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Abstract

Behaviors of Winfree’s tile assembly systems (TASs) at high temper-
atures are investigated in combination with integer programming of a
specific form called threshold programming. First, we propose a way to
build bridges from the Boolean satisfiability problem (Sat) to threshold
programming, and further to TAS’s behavior, in order to prove the NP-
hardness of optimizing temperatures of TASs that behave in a way given
as input. These bridges will take us further to two important results on
the behavior of TASs at high temperatures. The first says that arbitrarily
high temperatures are required to assemble some shape by a TAS of “rea-
sonable” size. The second is that for any temperature τ ≥ 4 given as a
parameter, it is NP-hard to find the minimum size TAS that self-assembles
a given shape and works at a temperature below τ .

1 Introduction

The abstract Tile Assembly Model (aTAM), which has been introduced by Win-
free [14] based on a dynamic version of Wang tiling [13], is a model of “pro-
grammable crystal growth” with algorithmically-rich theoretical background
and results. Self-assembling systems in this model are called tile assembly
systems (TASs). Self-assembling (square) tiles have been experimentally im-
plemented as DNA double-crossover molecules in 1998 [15], which are designed
so ingeniously that they bind deterministically into a single target shape, even
subject to the chaotic nature of molecules floating randomly in a well-mixed
solution. The last three decades have seen drastic advancements on the relia-
bility of DNA tile assembly; in fact, the error rate of 10% per tile in 2004 was
improved down to 0.13% in 2009 [3].

In the aTAM, sticky ends are abstracted to be a glue label, and their
strengths are assigned by a strength function g. A square tile adheres stably
to an aggregate of tiles whenever the sum of the strengths of neighboring sides
with matching labels according to g exceeds a threshold τ , which is a system

∗This paper is an extended version of [12].
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parameter called temperature. “Temperature” in aTAM is rather metaphorical
than actually describing the physical temperature of the experimental environ-
ment. It nonetheless can be interpreted as a physical metric for the granularity
with which different energy levels must be distinguished in order for TASs to
behave as expected. Certain “behaviors” of TASs were proved to require three
different energy levels such that the gap between two of them is exponentially
larger than the gap between other two [5] (for a formal definition of TAS’s be-
havior as strength-free TAS, see Section 3). Conventionally, the glue strengths
(and hence, temperature) of TASs are assumed to be integers, without loss of
generality. Indeed, this is a way of “quantizing” the minimum distinction we
are willing to make between energies and then re-scalling so that this quantity
is normalized to 1.

As mentioned briefly above, the stability of the attachment of a tile at a
position is determined by the sum of the strengths that tiles at the neighbor-
ing positions offer via their abutting edges, relative to τ . In aTAM, the basic
building blocks, that is, tiles, are abstracted to be the 1× 1 square so that a tile
can be adjacent to at most four other tiles. Thus, the sum that determines the
attachment stability consists of at most four terms. This motivates us to study
a system of inequalities whose left-hand side consists of at most 4 terms (non-
negative integers or constants) and whose right-hand side is τ . We call such an
inequality a τ-inequality of at most 4 terms; we use this term often with the
replacement of τ by either ≥τ (at least τ) or <τ (strictly less than τ) to specify
its sign. Then, we can say that τ -inequalities of at most 4 terms dominate the
behavior of a TAS at the micro, or local, level, that is, per attachment event.
Optimizing (minimizing) τ under τ -inequalities is a specific type of integer pro-
gramming we call threshold programming (TP). In this paper, we will prove that
TP is NP-hard even under the condition that all ≥τ -inequalities involved be of at
most 4 terms and all <τ -inequalities involved be of at most 3 terms (Lemma 4).
This condition makes TPs reducible to the local behavior of a TAS, and this
implies the NP-hardness of the problem FindOptimalStrength, which aims
at optimizing the temperature of TASs that behave in a way specified as in-
put (Theorem 6). In other words, FindOptimalStrength cannot be solved
in a polynomial time, unless P = NP. This NP-hardness complements a result
by Chen, Doty, and Seki [5], which affirmatively answered a problem posed by
Adleman et al. [2].

The TP instances obtained in this reduction will lead us further to the study
of macro, terminal, or global, behaviors of TASs. The global behavior simply
concerns what shape(s) a TAS assembles, and does not mind how its underlying
attachment events proceed. Well-examined problems on the global behavior of
TASs includes finding the optimal design of TASs that certainly assembles the
n×n square for a given n [1, 2, 10]. There and also in this paper, the optimality
of TASs is measured by the number of distinct tile types they contain, and this
criterion is called the tile complexity. The most important contribution we make
in this paper along this line is the proposal of a unified framework to convert a
system S of τ -inequalities into a shape S with the property that if S is solvable
for τ = k, then the resulting shape S can be assembled by a temperature-k TAS
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of “reasonable size” (Property 1). According to this framework, it suffices to
choose a system of τ -inequalities that requires τ ≥ k for its solvability in order
to obtain a shape which prefers the temperature k to those below with respect
to tile complexity (Theorem 7). A choice of another system proves to enable
this framework prove also that, for any τ ≥ 4, it is NP-hard to compute the
minimum number of tile types required for TASs at a temperature at most τ to
self-assemble the shape (Theorem 8).

Current laboratory techniques allow us to handle only at most 2 distinct
energy levels, that is, temperature 2 (even making a distinction between two
energy levels is difficult, see, e.g., [6] and references therein, but successful de-
signs of self-assembling molecular systems at temperature 2 have been reported
[7, 9]). Therefore, as of this date, we cannot help but interpret our results
as computational infeasibility of determining whether behaviors of TAS can be
implemented physically.

This paper is organized as follows. After the preliminary section, in Sec-
tion 3, we will formalize the local behavioral equivalence among TASs. The
section consists of opening paragraphs that introduce the formal definition of
the equivalence and formalize the problem FindOptimalStrength, being fol-
lowed by two subsections: Section 3.1 is a preliminary for threshold program-
ming and makes necessary preparations for the proof of the NP-hardness of
FindOptimalStrength. Then in Section 3.2 we present the succession of NP-
hardness results: quadripartite 1-in-3-Sat (Lemma 2), threshold programming
(Lemma 4), and then FindOptimalStrength (Theorem 6), chained by Karp-
reductions. Using these results, in Section 4, we will prove the above-mentioned
theorems on the global behavior of TASs.

2 Abstract Tile Assembly Model

This section aims at tersely introducing the reader to the aTAM. An excellent
tutorial can be found, for instance, in [10].

Let Σ be an alphabet, and by Σ∗, we denote the set of finite strings over
Σ. By Z and N, we denote the set of integers and the set of positive integers,
respectively, and let N0 = N ∪ {0}. In aTAM, Z2 is especially considered either
as the two-dimensional integer lattice or as the set of all points on it.

