }, \gamma_{s+1}^{\max }+\zeta^{\star}\right] \times\left[y^{\star}+z^{\star} l_{s}^{-}, y^{\star}+z^{\star} r_{s}^{+}\right]\right) \cap \operatorname{Box}(s, 3), \\
\operatorname{Box}(s, 4) & =\left[\gamma_{s+1}^{\max }, \gamma_{s+1}^{\max }+\zeta^{\star}\right] \times\left[y^{\star}+z^{\star} r_{s}^{*}, y^{\star}+z^{\star} r_{s}^{+}\right], \\
Z_{t}(s, 4) & =[\urcorner]_{t}^{s}(\operatorname{Box}(s, 4)) .
\end{aligned}
$$

Next, a straight block from $\gamma_{s}^{\min }$ to $\gamma_{s+1}^{\max }$ is defined as follows:

$$
\begin{aligned}
\operatorname{Box}(s, 5) & =\left[\gamma_{s+1}^{\min }, \gamma_{s+1}^{\max }\right] \times\left[y^{\star}+z^{\star} r_{s}^{*}, y^{\star}+z^{\star} r_{s}^{+}\right], \\
Z_{t}(s, 5) & =[-]_{t}^{s}[\operatorname{Box}(s, 5)] .
\end{aligned}
$$

Put $y^{\star \star}=N_{0, s}\left(y^{\star}, z^{\star} ; r_{s}^{*}, r_{s}^{+}\right)$, and $z^{\star \star}=N_{1, s}\left(y^{\star}, z^{\star} ; r_{s}^{*}, r_{s}^{+}\right)$.
Sublemma 7. $\operatorname{Box}(s, 5)=\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right] \times\left[y^{\star \star}+z^{\star \star} l_{s}^{-}, y^{\star \star}+z^{\star \star} r_{s}^{+}\right]$.
Put $\zeta^{\star \star}=\left(\gamma_{s+1}^{\min }-\gamma_{s}^{\min }\right) / 3^{s}$. Note that $\zeta^{\star \star}>0$ since $\gamma_{s+1}^{\min }>\gamma_{s}^{\max }$. The end box at stage $s+1$ is:

$$
Z(s, 6)=\left[\gamma_{s+1}^{\min }-\zeta^{\star \star}, \gamma_{s+1}^{\min }\right] \times\left[y^{\star \star}+z^{\star \star} l_{s}^{-}, y^{\star \star}+z^{\star \star} r_{s}^{+}\right] .
$$

Then put $Z_{s+1, t}^{\text {st }}=Z_{t}(s, 5), Z_{s+1}^{\text {st }}=Z_{s+1, s+1}^{\text {st }}$, and $Z_{s+1}^{\text {end }}=Z(s, 6)$. The active block at stage $s+1$ is the set $Z_{s+1, s+1}^{\text {st }} \cup Z_{s+1}^{\text {end }}$, and the collection of $(s+1)$-blocks at stage t is defined by $\mathcal{Z}_{t}(s+1)=\left\{Z_{t}(s, i): i \leq 5\right\}$. Clearly, our definition satisfies the induction hypothesis (IH3) at stage $s+1$.

Sublemma 8. $Z_{t}(s, i) \subseteq Z_{v}(s, i)$ for each $t \geq v \geq s+1$ and $i \leq 5$.
Sublemma 9. For any $t \geq s+1$,

$$
Z_{s, t}^{\text {st }} \stackrel{[\leftarrow]}{\leftrightarrow} Z_{t}(s, 0) \stackrel{[\uparrow]}{\rightarrow \rightarrow} Z_{t}(s, 1) \xrightarrow{[\rightarrow]} Z_{t}(s, 2) \stackrel{[\rightarrow]}{\rightarrow \rightarrow} Z_{t}(s, 3) \stackrel{[\uparrow]}{\rightarrow} Z_{t}(s, 4) \stackrel{[\leftarrow]}{\rightarrow \rightarrow} Z_{t}(s, 5) .
$$

Proof. It follows straightforwardly from the definition of these blocks $Z_{t}(s, i)$, and Sublemma 6 and 7.

Sublemma 10. $\bigcup_{2 \leq i \leq 6} Z_{t}(s, i) \subseteq Z_{s}^{\text {st }} \cap\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right] \times\left(y+z r_{s}, y+z r_{s}^{+}\right]$. Hence, $\left(\bigcup_{2 \leq i \leq 6} Z_{t}(s, i)\right) \cap Z_{s, s+1}^{\text {st }}=\emptyset$

Figure 16: $Z_{s}(s-1,5) \cup \bigcup \mathcal{Z}_{s}(s+1)$.