Given a set of points A ⊆ Z2 on the integer lattice, the full grid graph of A is
the undirected graph Gf

A = (V,E), where V = A and for all u, v ∈ V , there is an
edge between u and v if and only if ||u− v||2 = 1, where || · ||2 is the Manhattan
distance, that is, u and v are adjacent points. A shape is a set S ⊆ Z2 such that
Gf

S is connected, and we denote the set of all finite shapes by FS ⊆ P(Z2). Let
N, W, S, E stand for the respective directions north, west, south, and east, and be
also interpreted as the respective unit vectors (0, 1), (−1, 0), (0,−1), (1, 0).

A tile type t is a quadruple t ∈ Σ∗ ×Σ∗ ×Σ∗ ×Σ∗, and is regarded as a unit
square with four sides listed in the counter-clockwise order starting at the north
(N), each having a glue label (a.k.a., glue) taken from Σ∗. For each direction
d ∈ {N, W, S, E}, let t(d) be the glue label at the d side of t. Let T be a finite
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set of tile types, and let us denote the (finite) set of all glues of tile types in T
by Λ(T ) ( Σ∗. An assembly (a.k.a., supertile) is a positioning of tiles of types
in T on (part of) the integer lattice Z2. It does not have to be a tessellation.
Hence, we can say that an assembly is a partial function Z2

99K T . Given
two assemblies α, β : Z2

99K T , α is a sub-assembly of β, written as α ⊑ β, if
dom(α) ⊆ dom(β) and for every point p ∈ dom(α), α(p) = β(p), where dom
denotes the domain of the function.

The aTAM models dynamics in the growth of assemblies based on the inter-
action among its basic building blocks, tiles. A strength function g : Λ(T ) → N0

endows tiles with an ability to interact with its neighboring tiles by assigning the
strength g(ℓ) to the matching label ℓ of their abutting edges. If the labels do not
match or g(ℓ) = 0, these tiles do not interact; otherwise, they do. An assembly
α and a strength function g induce a binding graph, which is a grid graph whose
vertices are dom(α) and for two neighboring positions p1, p2 ∈ dom(α), there is
an edge between p1 and p2 on this graph if and only if the tiles α(p1) and α(p2)
interact. On this graph, an edge between vertices means that the corresponding
tiles interact, and hence, their abutting edges share the same label ℓ. Thus,
we can consider that the edge is labeled with ℓ and g gives it the weight g(ℓ).
The assembly is τ-stable (with respect to g) if every cut of its binding graph
has strength at least τ . That is, the assembly is τ -stable if at least energy τ is
required to separate it into two parts.

A (seeded) tile assembly system (TAS) is a quadruple T = (T, σ, g, τ), where
T and g are as stated above, σ : Z2

99K T is a finite τ -stable seed assembly,
and τ ≥ 1 is an integer parameter called temperature. TASs are provided with
inexhaustible supply of copies of each tile type, each copy being referred to as
a tile. If the seed assembly σ consists of a single tile, then T is said to be
singly-seeded. In this paper, we consider only singly-seeded TASs.

Given two τ -stable assemblies α, β, we write α →T
1 β if α ⊑ β and dom(β) \

dom(α) = {p} for some position p ∈ Z2. Intuitively, this means that α can grow
into β by the addition of a single tile at the position p. Since β is required to
be τ -stable, the new tile is able to bind to α with strength at least τ . In this
case, we say that α T -produces β in one step.

A sequence of τ -stable assemblies α0, α1, . . . , αk is a T -assembly sequence if
for all 1 ≤ i ≤ k, αi−1 →T

1 αi holds. We write α →T β and say α T -produces β
(in 0 or more steps) if there is a T -assembly sequence α0, α1, . . . , αk of length
k = |dom(β)\dom(α)| with α0 = α and αk = β. (This definition of producibility
is justified by our limited focus only onto the finite assemblies in this paper; for
the infinite assembly, it is not appropriate; see [4] for instance.) An assembly
α is T -producible or producible by T if σ →T α. A τ -stable assembly α is (T -
)terminal if for any τ -stable assembly β, α →T β implies α = β. Let A[T ]
be the set of assemblies producible by T , and let A�[T ] ⊆ A[T ] be the set
of terminal assemblies that are producible by T . A TAS T is directed if the
poset (A[T ],→T ) is directed, i.e., for each α, β ∈ A[T ], there exists γ ∈ A[T ]
such that α →T γ and β →T γ. Given a shape S ⊆ Z2, a TAS T strictly
(a.k.a., uniquely) (self-)assembles S if the shape of every terminal assembly
produced by T is S.
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2.1 Directed tile complexity

A directed TAS that strictly self-assembles a shape S can be regarded as a “pro-
gram” to output the shape. A measure of how concisely one can describe such
a TAS with respect to the number of tile types was introduced by Rothemund
and Winfree [10] in the name of directed tile complexity of S. This complexity
has been intensely investigated for TASs at the temperature 1 or 2 [2]. The
temperature-2 directed tile complexity of S is formally defined as follows:

Cdtilec(2)(S) = min

{

|T |

∣

∣

∣

∣

T = (T, σ, g, 2) is a directed TAS
that strictly self-assembles S

}

.

This is the minimum number of tile types required for a directed TAS at the
temperature 2 to strictly self-assemble S. Since any temperature-1 TAS can
be simulated at the temperature 2 simply by doubling the strength associated
to each of its labels (see also Proposition 1), this definition indeed has already
taken the temperature-1 TASs into account. We parameterize this complexity
measure by a temperature τ as:

Cdtilec(τ)(S) = min

{

|T |

∣

∣

∣

∣

T = (T, σ, g, τ) is a directed TAS
that strictly self-assembles S

}

,

and introduce it as directed tile complexity of S at the temperature τ .
As mentioned above, Cdtilec(1)(S) ≥ Cdtilec(2)(S) for any S. Now we show

that for any temperature τ and a positive integer k, Cdtilec(τ)(S) ≥ Cdtilec(kτ)(S)
holds.

Proposition 1. For any τ ∈ N, TASs at the temperature τ can be simulated at
any temperature that is a multiple of τ .

Proof. This simulation is simply done by multiplying the strengths and τ of a
given TAS T1 = (T, σ, g, τ) by a proper constant c. The TAS thus obtained is
T2 = (T, σ, g′, cτ) with g′(ℓ) = cg(ℓ) for each glue label ℓ in T .

Neither this proposition nor Theorem 7 in Section 4 implies the monoton-
ically decreasing property of Cdtilec(τ)(S), being considered as a function of τ .
Indeed, it is not so as being exemplified at the end of Section 4. This non-
monotonicity motivates us to introduce the notion of directed tile complexity of
S at the temperatures at most τ . This measure is to be defined as

Cdtilec(≤τ)(S) = min{Cdtilec(i)(S) | 1 ≤ i ≤ τ}.

As the TASs T1 and T2 in the proof of Proposition 1, more than one TAS
can exhibit identical behaviors at the local (attachment) level in the sense that
whenever some of the four sides of a tile cooperate for the stable attachment in
one TAS, a tile of the same type do so in the other TASs, though these TAS may
be at different temperatures and may assign each label with different strengths.
As a result, they produce the same shapes. In the next section, we will formalize
this behavioral equivalence among TASs at the local level, and work problems
related to the temperature and the parameterized tile complexity that were left
open in [2, 5].
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3 Behavioral Equivalences among TASs

The “behavior” of a TAS T = (T, σ, g, τ) is determined fully by its strength
function g and temperature τ . More precisely, g and τ do so by specifying the
local behavior of each tile type t ∈ T in the form of cooperation set of t with
respect to g and τ [5], which is defined as:

Dg,τ (t) =
{

D ⊆ {N, W, S, E}
∣

∣

∣

∑

d∈D g(t(d)) ≥ τ
}

.

This is the collection of sets of four sides of t whose glues have sufficient strengths
to bind t cooperatively. By definition, if a set of sides of t is in Dg,τ (t), then any
of its superset is also included in Dg,τ (t). Any tile type whose cooperation set is
empty can be rid from T because a tile of that type never attaches. Combining
these together, we assume that for any t ∈ T , {N, W, S, E} ∈ Dg,τ (t).

Cooperation sets provide a behavioral equivalence among TASs. Given T1 =
(T, σ, g1, τ1) and T2 = (T, σ, g2, τ2) that share the tile set T and seed σ, if
Dg1,τ1(t) = Dg2,τ2(t) for each tile type t ∈ T , then these TASs are said to be
locally equivalent (written as T1 ∼ T2) [5]. The behaviors of locally equivalent
TASs are exactly the same at the tile attachment level. This easily leads us to the
property that a sequence of assemblies α0, α1, . . . , αk is a T1-assembly sequence
if and only if it is a T2-assembly sequence. From this it follows that these TASs
produce the same assemblies as well as the same terminal assemblies. In short,
T1 ∼ T2 implies A[T1] = A[T2] and A�[T1] = A�[T2]. As a corollary, we can see
that given locally equivalent TASs, one is directed and strictly self-assembles a
shape if and only if so is and does the other.

The local equivalence ∼ divides the set of all TASs into the equivalence
classes. All the TASs in a resulting equivalence class behave exactly in the
same way locally, and hence, we are allowed to use the term “behavior of this
class.” This means that the class can choose a TAS T = (T, σ, g, τ) it contains
arbitrarily as representative in describing its behavior by the pair (T, {Dg,τ (t) |
t ∈ T }). This suggests a way to define a variant of TAS by assigning each t ∈ T
with a set of subsets of {N, W, S, E} as a cooperation set. Chen, Doty, and Seki
introduced this variant called strength-free TAS [5] as it is free from strength
function or temperature. Formally, a strength-free TAS is a triple (T, σ,D),
where T and σ are the same as those for TAS, while D : T → P(P({N, W, S, E}))
is a function from a tile type t ∈ T to a set of subsets of {N, W, S, E} that is closed
under superset operation, where P means the power set. As done between TASs,
we can define the local equivalence between a TAS (T, σ, g, τ) and a strength-
free TAS Tsf = (T, σ,D) as: they are locally-equivalent if D(t) = Dg,τ (t) for
each t ∈ T . For an equivalence class, if Tsf is locally equivalent to an element of
the class, then so is it to all of them. This observation allows us to regard the
strength-free TAS as a representative of (the local behavior of) this class. Of
particular note is that such a strength-free TAS is unique for each class. It must
be also noted that there exists a strength-free TAS that does not represent any
class, that is, that is not locally equivalent to any TAS. This implementability
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check was formalized as FindStrength in [5], which is defined as follows:

FindStrength

INPUT : a strength-free TAS Tsf
OUTPUT : a TAS that is locally equivalent to Tsf , if any,

or reports that none of such TAS exists otherwise.

A polynomial-time algorithm for this problem was proposed in [5].
The strength-free TAS was introduced as a technical tool to solve an open

problem posed by Adleman et al. [2]. In the paper, they proposed an algorithm
to find a minimum size directed TAS T = (T, σ, g, 2) that strictly self-assembles
the n × n square Sqn, subject to the constraint that the TAS’s temperature is
2. Note that Cdtilec(2)(Sqn) = O( logn

log logn
) [1]. This algorithm enumerates all

temperature-2 TASs with at most Cdtilec(2)(Sqn) tile types, and checks whether
each of them is directed and strictly self-assembles Sqn (this is proved to be
polynomial-time checkable in n). The temperature of a system to be checked
need not be 2, but rather the temperature-2 restriction1 is utilized to upper-
bound the number of all candidates to be thus checked by a polynomial in n, and
as a result, this algorithm runs in a polynomial time in n. The open problem
was whether the temperature upper-bound could be removed.

Chen, Doty, and Seki answered this problem positively by designing an algo-
rithm that runs in polynomial time in n without relying on such an upper-bound
[5]. Though being based on the above-mentioned idea by Adleman et al. basi-
cally, their algorithm enumerates strength-free TASs with at most Cdtilec(2)(Sqn)
tile types instead of conventional ones, and commits extra check for the imple-
mentability. This algorithm raised another problem of whether it could be
modified so as to output among all the minimum size directed TASs for Sqn
the one(s) working at the lowest temperature. This motivates us to study the
following optimization:

FindOptimalStrength

INPUT : a strength-free TAS Tsf
OUTPUT : a TAS of minimal temperature that is locally equivalent to Tsf

if any, or reports that none of such TAS exists otherwise.

One of the main contributions of this paper is to prove the NP-hardness of this
problem (Theorem 6).

3.1 Threshold Programming

0-1 integer programming, one of the Karp’s 21 NP-complete problems [8], is a
decision variant of integer programming in which all the variables are restricted
to be binary. In order to prove the completeness, Karp employed a polynomial-
time reduction from the Boolean satisfiability problem (Sat) to this problem.

In order to prove the NP-hardness of FindOptimalStrength, let us intro-
duce a subclass of integer programming (IP) that aims at optimizing τ subject

1This can be replaced with the temperature-c restriction for any constant c ≥ 1.
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to only ≥τ -inequalities and <τ -inequalities. We call such an IP a threshold
programming (TP). This is formalized as: for given integer matrices C1, C2,
minimize τ on condition that there exists a nonnegative integer vector x satis-
fying

C1~x ≥ τ1 (≥τ -inequalities) and C2~x < τ1 (<τ -inequalities),

where 1 is the vector all of whose components are 1.
FindOptimalStrength is actually a TP any of whose constraints is either

a ≥τ -inequality of at most 4 terms or a <τ -inequality of at most 3 terms. In
order to see this, let us consider a simple strength-free TAS with only one tile
type t = (ℓ1, ℓ2, ℓ3, ℓ4) and a cooperation set D(t) = {{N, W, S, E}}. Finding a
TAS at lowest temperature that is locally equivalent to this strength-free TAS
is equal to solving the following system of inequalities with a positive integer
variable τ :























ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ τ
ℓ1 + ℓ2 + ℓ3 < τ
ℓ1 + ℓ2 + ℓ4 < τ
ℓ1 + ℓ3 + ℓ4 < τ
ℓ2 + ℓ3 + ℓ4 < τ

(1)

so as to minimize τ . The minimum τ for this system is 4 with ℓ1 = ℓ2 = ℓ3 =
ℓ4 = 1 (with τ being strictly less than 4, this system is not solvable). The first
inequality in (1) corresponds to {N, W, S, E} ∈ D(t), the second corresponds to
{N, W, S} 6∈ D(t), and so forth. Though (1) does not seem to contain an inequality
corresponding to {N, W} 6∈ D(t), the second one (or third) actually implies this,
and hence, not presented for the sake of space. In any case, the system for a
cooperation set contains at most 15 inequalities. We denote the class of TPs any
of whose constraints contains at most the number of terms as specified above by
TP(4, 3). Its decision variant, denoted by τ -ThresholdProgramming(4, 3)
or simply τ -TP(4, 3), is of interest in which τ is not a variable but a given
constant, and one is asked to decide whether x exists.