Figure 17: $Z_{s+1}(s-1,5) \cup \bigcup \mathcal{Z}_{s+1}(s+$ 1).

Consequently, we can show the following extension property.
Sublemma 11. Assume that we have a computable function $f_{s}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f_{s} \upharpoonright \bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ is a computable homeomorphism between $\bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ and $P_{t} \times[1 /(s+2), 1]$ for any $t \geq s$. Then we can effectively find a computable function $f_{s+1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ extending $f_{s} \upharpoonright \bigcup \bigcup_{u \leq s} \mathcal{Z}_{s+1}(u)$ such that $f_{s+1} \upharpoonright$ $\bigcup \bigcup_{u \leq s+1} \mathcal{Z}_{t}(u)$ is a computable homeomorphism between $\bigcup \bigcup_{u \leq s+1} \mathcal{Z}_{t}(u)$ and $P_{t} \times[1 /(s+3), 1]$ for any $t \geq s+1$.

Proof. By Sublemma 5 9 , and 10.
By Sublemma 8 and 11 induction hypothesis (IH1) and (IH2) are satisfied. Since $Z_{s+1}^{\text {end }} \cup \bigcup \mathcal{Z}_{s+1}(s+1) \subseteq Z_{s}^{\text {st }} \cup Z_{s}^{\text {end }}$ by Sublemma 4 and 10 and $\cup \mathcal{Z}_{s+1}(u) \subseteq$ $\cup \mathcal{Z}_{s}(u)$ for each $u \leq s$, by induction hypothesis (IH1), we have the following:

$$
Q_{s+1}=Z_{s+1}^{\text {end }} \cup \bigcup \bigcup_{u \leq s+1} \mathcal{Z}_{s+1}(u) \subseteq Z_{s}^{\text {st }} \cup Z_{s}^{\text {end }} \cup \bigcup \bigcup_{u \leq s} \mathcal{Z}_{s}(u) \subseteq Q_{s}
$$

Injured Case. Secondly we consider the case that our construction is injured. This means that $\left[\gamma_{s+1}^{\min }, \gamma_{s+1}^{\max }\right] \nsubseteq\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right]$. In this case, indeed, we have $\left[\gamma_{s+1}^{\min }, \gamma_{s+1}^{\max }\right] \cap\left[\gamma_{s}^{\min }, \gamma_{s}^{\max }\right]=\emptyset$. Fix the greatest stage $p \leq s$ such that $\left[\gamma_{s+1}^{\min }, \gamma_{s+1}^{\max }\right] \subseteq\left[\gamma_{p}^{\min }, \gamma_{p}^{\max }\right]$ occurs. We again, inside the end box $Z_{s}^{\text {end }}$ at stage s, define corner blocks $Z_{t}(s, 0)$ and $Z_{t}(s, 1)$ as non-injuring stage, whereas the construction of $Z_{t}(s, i)$ for $i \geq 2$ differs from non-injuring stage. The end box of our construction at stage $s+1$ will turn back along all blocks belonging $\mathcal{Z}_{s}(u)$ for $p<u \leq s$ in the reverse ordering of \prec. Let $\left\{Z_{i}: i<k_{s+1}\right\}$ be an enumeration of all blocks in $\mathcal{Z}_{s}(u)$ for $p<u \leq s$, under the reverse ordering of \prec. In other words, Z_{i} is the successor block of Z_{i+1} under \rightarrow, for each $i<k_{s+1}-1$. There are two kind of blocks; one is a straight block, and another is a corner block. We will define blocks $Z_{t}(s, i, j)$ for $i<k_{s+1}$ and $j<3$. Now we check the direction $\left\langle\delta_{i}, \varepsilon_{i}\right\rangle$ of Z_{i}. Here, we may consistently assume that the condition $Z_{0}[\leftarrow]$ holds.