Our arguments below mainly consist of designing systems of τ -inequalities for
various purposes. As a tool, we introduce a sub-system that will be embedded
into these systems and force their variables to assume at least or exactly some
specific value. It is built on the following pair of τ -inequalities:

x1 + xa ≥ τ and xa < τ. (2)

This pair implies x1 ≥ 1. Once (2) being embedded into a τ -inequality system,
the variable x1 cannot help but assume a positive value itself (xa is assumed to
be an auxiliary variable occurring only in (2)). In the rest, when we say that a
system has a positive variable x, we assume that its positiveness is guaranteed
in this way.

Let us build a sub-system called 2i+1-adder (to the lower bound of a variable).
Based on a variable x with a lower bound n, i.e., x ≥ n, it aims at creating
another variable with a lower bound n + 2i+1. Using 5i+5 positive integer
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variables z1, z2, x0, xb, xc, Ak, A
′
k, A

′′
k, B

′
k, B

′′
k (1 ≤ k ≤ i), we design the 2i+1-

adder as follows: for 2 ≤ j ≤ i,

A′
1 + B′

1 + x0, A′′
1 +B′′

1 + x0 ≥ τ,
A1 + B′

1 + x0, A′
1 +B′′

1 + x0 < τ,
Aj−1 +B′

j +A′
j , Aj−1 +B′′

j +A′′
j ≥ τ,

A′′
j−1 +B′

j +Aj , A′
j +B′′

j +A′′
j−1 < τ,

A′′
i + xb, z1 + xc < τ,

z1 + xb, z2 + xc ≥ τ.

(3)

This is actually a modification of a system of inequalities proposed in [5], and
as shown there all the inequalities of (3) but those on the last two lines imply

A′′
i ≥ Ai + 2i+1 − 2 (4)

for 1 ≤ k ≤ i. The remaining four inequalities yield z1 ≥ A′′
i +1 and z2 ≥ z1+1

(in fact, they implement a 21-adder). As a result, z2 ≥ Ai + 2i+1.
Assume that we have a variable x whose value is at least a positive integer

n. By setting x = Ai, we can have Ai in the 2i-adder assume not only be
positive but be at least n1. Then z2 ≥ n + 2i+1. Combining (4), z1 ≥ A′′

i + 1,
z1+xc < τ , Ai ≥ n, and xb, xc ≥ 1 deduces that τ must be at least n+2i+1+1.
It is important that for any τ ≥ n + 2i+1 + 1, this system can be solved as
follows:

Ai = n, x0 = A1 = · · · = Ai−1 = 1,
A′

k = 2k, B′
k = τ −A′

k − 1, A′′
k = 2k+1 − 1, B′′

k = τ −A′′
k − 1 for 1 ≤ k < i,

A′
i = n+ 2i − 1, B′

i = τ −A′
i − 1, A′′

i = n+ 2i+1 − 2, B′′
i = τ −A′′

i − 1,
z1 = n+ 2i+1 − 1, z2 = n+ 2i+1, xb = τ − (n+ 2i+1 − 1), xc = τ − (n+ 2i+1).

With the fact that any positive number m ≥ 1 can be written as a sum of
powers of 2, this property makes possible to combine multiple copies of 2i+1-
adders inductively in order to provide a variable with an arbitrarily large lower
bound. The number of variables involved in the system thus built is at most
∑⌈logm⌉

i=1 (5i+ 5), which is O((logm)2).
Concerning (3), the 2i+1-adder, there are two things to be noted. The

first is that it consists of τ -inequalities of at most three terms. The second
is that we can divide its variables into four disjoint sets V1, V2, V3, V4 such that
each inequality contains at most one variable from each of the four sets. One
such division is: V1 = {x0, z1, z2} ∪ {A2k, A

′
2k, A

′′
2k | 1 ≤ k ≤ ⌊i/2⌋}, V2 =

{A2k−1, A
′
2k−1, A

′′
2k−1 | 1 ≤ k ≤ ⌊i/2⌋}, V3 = {Bj , B

′
j , B

′′
j | 1 ≤ j ≤ i}∪{xb, xc},

and V4 = ∅. We say that a system of τ -inequalities is quadripartite if

1. every inequality in it consists of at most four terms;

2. its variable set can be partitioned into four disjoint subsets so that distinct
terms of each inequality belong to distinct subsets.

(The first condition follows from the second and hence not necessary.) Quadri-
partite systems of τ -inequalities will play an essential role in Section 4.
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3.2 FindOptimalStrength is NP-hard

Let us prove the NP-hardness of FindOptimalStrength. For the reduction,
we employ a variant of 3-Sat called monotone 1-in-3-Sat introduced by Schae-
fer [11], in which no literal is negated (monotonicity) and one is required to
find a truth assignment such that each clause has exactly one true literal. He
proved its NP-completeness. We propose its restricted variant called quadri-
partite 1-in-3-Sat, whose instance consists of a variable set that is a union of
four pairwise disjoint sets U1, U2, U3, U4 and clauses that contain at most one
variable from each of these four subsets.

Lemma 2. Quadripartite 1-in-3-Sat is NP-complete.

Proof. Let us denote a given instance of monotone 1-in-3-Sat by a pair of a set
U of Boolean variables and a set of clauses of three literals, which are positive
due to the monotonicity. We will show a polynomial-time reduction from this
to an instance of quadripartite 1-in-3-Sat.

The reduction first transforms each clause of the given 1-in-3-Sat instance
into a quadripartite conjunction of clauses while preserving the 1-in-3-Sat sat-
isfiability, and then conjuncts them. Each conjunction is designed so that it
admits a partition of its variables into four disjoint sets one of which contains
all variables of its source clause. The i-th clause {x, y, z} is converted into the
following conjunction of 13 clauses:

{¬x, a1, b1}{¬y, a2, b2}{¬z, a3, b3}{a1, a2, a3}
{¬x, c, dx}{¬y, c, dy}{¬z, c, dz}{c, exy.fxy}{c, eyz.fyz}

{c, ezx.fzx}{dx, dy, exy}{dy, dz, eyz}{dz, dx, ezx},
(5)

where all variables but ¬x,¬y,¬z are introduced exclusively for this clause.
This transformation introduces the negated literals ¬x,¬y,¬z but they do not
cause any problem because after all clauses being converted in this manner, no
positive literals in the given 1-in-3-Sat instance remains.

We claim that this preserves the 1-in-3-Sat satisfiability. If the i-th clause is
1-in-3-Sat satisfied, then due to the symmetry among x, y, z in (5), it suffices to
examine the case x = 1, y = z = 0. Then this conjunction is 1-in-3-Sat satisfied
by setting a1, dx, eyz, fxy, fzx to be 1 and the others to be 0. If x = y = z = 0,
then the first three clauses in (5) imply a1 = a2 = a3 = 0, but then the
fourth clause cannot be satisfied. In the case x = y = 1, we consider two cases
depending on the value of c. If c = 0, then dx = dy = 1 must hold in order to
satisfy {¬x, c, dx} and {¬y, c, dy}, but then the clause {dx, dy, exy} contains too
many true variables. Otherwise, dx = dy = exy = 0, but then the clause cannot
be satisfied. Therefore, the clause {x, y, z} is 1-in-3-Sat satisfiable if and only
if so are all clauses in (5).

The conjunction (5) is actually not quadripartite yet, and hence, needs fur-
ther transformation. We replace its last clause {dz, dx, ezx} using the conversion

{α, β, γ} = {¬α, h, k}{¬β, i, k}{¬γ, j, k}{h, i, j}, (6)

10



where h, i, j, k are auxiliary variables introduced exclusively for this conversion.
This conversion preserves the 1-in-3-Sat satisfiability and quadripartite prop-
erty2. A problem is that the resulting conjunction contains both positive and
negative literals of dz , dx, ezx. Thus, to each of the four clauses that replaced
{dz, dx, ezx}, the same conversion must apply further. In this way, we finally
obtain a conjunction of 28 clauses that admits quartering its variables as follows:

Ui,1 = {¬x,¬y,¬z, exy, eyz, ezx},

Ui,2 = {a1, b3, c},

Ui,3 = {a2, b1, dx, dz , fxy, fyz, fzx},

Ui,4 = {a3, b2, dy},

where the variables introduced via the conversion of last clause are omitted.
Observe that the (negated) literals of all variables in the given SAT instance is
in the same set Ui,1, and that (Ui,2 ∪ Ui,3 ∪ Ui,4) ∩ (Uj,2 ∪ Uj,3 ∪ Uj,4) = ∅ for
any 1 ≤ i < j ≤ n. These two properties immediately bring us the quartering
of variables occurring in the resulting conjunction as Uk =

⋃

1≤i≤n Ui,k for each
k ∈ {1, 2, 3, 4}.

Theorem 3. For any τ ≥ 4, τ-ThresholdProgramming(4, 3) is NP-complete.

Proof. A proof for τ = 4 comes first. An instance of quadripartite3 1-in-3-Sat,
whose NP-completeness was proved in Lemma 2, will be reduced into an instance
of τ -TP(4, 3). Let us represent this instance as a pair of a set of Boolean
variables U = {u1, . . . , un} and that of clauses C = {c1, . . . , cm}.

Let us convert this SAT instance into a system S of τ -inequalities with
positive integer variables v1, v2, . . . , vn (needless to say, (2) is used here for their
positiveness), which correspond to the SAT variables in U , such that the SAT
instance is satisfiable if and only if the system is solvable. In S, the j-th clause
of C, cj = {uj1 , uj2 , uj3} with 1 ≤ j1, j2, j3 ≤ n, is represented as

vj1 + vj2 + vj3 ≥ 4, vj1 + vj2 < 4, vj1 + vj3 < 4, and vj2 + vj3 < 4, (7)

which is equivalent to the equation vj1+vj2+vj3 = 4 due to the assumption that
vj1 , vj2 , vj3 ≥ 1. Its solution must be that exactly one of the three variables is 2
and the others are 1. Therefore, if S is solvable, then by interpreting those in
v1, . . . , vn with value 2 be positive and the other (that is, with value 1) negative,
we can retrieve a way to satisfy the 1-in-3-Sat instance; and vice versa. Thus,
4-TP(4, 3) is NP-complete (in fact, we proved that even 4-TP(3, 2) is so, see
(7)).

Now the result is generalized for an arbitrary τ ≥ 4. In S, we first em-
bed systems of τ -inequalities of at most three terms, presented in Section 3.1,

2 We have not applied this (simple) conversion directly to the i-th clause. This is because
the variables involved in the conjunction thus obtained cannot be divided into four sets such
that one of them contains all of ¬x,¬y,¬z.

3The quadripartite property is not needed here, but will be so in Section 4.
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that provide auxiliary variables x1, x2, xτ−4 with lower bounds 1, 2, and τ−4,
respectively. Combining them with an inequality

x1 + x2 + xτ−4 < τ (8)

yields x1 = 1, x2 = 2, and xτ−4 = τ−4. This means that by (8) being embed-
ded, in any solution of S, these variables must admit these respective values.
Especially, the “constant” xτ−4 is added to the inequalities in (7), and we obtain

vj1 + vj2 + vj3 + xτ−4 ≥ τ, (9)

vj1 + vj2 + xτ−4 < τ, (10)

and the analogs of (10) for vj1 +vj3 and vj2 +vj3 . Since xτ−4 = τ−4, these four
τ -inequalities are equivalent to vj1 + vj2 + vj3 = 4. We conclude this proof by
noting that any τ -inequality used is either a ≥τ -inequality of at most 4 terms
or a <τ -inequality of at most 3 terms, and the resulting system of τ -inequalities
is quadripartite. This quadripartite property will become critical in proving
Theorem 8.

Theorem 3 leads us to the NP-hardness of TP. Deleting the constant term
xτ−4 from the inequalities (8), (9), and (10) yields the following inequalities:

x1 + x2 < τ, (11)

vj1 + vj2 + vj3 ≥ τ, vj1 + vj2 < τ, vj1 + vj3 < τ, and vj2 + vj3 < τ. (12)

Consider optimizing τ subject to these. Due to (11), the minimal possible value
of τ is 4. Then its optimal value is 4 if and only if the 1-in-3-Sat instance is
satisfiable.

Lemma 4. ThresholdProgramming(4, 3) is NP-hard.

Remark 5. All the systems of τ -inequalities designed in this section so far can
be solved even subject to extra condition that all variables being strictly less
than τ . This extra condition does not prevent the systems from playing their
intended roles when being embedded.