Subcase 1. If $\delta_{i}(0)=\varepsilon_{i}(0)$ then Z_{i} is a straight block. In this case, we only construct $Z_{t}(s, i, 0)$. Since Z_{i} is straight, there are $y_{i}, z_{i}, \alpha, \beta \in \mathbb{Q}$ and $u \leq s$ such that, for $B_{i}(0)=[\alpha, \beta]$ and $B_{i}(1)=\left[y_{i}+z_{i} l_{u}^{-}, y_{i}+z_{i} r_{u}^{+}\right]$such that $\operatorname{Box}\left(Z_{i}\right)=B_{i}\left(\delta_{i}(0)\right) \times B_{i}\left(1-\delta_{i}(0)\right)$. If $\delta_{i}(1)=0$, then set $y_{i}^{\star}=N_{0, s}\left(y_{i}, z_{i} ; l_{s}^{-}, l_{s}^{*}\right)$ and $z_{i}^{\star}=N_{1, s}\left(y_{i}, z_{i} ; l_{s}^{-}, l_{s}^{*}\right)$. If $\delta_{i}(1)=1$, then set $y_{i}^{\star}=N_{0, s}\left(y_{i}, z_{i} ; r_{s}^{-}, r_{s}^{+}\right)$and

Figure 18: The block Z_{i}.
$z_{i}^{\star}=N_{1, s}\left(y_{i}, z_{i} ; r_{s}^{*}, r_{s}^{+}\right)$. Then, we define $Z_{t}(s, i, 0)$ as the following straight block:

$$
\begin{gathered}
B_{i}^{\star}(0)=B_{i}(0) ; \quad B_{i}^{\star}(1)=\left[y_{i}^{\star}+z_{i}^{\star} l_{s}^{-}, y_{i}^{\star}+z_{i}^{\star} r_{s}^{+}\right] \\
Z_{t}(s, i, 0)=\left[\delta_{i}(0)\right]_{t}^{s}\left(B_{i}^{\star}\left(\delta_{i}(0)\right) \times B_{i}^{\star}\left(1-\delta_{i}(0)\right)\right)
\end{gathered}
$$

Here, $\operatorname{Box}\left(Z_{t}(s, i, 0)\right)$ is defined by $B_{i}^{\star}\left(\delta_{i}(0)\right) \times B_{i}^{\star}\left(1-\delta_{i}(0)\right)$.
Sublemma 12. $Z_{t}(s, i, 0) \subseteq Z_{i}$.
Proof. By our definition of $N_{0, s}$ and $N_{1, s}$, we have $B_{i}^{\star}(1)=\left[y_{i}+z_{i} l_{s}^{-}, y_{i}+z_{i} l_{s}^{*}\right]$ or $B_{i}^{\star}(1)=\left[y_{i}+z_{i} r_{s}^{*}, y_{i}+z_{i} r_{s}^{+}\right]$.

Subcase 2. If $\delta_{i}(0) \neq \delta_{i}(2)$ then Z_{i} is a corner block. We will construct three blocks; one corner block $Z_{t}(s, i, 0)$, and two straight blocks $Z_{t}(s, i, 1)$ and $Z_{t}(s, i, 2)$. We may assume that Z_{i} is of the following form:

$$
\begin{aligned}
& Z_{i}= {[e]_{s}^{u}\left(\left[x_{i}+\zeta_{i} l_{u}^{-}, x_{i}+\zeta_{i} r_{u}^{+}\right] \times\left[y_{i}+z_{i} l_{u}^{-}, y_{i}+z_{i} r_{u}^{+}\right]\right), } \\
& \text {or } Z_{i}=[e]_{s}^{u}\left(\left[x_{i}+\zeta_{i} l_{u}^{-}, x_{i}+\zeta_{i} r_{u}^{+}\right] \times\left[y_{i}+z_{i} l_{u}^{-}, y_{i}+z_{i} r_{u}^{+}\right]\right) \\
& \cap\left(\left[x_{i}+\zeta_{i} l_{u}^{-}, x_{i}+\zeta_{i} r_{u}^{+}\right] \times\left[y_{i}+z_{i} l_{u}^{-}, y_{i}+z_{i} r_{u}^{*}\right]\right)
\end{aligned}
$$

Set $z=0$ if the former case occurs; otherwise, set $z=1$. Let $\left\{p_{n}: n<6\right\}$ be an enumeration of $\left\{l_{u}^{-}, l_{s}^{-}, l_{s}^{*}, r_{s}^{*}, r_{s}^{+}, r_{u}^{+}\right\}$in increasing order, and let p_{6} be r_{u}^{*}. First we compute the value rot $=2\left|\varepsilon_{i}(0)-\left|\delta_{i}(1)-\varepsilon_{i}(1)\right|\right|+1$. Note that rot $\in\{1,3\}$, and, if Z_{i} rotates clockwise then rot $=1$; and if Z_{i} rotates counterclockwise then rot $=3$. If $\xrightarrow[-\rightarrow]]{[\rightarrow \rightarrow} Z_{i}$ or $Z_{i} \stackrel{[\rightarrow]}{\rightarrow}$, then put $D(0)=1$; otherwise put $D(0)=3$. If $\stackrel{[\downarrow]}{-\rightarrow} Z_{i}$ or $Z_{i} \stackrel{[\downarrow]}{\rightarrow}$, then put $D(1)=1$; otherwise put $D(1)=3$. If $\xrightarrow[-\rightarrow+]{[\rightarrow]} Z_{i}$ or $Z_{i} \stackrel{[\leftarrow]}{\rightarrow}$, then put $E(0)=0$; otherwise put $E(0)=5-$ rot. If $\xrightarrow[-]{[\uparrow]} Z_{i}$ or $Z_{i-}^{[\downarrow]}$, then put $E(1)=0$; otherwise put $E(1)=5$ - rot. Then we now define $Z_{t}(s, i, j)$ for $j<3$ as follows:

$$
\begin{aligned}
\operatorname{Box}(s, i, 0) & =\left[x_{i}+\zeta_{i} p_{D(0)}, x_{i}+\zeta_{i} p_{D(0)+2}\right] \times\left[y_{i}+z_{i} p_{D(1)}, y_{i}+z_{i} p_{D(1)+2}\right] \\
\operatorname{Box}(s, i, 1) & =\left[x_{i}+\zeta_{i} p_{E(0)}, x_{i}+\zeta_{i} p_{E(0)+\mathrm{rot}}\right] \times\left[y_{i}+z_{i} p_{D(1)}, y_{i}+z_{i} p_{D(1)+2}\right] \\
\operatorname{Box}(s, i, 2) & =\left[x_{i}+\zeta_{i} p_{D(0)}, x_{i}+\zeta_{i} p_{D(0)+2}\right] \times\left[y_{i}+z_{i} p_{E(1)}, y_{i}+z_{i} p_{E(1)+\mathrm{rot+}+z}\right] \\
Z_{t}(s, i, 0) & =[e]_{t}^{s}(\operatorname{Box}(s, i, 0)) \\
Z_{t}(s, i, 1) & =[-]_{t}^{s}(\operatorname{Box}(s, i, 1)) \\
Z_{t}(s, i, 2) & =[\mid]_{t}^{s}(\operatorname{Box}(s, i, 2))
\end{aligned}
$$

Figure 20: rot $=1$.
Figure 21: rot $=3$.

Intuitively, $D(0)=1$ (resp. $D(0)=3$) indicates that $Z_{t}(s, i, 0)$ passes the west (resp. the east) of $Z_{i} ; D(1)=1$ (resp. $D(1)=3$) indicates that $Z_{t}(s, i, 0)$ passes the south (resp. the north) of $Z_{i} ; E(0)=0$ (resp. $E(0)=5$-rot) indicates that $Z_{t}(s, i, 1)$ passes the west (resp. the east) border of the bounding box of Z_{i}; and $E(1)=0($ resp. $E(1)=5-\mathrm{rot})$ indicates that $Z_{t}(s, i, 2)$ passes the south (resp. the north) border of the bounding box of Z_{i}. Note that the corner block $Z_{t}(s, i, 0)$ leaves Z_{i} on his right, and $Z_{t}(s, i, 0)$ has the reverse direction to Z_{i}.

Sublemma 13. $Z_{t}\left(s, i, 2-\delta_{i}(0)\right) \stackrel{\varepsilon^{\circ}}{\rightarrow} Z_{t}(s, i, 0) \xrightarrow{\delta^{\circ}} Z_{t}\left(s, t, 1+\delta_{i}(0)\right)$.
Sublemma 14. $Z_{t}(s, i, j) \subseteq Z_{i}$.
For each $i<k_{s+1}$, we have already constructed $\mathcal{Z}_{t}(s+1 ; i)=\left\{Z_{t}(s, i, j)\right.$: $j<3\}$. All of these blocks constructed at the current stage are included in $Z_{s}^{\text {end }} \cup \bigcup \bigcup_{p<u \leq s} \mathcal{Z}_{s}(u)$. Let $Z^{0}[i]$ (resp. $Z^{1}[i]$) be the \prec-least (resp. the $\prec-$ greatest) element of $\left\{\lambda t \cdot Z_{t}(s, i, j): j<3\right\}$. It is not hard to see that our construction ensures the following condition.