Using this instance, now we can prove that FindOptimalStrength is NP-
hard. Making use of the fact that all of its τ -inequalities contain at most 4 terms,
we transform them into cooperation sets of a strength-free TAS. The inequalities
(12), which are for the clause cj , are encoded as tcj = (vj1 , vj2 , vj3 , xτ ) with
D(tcj ) = P({N, W, S, E})\ {{N}, {W}, {S}, {N, W}, {N, S}, {W, S}}. Note that its east
side is labeled with an auxiliary variable xτ , but this variable does not play
any essential role but filling the blank side (the tile is not triangle but square).
Likewise, the inequalities that aim at forcing v1, . . . , vn be positive are converted.
The inequalities in (2) are encoded as a tile type ti = (x1, xa, xτ , xτ ) with
D(ti) = P({N, W, S, E}) \ {{N}, {W}}. Though being not mentioned in (2), we
can assume x1 < τ as noted in Remark 5. The inequality (11) is encoded as
t′ = (x1, x2, xτ , xτ ) with D(t′) = P({N, W, S, E})\ {{N}, {W}, {N, W}}. Then, there
exists a TAS at temperature 4 that is locally equivalent to this strength-free
TAS if and only if the given instance of 1-in-3-Sat is satisfiable.

Theorem 6. FindOptimalStrength is NP-hard.
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4 Tile complexity at high temperatures

In Section 3, bridges from 1-in-3-Sat to TP(4, 3) and further to the local, or
micro, behavior of a TAS have been established. Since the study of TAS aims
at facilitating the design of nano-scale structures, we should shift our focus onto
their global (or macro, terminal) behavior; how a given shape is built by TASs.
Problems of interest include: for any temperature τ given as parameter,

1. Is there a shape Sτ that prefers the temperatures above τ to the lower
ones in terms of tile complexity; that is, Cdtilec(<τ)(Sτ ) > Cdtilec(τ)(Sτ )?
If so, then can we design an algorithm to construct Sτ?

2. Can we compute the directed tile complexity of a shape S at the temper-
atures below τ , that is, Cdtilec(≤τ)(S), in a polynomial time?

For τ = 2, these problems have been studied intensively. Adleman et al. proved
that Cdtilec(2)(Sqn) = O( logn

log logn
) for any n × n square Sqn [1]. In contrast,

Cdtilec(1)(Sqn) ≤ 2n− 1 and this bound is conjectured to be tight [2], which is
highly probable. Thus, Cdtilec(<2)(Sqn) ≫ Cdtilec(2)(Sqn), provided the conjec-
ture is true. As for the second problem, it is NP-hard to compute the directed
tile complexity at the temperatures at most 2 [2].

We will work on these problems without any constraint on temperature, and
answer them by proving the following two theorems.

Theorem 7. For any τ ≥ 2, there is a shape Sτ whose directed tile complexity
is strictly lower at the temperature τ than at any temperatures below τ − 1.

Theorem 8. For any τ ≥ 4, it is NP-hard to compute the directed tile complexity
of a shape at the temperatures below τ .

Theorem 7 is a positive answer to the first problem. Based on the results
obtained on TP(4, 3), we propose a design of a shape Sτ for a given τ ≥ 2 that
prefers the temperature τ to the ones strictly below in terms of tile complexity;
that is, Cdtilec(<τ)(Sτ ) > Cdtilec(τ)(Sτ ). This should be, as of now, interpreted
as an infeasibility result that the arbitrarily fine control of binding energies
is necessitated to design TASs of “reasonable size” for a certain shape in a
laboratory, which has not yet been realized, at least to my knowledge.

Not only to this end but this design also makes possible to convert the
instance of 1-in-3-Sat into a shape S and a constant c such that the instance
is satisfiable if and only if there is a directed TAS of at most c tile types that
strictly self-assembles S at a temperature below τ for an arbitrary τ ≥ 4; that
is, Cdtilec(≤τ)(S) ≤ c. This amounts to the proof of Theorem 8, which answers
the second problem unless P = NP. Adleman et al. proved the analogous result
for τ = 2 [2]. The case τ = 3 remains open. This gap must be filled, but our
proof cannot be applied to this case, at least directly. It is probably essential to
transform an instance of 3-Sat into finely-crafted gadgets for this case as done
by Adleman et al. in [2] for the case τ = 2. This paper leaves this case open.

We propose the following unified approach to various problems related to the
behaviors and temperatures of directed TASs including the above two problems:
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Figure 1: A logical component for a ≥τ -inequality of four terms (left) and four
variable trees (red, green, blue, and yellow from the left) that correspond to the
four variables in the inequality. The positions numbered 1, 2, 3, and 4 are the
cooperation tip of these trees, respectively. The logical component consists of a
single gray tile at the position numbered 5 and four pillars that are of the shape
identical to the four respective variable trees.

Step 1. choose a quadripartite system S of τ -inequalities properly for the pur-
pose among those built in Section 3; hence, all ≥τ -inequalities of S are
of at most 4 terms and all of its <τ -inequalities are of at most 3 terms;

Step 2. convert its variables v1, v2, . . . , vn into trees of height h and distinct
shape, which we call variable trees, where h is a parameter adjustable
for our convenience;

Step 3. for each τ -inequality, bundle the (at most 4) trees thus converted from
its variables into a shape called the logical component;

Step 4. (two copies of) the n variable trees and logical components each are
mounted next to each other onto a scaffold, and amounts to a shape,
which we denote by S.

Examples of variable trees and a logical component are shown in Figure 1. Note
that S is parameterized by h. The design of the shape S through these four
steps will bring a constant c ≪ h with the following property after its parameter
h being made large enough.

Property 1. Any directed TAS T = (T, σ, g, τ) that strictly self-assembles S
using at most (n+ c′)h+ c tile types has (not-necessarily-distinct) n glue labels
ℓ1, ℓ2, . . . , ℓn such that

• for any m ≤ 4 and k1, . . . , km ∈ {1, . . . , n}, if S includes the ≥τ -inequality
∑

1≤i≤m vki
≥ τ , then

∑

1≤i≤m g(ℓki
) ≥ τ ;

• for any m′ ≤ 3 and k1, . . . , km′ ∈ {1, . . . , n}, if S includes the <τ -
inequality

∑

1≤j≤m′ vkj
< τ , then

∑

1≤j≤m′ g(ℓkj
) < τ ,
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where c′ is the number of <τ -inequalities in the system S chosen at Step 1.

This property should be interpreted that the way for the function g of such a
“small” T at the temperature τ , if any, to assign labels with glue strengths tells
how to satisfy the given system S of τ -inequality. Conversely speaking, unless
the given system admits a solution with τ being some specific value τ ′, any
directed TAS at the temperature τ ′ needs strictly more than (n+ c′)h + c tile
types4 in order to strictly self-assemble S. Verifying this property amounts to
proofs of Theorems 7 and 8; it is sufficient for us to choose a proper S at Step 1.
In order to prove Theorem 7, for k ≥ 2, we choose the system of τ -inequalities
that cannot be solved for any τ < k but can for any τ ≥ k. This is the one
designed in Section 3.1 based on the 2i+1-adders. It is transformed into a shape
S through Steps 2-4. This amounts to a proof of a slightly-stronger version of
Theorem 7. As for Theorem 8, the TP instance built for Theorem 3 is rather
chosen. In the rest of this section, therefore, we just have to verify Property 1
in order to complete the proof of these theorems.

Let V = {v1, v2, . . . , vn} be the set of variables occurring in the system S
chosen at Step 1. As mentioned in Remark 5, we can assume that every variable
in V is strictly less than τ ; this assumption simplifies the design of S and our
explanation below. The more essential is that S is quadripartite, that is to say,
the variable set V can be partitioned into four disjoint subsets VN, VW, VS, VE.

Step 2

In this step, we convert each variable in V into one of the four tree shapes
illustrated in Figure 1 depending on which of VN, VW, VS, VE it belongs to. For
instance, each variable in VN is converted into the shape whose tip is numbered
1 (and colored red). This shape is a tree of height h plus some constant, not
depending on h, with only one crotch for two branches; one consists of a bit
pattern and the other is of size 1 for cooperation called cooperation tip, which
is numbered 1 in Figure 1. We say that this shape is of north type after the
subscript of VN. Shapes of north type that are thus converted from distinct
variables (in VN) are identical mod their bit patterns of length ⌈logn⌉. In this
way, each variable in the other three variable subsets VW, VS, VE is also converted
into the shapes that are numbered 2, 3, 4 (and colored yellow, green, blue) in
Figure 1, respectively, and we say that these shapes are respectively of west,
south, and east type. All the n variables of V have been now associated with n
different tree shapes of proper type. We collectively refer to them as variable
trees. Two copies of each variable tree is mounted onto a scaffold.

Every conversion of <τ -inequalities in S into logical components at Step 3
needs to introduce an auxiliary tree of the north, west, south, or east type
and recall that S was assumed to contain c′ of them (the conversion of ≥τ -
inequalities does not). These trees are distinguished from each other and from
the variable trees by their bit patterns. Two copies of each auxiliary tree are

4 Actually, it will be proved necessary for T to have at least (n+ c′ +1)h tile types, which
is much larger than (n+ c′)h+ c because h ≫ c2.
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mounted next to each other on the scaffold of S. We will call variable trees and
auxiliary trees simply trees unless confusion arises.

We claim that T needs at least (n + c′)h tile types for T to strictly self-
assemble these n+ c′ trees mainly using the results by Adleman et al. in [2] on
tile complexity of trees. Being duplicated, each tree has its copy that assembles
upward from the scaffold (actually, all trees but at most one do so since T is
assumed to be singly-seeded). Theorem 4.3 in [2] implies that in order for T to
strictly self-assemble two variable trees of different types (e.g., north and west),
at least 2h plus some constant number of tile types are necessary; h exclusively
for each, no matter how and at what temperature T is designed, where the
constant is much smaller than h. This is not to say that T could not reuse any
tile type for both of them. It can, for example, for their bit patterns. However,
the number of such reusable tile types is bounded by a constant that is much
smaller than h. This lower bound exists also for two trees of identical type but
with distinct bit patterns. It is not allowed for T to put tiles of identical type at
the crotch positions because if they were the same, incorrect bit patterns could
assemble. In contrast, T is able to reuse tiles of same type for the cooperation
tips of these trees, but anyway it saves only one tile type. This observation
is immediately generalized for more variable and auxiliary trees as: in order
for T to assemble the n distinct variable trees and c′ auxiliary trees, at least
(n+ c′)h+ c′′ tile types are necessary for some constant c′′ ≪ h. In brief,

Cdtilec(τ)(S) ≥ (n+ c′)h+ c′′

at any temperature τ .
Before proceeding to the explanation of next step, we prove that T must put

the same tile type at the cooperation tip positions of two copies of each variable
tree or auxiliary tree. This is related to the position of the seed of T so that
first we see that it merely costs the number of tile types for T to put its head
on a variable tree or an auxiliary tree. Suppose T put its seed on one copy of
some variable tree, and let us compare it with the other copy of the same tree.
Recall that they are located next to each other. In order to start assembling the
seed-free copy, T first must assemble downward from the seed and the scaffold
between the copies. Then consider the process for T to assemble the seed-free
copy upward up to the counterpart position of the seed. During this process, T
cannot reuse any tile type used for the part between the seed and scaffold; such
a recycle would enable T to skip the assembly of the seed-free copy and produce
a shape with only one copy of the variable tree. Thus, even if the seed is on
a copy of some variable tree, it could not be located “far from” the scaffold if
it were not for extra n tile types available for T . This means that T needs to
assemble almost all parts of these trees upward, and hence, it would impose the
unaffordable number of extra tile types on T to put tiles of distinct types at the
cooperation tips of two copies of a tree. Now, for 1 ≤ i ≤ n, we can denote the
tile type that T puts at the both cooperation tips of the copies of the variable
tree for vi by ti. The label ℓi mentioned in Property 1 is found at the side of ti
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opposite to the crotch. That is,

ℓi =



















ti(S) if vi ∈ VN

ti(E) if vi ∈ VW

ti(N) if vi ∈ VS

ti(W) if vi ∈ VE.

Step 3

In this step, we convert ≥τ -inequalities and <τ -inequalities of the given system
S into shapes which we call logical components. Two of their copies will be
mounted in Step 4 onto the scaffold, which will complete the design of the
shape S.

Let us begin with a simpler one: the logical component for ≥τ -inequality (of
at most 4 terms). Recall that any ≥τ -inequality in S is of at most 4 terms and
none of its two terms are variables taken from the same variable subset. That is
to say, the variable trees that its terms (variables) correspond to are of pairwise
distinct type, and hence, can be bundled together so as for their cooperation
tips to be adjacent to one position (see Figure 1, where the position is numbered
5). The logical component for this ≥τ -inequality consists of the variable trees
thus positioned, which we refer to as pillars, and the position adjacent to all the
cooperation tips of the pillars. In this manner, each ≥τ -inequality is converted
into a logical component and its two copies are mounted onto the scaffold of S.

Proof of the first item of Property 1
Now we will prove the first item of Property 1, that is, if the ≥τ -inequality

∑

1≤i≤m

vki
≥ τ (13)

belongs to S, then
∑

1≤i≤m

g(ℓki
) ≥ τ, (14)

where m ≤ 4 and k1, . . . , km ∈ {1, . . . , n}. Before that, however, let us
quickly show that if (14) holds, then T can assemble the logical com-
ponent for (13) by introducing only one new tile type in the following
manner. T first assembles the respective parts of the component that cor-
respond to the variable trees for vk1

, . . . , vkm
as done for the copies of these

trees (hence, costs nothing) and lets their cooperation tips to cooperate to
attach a tile of the new type to fill the position surrounded by the m co-
operation tips, which is numbered 5 in the logical component in Figure 1.
This cooperation provides enough strength for stable tile attachment due
to (14). Let us return to the proof. For the sake of contradiction, suppose
(14) does not hold. Focus on the seed-free copy of the logical component
for (13) for the concise argumentation. Since this copy is free from seed,
T needs to assemble at least one pillar of the component upward from the

17



Figure 2: A logical component for a <τ -inequality (of 3 terms). The trees of
north, west, east type are variable trees (red, yellow, blue), while the remaining
tree of south type is an auxiliary one (white). The trees are written concisely
for clarity, but they should be of the same shape as illustrated in Figure 1.

scaffold. Under the supposition that (14) did not hold, T is not allowed
to assemble these upward-growing pillars as done for the corresponding
variable trees without any extra tile types. More precisely, at the cooper-
ation tip of at least one of these pillars, say the one for vki

, T must put
a tile of different type from tki

. However, this costs extra at least h tile
types because τ cannot reuse any tile types for the tree for vki

in order to
assemble this pillar, or any tile types for the any other tree vkj

because
T was proved not to be able to assemble vki

and vkj
using strictly less

than 2h tile types (this argument works in order to prove that this pillar
cannot assemble using tile types for auxiliary trees).