Sublemma 15. $Z_{t}^{1}[i] \rightarrow Z_{t}^{0}[i+1]$.
Thus, $\bigcup_{i<k_{s+1}} \mathcal{Z}_{t}(s+1 ; i)$ is computably homeomorphic to $P_{t} \times[0,1]$, uniformly in $t \geq s+1$. Therefore, we can connect blocks $Z_{s}(s, i)$ for $i<k_{s+1}$, and we succeed to return back on the current approximation of the \prec-greatest p block $Z_{s}(p)=Z_{p, s}^{\text {st }} \in \mathcal{Z}_{s}(p)$. Then we construct blocks $Z_{t}(s, k)$ for $2 \leq k \leq 6$ on the block $Z_{s}(p)$. The construction is essentially similar as the non-injuring case. By induction hypothesis (IH3), we note that $Z_{s}(p)$ must be of the following form for some $y_{p}, z_{p} \in \mathbb{Q}$:

$$
Z_{s}(p)=[-]_{s}^{p}\left(\left[\gamma_{p}^{\min }, \gamma_{p}^{\max }\right] \times\left[y_{p}+z_{p} l_{p}^{-}, y_{p}+z_{p} r_{p}^{+}\right]\right)
$$

On $Z_{s}(p)$, we define a straight block from $\gamma_{p}^{\min }$ to $\gamma_{s+1}^{\max }$ as follows:

$$
Z_{t}(s, 2)=[-]_{s}^{p}\left(\left[\gamma_{p}^{\min }, \gamma_{s+1}^{\max }\right] \times\left[y_{p}+z_{p} r_{s}^{*}, y_{p}+z_{p} r_{s}^{+}\right]\right)
$$

Here, by our assumption, $\gamma_{s+1}^{\max }<\gamma_{p}^{\max }$ holds since $\gamma_{s+1}^{\max } \leq \gamma_{p}^{\max }$. The blocks $Z_{t}(s, k)$ for $3 \leq k \leq 6$ are defined as in the same method as non-injuring case. The active block at stage $s+1$ is $Z_{s+1}(s, 5)$, and the end box at stage $s+1$

Overview of the upside of the frontier p-block.

Figure 22: Outline of our construction of the injured case.
is $Z_{s+1}(s, 6)$. $(s+1)$-blocks at stage t are $Z_{t}(s, i)$ for $i<6$, and $Z_{t}(s, i, j)$ for $i<k_{s+1}$ and $j<3$ if it is constructed. $\mathcal{Z}_{t}(s+1)$ denotes the collection of $(s+1)$-blocks at stage t.
Sublemma 16. $Z_{s+1}^{\text {end }} \cup \bigcup \mathcal{Z}_{s+1}(s+1) \subseteq Z_{s}^{\text {end }} \cup \bigcup \bigcup_{p \leq u \leq s} \mathcal{Z}_{s}(u)$.
Thus we again have the following:

$$
Q_{s+1}=Z_{s+1}^{\text {end }} \cup \bigcup \bigcup_{u \leq s+1} \mathcal{Z}_{s+1}(u) \subseteq Z_{s}^{\text {st }} \cup Z_{s}^{\text {end }} \cup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup
$$

Sublemma 17. Assume that we have a computable function $f_{s}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f_{s} \upharpoonright \bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ is a computable homeomorphism between $\bigcup \bigcup_{u \leq s} \mathcal{Z}_{t}(u)$ and $P_{t} \times[1 /(s+2), 1]$ for any $t \geq s$. Then we can effectively find a computable function $f_{s+1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ extending $f_{s} \upharpoonright \bigcup \bigcup_{u \leq s} \mathcal{Z}_{s+1}(u)$ such that $f_{s+1} \upharpoonright$ $\cup \bigcup_{u \leq s+1} \mathcal{Z}_{t}(u)$ is a computable homeomorphism between $\bigcup \bigcup_{u \leq s+1} \mathcal{Z}_{t}(u)$ and $P_{t} \times[1 /(s+3), 1]$ for any $t \geq s+1$.

Finally we put $Q=\bigcap_{s \in \mathbb{N}} Q_{s}$ and $\mathcal{Z}^{*}=\bigcup_{u \in \mathbb{N}} \mathcal{Z}(u)$. The construction is completed.

Verification. Now we start to verify our construction.
Lemma 15. Q is Π_{1}^{0}.
Sublemma 18. $\bigcap_{t \in \mathbb{N}} \bigcup_{Z \in \mathcal{Z}^{*}} Z_{t}=\bigcup_{Z \in \mathcal{Z}^{*}} \bigcap_{t \in \mathbb{N}} Z_{t}$.
Proof. The intersection $Z_{s}(p) \cap Z_{s}^{i}$ for $i<2$ is included in some line segment $L_{i} \in\{[0,1] \times\{b\},\{b\} \times[0,1]: b \in \mathbb{R}\}$, and $Z_{s}(p) \cap L_{i}=Z_{s}(p) \cap Z_{s}^{i}$ holds.

Sublemma 19. $\bigcup_{Z \in \mathcal{Z}(u)} \bigcap_{t \in \mathbb{N}} Z_{t}$ is computably homeomorphic to $[0,1] \times P$, for each $u \in \mathbb{N}$.

Proof. By the induction hypothesis (IH2).
Sublemma 20. $\bigcup_{Z \in \mathcal{Z}^{*}} \bigcap_{t \in \mathbb{N}} Z_{t}$ is homeomorphic to $(0,1] \times P$.
Proof. By Sublemma 11 and 17

Lemma 16. Q is homeomorphic to a Cantor fan.
Proof. By Sublemma 18, there exists a real $y_{0} \in \mathbb{R}$ such that the following holds:

$$
Q=\left(\bigcup_{Z \in \mathcal{Z}^{*}} \bigcap_{t \in \mathbb{N}} Z_{t}\right) \cup\left\{\left\langle\gamma, y_{0}\right\rangle\right\}
$$

Therefore, by Sublemma 20, Q is homeomorphic to the one-point compactification of $(0,1] \times P$.

Lemma 17. Q contains no computable point.
Proof. By Sublemma $19 \bigcup_{Z \in \mathcal{Z}^{*}} \bigcap_{t \in \mathbb{N}} Z_{t}$ contains no computable point.
By Lemmata 15, 16, and 17, Q is the desired dendroid.
Remark. Since dendroids are compact and simply connected, Theorem 13 is the solution to the question of Le Roux and Ziegler [13]. Indeed, the dendroid constructed in the proof of Theorem 13 is contractible.

Corollary 4. Not every nonempty contractible Π_{1}^{0} subset of $[0,1]^{2}$ contains a computable point.

Question 18. Does every locally connected planar Π_{1}^{0} set contain a computable point?

5 Immediate Consequences

5.1 Effective Hausdorff Dimension

For basic definition and properties of the the effective Hausdorff dimension of a point of Euclidean plane, see Lutz-Weihrauch [9]. For any $I \subseteq[0,2]$, let DIM I denote the set of all points in \mathbb{R}^{2} whose effective Hausdorff dimensions lie in I. Lutz-Weihrauch [9] showed that $\mathrm{DIM}^{[1,2]}$ is path-connected, but $\mathrm{DIM}^{(1,2]}$ is totally disconnected. In particular, $\mathrm{DIM}^{(1,2]}$ has no nondegenerate connected subset. It is easy to see that $\operatorname{DIM}^{(0,2]}$ has no nonempty Π_{1}^{0} simple curve, since every Π_{1}^{0} simple curve contains a computable point, and the effective Hausdorff dimension of each computable point is zero.