The design of logical components for <τ -inequalities (of at most 3 terms)
is more involved. One thing to be noted first is that this cannot be realized
simply by modifying the above-mentioned component design for ≥τ -inequalities
by leaving the position adjacent to all the cooperation tips of the pillars empty.
This is because no attachment may not mean the insufficient strength but label
mismatch. We propose the following design instead.

Let us consider a <τ -inequality:

∑

1≤j≤m′

vkj
< τ (15)

for some m′ ≤ 3 and k1, . . . , km′ ∈ {1, . . . , n}. In addition to the m′ variable
trees for vk1

, . . . , vkm′
, we employ one of the c′ auxiliary trees prepared in Step 2

that is of distinct type from any of the variable trees (recall that c′ is the
number of <τ -inequalities in S). Then we combine copies of at least m′ of these
m′ + 1 trees as done in building the components for ≥τ -inequalities but in all
combinations of m′ trees. The combination of all the m′ + 1 trees is turned
into a “gadget” by filling the position that are adjacent to all the cooperation
tips, whereas the other combinations are considered to be gadgets without any
modification. These m′+2 gadgets amount to the logical component for the <τ -
inequality (15), and two copies of this component are mounted on the scaffold
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of S. Note that, once being used, the auxiliary tree will not reused for the
component of other <τ -inequalities any more.

Proof of the second item of Property 1
Now we will prove that if (15) holds, then

∑

1≤j≤m′

g(ℓj) < τ. (16)

Before this proof, let us note that since the auxiliary tree does not appear
in any other component, one can have g assign an arbitrary strength to the
glue at the cooperation tip of this tree without causing any malfunctioning
of the other component, as long as (16) holds. Setting this strength to be
τ −

∑

1≤j≤m′ vkj
enables T to assemble this component with introducing

only one new tile type that fills the position adjacent to the cooperation
tips.

For the sake of contradiction, suppose that the sum
∑

1≤j≤m′ g(ℓj) were
at least τ . Focus on the seed-free copy of this component, and especially
first on the gadget with m′ + 1 pillars, with the position surrouned by
the cooperation tips being filled (the leftmost gadget in Figure 2). Let us
denote this gadget by G1. Due to the seed-freeness, some of the pillars
of G1 assemble upward and have a tile t fill the position by cooperative
attachment. Assume that some pillar is absent from the cooperation. Let
us denote the gadget that does not contain the “lazy” pillar by G2. Then
some of the tiles put at the cooperation tips of G2 must be distinct from
those at the corresponding positions of G1 in type in order to prevent
the tile t from attaching to G2. However, this distinctiveness would cost
T extra h new tile types, as explained in the proof of the first item.
Thus, all of the pillars of G1 must join the cooperation, and hence, all
the pillars of G1 assemble upward. Then consider the gadget that is free
from the auxiliary pillar, which we denote by G3. The types of tiles at the
corresponding cooperation tips of G1 and G3 must be the same in order
for T not to pay the unaffordable extra h tile types. However, then there
must exist 1 ≤ j ≤ m′ such that the tile tj at the cooperation tip of the
tree for vj and the tile at the corresponding position in G1 must differ
from each other in type because of the supposition

∑

1≤j≤m′ g(ℓj) ≥ τ .
This again causes the unaffordable cost. Consequently, we can say that
(16) must hold.

As the readers might have already noticed, the constant c is the numbers of
tile types for the scaffold (actually, equal to its length, which depends only on
the number of variables and the number of inequalities in S) plus the number
of tile types for each variable tree that exceeds h (top structures differ tree by
tree, but a bit).

When being introduced, the directed tile complexity at the temperatures
at most τ was noted not to be a monotonically decreasing function. Let us
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conclude this section and hence this paper by its proof. Since we do not find
this non-monotonicity significant in practice, we simply exemplify it and will
not inquire deeper into the matter. Actually, this proof is a good opportunity
to show the usefulness of the unified framework we proposed previously.

Lemma 9. There exists a shape S such that Cdtilec(3)(S) < Cdtilec(4)(S).

Proof. As explained into details when being introduced, the framework needs
only our appropriate choice of a system of τ -inequalities at Step 1. Actually,
it suffices to find as such a system the one that is solvable for τ = 3 but not
for τ = 4. Such an equation, however, was already given as (1) in Section 3.1.
Needless to say, all ≥τ -inequalities and all <τ -inequalities in this system are of
at most 4 and 3 terms, respectively, and this system is quadripartite.

A problem of theoretical interest is whether for any temperature τ , there
exists a shape S such that Cdtilec(k)(S) is strictly decreasing over the interval
[1, τ ]. The framework cannot be applied, or even if it can, some modification is
necessary.

5 Conclusions

In this paper, we continued research on the behavioral equivalence among TASs
at the local level that was initiated in [5] and solved their open problems of
whether minimizing the temperature of TASs that behave locally as specified
as input can be solved in a polynomial time by proving that this problem is NP-
hard. We deduced this from our other result that the threshold programming, a
special form of integer programming, is still NP-hard. Furthermore, we proposed
a unified framework to work on various problems related to the temperature
and the global behavior of TASs, which makes use of systems of τ -inequalities
designed for the proof of the above results.

There are several directions for further research. The NP-hardness stated in
Theorem 6 never eliminates the possibility to improve the algorithm by Chen,
Doty, and Seki so as to optimize the size and temperature of TASs for the n×n
square Sqn simultaneously. Elucidating this will deepen our knowledge of the
tile complexity of Sqn further. As for Theorem 7, our interest lies on the ratio
Cdtilec(<τ)(Sτ )/C

dtilec(τ)(Sτ ). In our construction of Sτ , the ratio is constant
no matter how h is adjusted. In contrast, Cdtilec(1)(Sqn)/C

dtilec(2)(Sqn) can get
arbitrarily large by making n larger, provided the conjecture Cdtilec(1)(Sqn) =
2n− 1 is true (or even Cdtilec(1)(Sqn) = Ω(n) is fine). Can we find such a shape
for arbitrary temperature? With Theorem 8 and the result by Adleman et al. [2],
the NP-hardness of computing directed tile complexity at the temperatures below
3 must be proved.
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