Theorem 19. DIM ${ }^{[1,2]}$ has a nondegenerate contractible Π_{1}^{0} subset.
Proof. For any strictly increasing computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(0)=0$ and any infinite binary sequence $\alpha \in 2^{\mathbb{N}}$, put $\iota_{f}(\alpha)=\prod_{i \in \mathbb{N}}\langle\alpha(i), \alpha(f(i)), \alpha(f(i)+$ 1), $\ldots, \alpha(f(i+1)-1)\rangle$, where $\sigma \times \tau$ denotes the concatenation of binary strings σ and τ. Then, $r: 2^{\mathbb{N}} \rightarrow \mathbb{R}$ is defined as $r(\alpha)=\sum_{i \in \mathbb{N}}\left(\alpha(i) \cdot 2^{-(i+1)}\right)$. Note that $\alpha \neq \beta$ and $r(\alpha)=r(\beta)$ hold if and only if there is a common initial segment $\sigma \in 2^{<\mathbb{N}}$ of α and β such that $\sigma 0$ and $\sigma 1$ are initial segments of α and β respectively, and that $\alpha(m)=1$ and $\beta(m)=0$ for any $m>l h(\sigma)$, where $\operatorname{lh}(\sigma)$ denotes the length of σ. In this case, we say that α sticks to β on σ. If $r(\alpha) \neq r(\beta)$, then clearly $r \circ \iota_{f}(\alpha) \neq r \circ \iota_{f}(\beta)$. Assume that α sticks to β on σ. Then there are $m_{0}<m_{1}$ such that $\iota_{f}(\alpha)\left(m_{0}\right)=\iota_{f}(\alpha)\left(m_{1}\right)=\alpha(\operatorname{lh}(\sigma))=0$ and $\iota_{f}(\beta)\left(m_{0}\right)=\iota_{f}(\beta)\left(m_{1}\right)=\beta(\operatorname{lh}(\sigma))=1$ by our definition of ι_{f}. Therefore,
$\iota_{f}(\alpha)$ does not stick to $\iota_{f}(\beta)$. Hence, $r \circ \iota_{f}(\alpha) \neq r \circ \iota_{f}(\beta)$ whenever $\alpha \neq \beta$. Actually, $r \circ \iota_{f}: 2^{\mathbb{N}} \rightarrow \mathbb{R}$ is a computable embedding. For each $n \in \mathbb{N}$, put $k_{f}(n)=\#\{s: f(s)<n\}$. Then, there is a constant $c \in \mathbb{N}$ such that, for any $\alpha \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have $K\left(\iota_{f}(\alpha) \upharpoonright n+k_{f}(n)+1\right) \geq K(\alpha \upharpoonright n)-c$, where K denotes the prefix-free Kolmogorov complexity. Therefore, for any sufficiently fast-growing function $f: \mathbb{N} \rightarrow \mathbb{N}$ and any Martin-Löf random sequence $\alpha \in 2^{\mathbb{N}}$, the effective Hausdorff dimension of $r \circ \iota_{f}(\alpha)$ must be 1 . Thus, for any nonempty Π_{1}^{0} set $R \subseteq 2^{\mathbb{N}}$ consisting of Martin-Löf random sequences, $\{0\} \times\left(r \circ \iota_{f}(R)\right)$ is a Π_{1}^{0} subset of $\operatorname{DIM}^{\{1\}}$. Let Q be the dendroid constructed from $P=r \circ \iota_{f}(R)$ as in the proof of Theorem [13, where we choose $\gamma=\rho(B)$ as Chaitin's halting probability Ω. For every point $\left\langle x_{0}, x_{1}\right\rangle \in Q$, the effective Hausdorff dimension of x_{i} for some $i<2$ is equivalent to that of an element of P or that of Ω. Consequently, $Q \subseteq \mathrm{DIM}^{[1,2]}$.

5.2 Reverse Mathematics

Theorem 20. For every Π_{1}^{0} set $P \subseteq 2^{\mathbb{N}}$, there is a contractible planar Π_{1}^{0} set Q such that Q is Turing-degree-isomorphic to P, i.e., $\left\{\operatorname{deg}_{T}(x): x \in P\right\}=$ $\left\{\operatorname{deg}_{T}(x): x \in D\right\}$.

Proof. We choose B as a c.e. set of the same degree with the leftmost path of P. Then, the dendroid Q constructed from P and B as in the proof of Theorem 13 is the desired one.

A compact Π_{1}^{0} subset P of a computable topological space is Muchnik complete if every element of P computes the set of all theorems of T for some consistent complete theory T containing Peano arithmetic. By Scott Basis Theorem (see Simpson [15]), P is Muchnik complete if and only if P is nonempty and every element of P computes an element of any nonempty Π_{1}^{0} set $Q \subseteq 2^{\mathbb{N}}$.

Corollary 5. There is a Muchnik complete contractible planar Π_{1}^{0} set.
A compact Π_{1}^{0} subset P of a computable topological space is Medvedev complete (see also Simpson [15) if there is a uniform computable procedure Φ such that, for any name $x \in \mathbb{N}^{\mathbb{N}}$ of an element of $P, \Phi(x)$ is the set of all theorems of T for some consistent complete theory T containing Peano arithmetic.

Question 21. Does there exist a Medvedev complete simply connected planar Π_{1}^{0} set? Does there exist a Medvedev complete contractible Euclidean Π_{1}^{0} set?

Our Theorem 13 also provides a reverse mathematical consequence. For basic notation for Reverse Mathematics, see Simpson [14. Let RCA denote the subsystem of second order arithmetic consisting of $I \Sigma_{1}^{0}$ (Robinson arithmetic with induction for Σ_{1}^{0} formulas) and $\Delta_{1}^{0}-\mathrm{CA}$ (comprehension for Δ_{1}^{0} formulas). Over RCA_{0}, we say that a sequence $\left(B_{i}\right)_{i \in \mathbb{N}}$ of open rational balls is flat if there is a homeomorphism between $\bigcup_{i<n} B_{i}$ and the open square $(0,1)^{2}$ for any $n \in \mathbb{N}$. It is easy to see that RCA_{0} proves that every flat cover of $[0,1]$ has a finite subcover.

Theorem 22. The following are equivalent over RCA_{0}.

1. Weak König's Lemma: every infinite binary tree has an infinite path.
2. Every open cover of $[0,1]$ has a finite subcover.
3. Every flat open cover of $[0,1]^{2}$ has a finite subcover.

Proof. The equivalence of the item (1) and (2) is well-known. It is not hard to see that RCA_{0} proves the existence of the sequence $\left\{Q_{s}\right\}_{s \in \mathbb{N}}$ as in our construction of the dendroid Q in Theorem 13 by formalizing our proof in Theorem 13 in RCA_{0}. Here we may assume that $\left\{Q_{s}\right\}_{s \in \mathbb{N}}$ is constructed from the set of all infinite paths of a given infinite binary tree $T \subseteq 2^{<\mathbb{N}}$, and a c.e. complete set $B \subseteq \mathbb{N}$. Note that $\bigcup_{s<t}\left([0,1]^{2} \backslash Q_{s}\right)$ does not cover $[0,1]^{2}$ for every $t \in \mathbb{N}$. Over RCA_{0}, there is a flat sequence $\left\{[0,1]^{2} \backslash Q_{s}^{*}\right\}_{s \in \mathbb{N}}$ of open rational balls such that $\bigcap_{s<t} Q_{s}^{*} \supseteq \bigcap_{s<t} Q_{s}$ for any $t \in \mathbb{N}$, and that an open rational ball U is removed from some Q_{s}^{*} if and only if an open rational ball U is removed from some Q_{u}. However, if T has no infinite path, then Q has no element. In other words, $\left\{[0,1]^{2} \backslash Q_{s}^{*}\right\}_{s \in \mathbb{N}}$ covers $[0,1]^{2}$.

Acknowledgment. . The author thank Douglas Cenzer, Kojiro Higuchi and Sam Sandars for valuable comments and helpful discussion.

References

[1] V. Brattka, Plottable real number functions and the computable graph theorem, SIAM J. Comput. 38 (2008), pp. 303-328.
[2] V. Brattka, and G. Presser, Computability on subsets of metric spaces, Theoretical Computer Science, 305 (2003), pp. 43-76.
[3] V. Brattka, K. Weihrauch, Computability on subsets of Euclidean space. I. Closed and compact subsets. Computability and complexity in analysis, Theoret. Comput. Sci. 219 (1999), 65-93.
[4] D. Cenzer, T. Kihara, R. Weber, and G. Wu, Immunity and non-cupping for closed sets, Tbilisi Math. J., 2 (2009), pp. 77-94.
[5] P. Hertling, Is the Mandelbrot set computable? Math. Log. Q., 51 (2005), pp. 5-18.
[6] G. Kreisel, and D. Lacombe, Ensembles récursivement measurables et ensembles récursivement ouverts ou fermé, Compt. Rend. Acad. des Sci. Paris 245 (1957), pp.1106-1109.
[7] Z. Iljazović, Chainable and circularly chainable co-r.e. sets in computable metric space, J. Universal Comp. Sci., 15 (2009), pp. 1206-1235.
[8] A. Illanes, and S. Nadler, Hyperspaces: Fundamentals and Recent Advances, Marcel Dekker, Inc., New York, 1999.
[9] Jack H. Lutz and Klaus Weihrauch, Connectivity properties of dimension level sets, Mathematical Logic Quarterly, 54 (2008), pp. 483-491.
[10] J. S. Miller, Effectiveness for embedded spheres and balls, Electronic Notes in Theore. Comp. Sci., 66 (2002), pp. 127-138.
[11] S. B. Nadler, Continuum Theory, Marcel Dekker, Inc., New York, 1992.
[12] R. Penrose, Emperor's New Mind. Concerning Computers, Minds and The Laws of Physics. Oxford University Press, New York, 1989.
[13] S. Le Roux, and M. Ziegler, Singular coverings and non-uniform notions of closed set computability, Math. Log. Q., 54 (2008), pp. 545-560.
[14] S. G. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.
[15] S. G. Simpson, Mass problems and randomness, Bulletin of Symbolic Logic, 11, pp. 1-27, (2005).
[16] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer, Heidelberg, XVIII+437 pages, (1987).
[17] H. Tanaka, On a Π_{1}^{0} set of positive measure, Nagoya Math. J., 38 (1970), pp. 139-144.
[18] K. Weihrauch, Computable Analysis: an introduction, Springer, Berlin, 2000.

[^0]: *This work was supported by Grant-in-Aid for JSPS fellows

