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Abstract

We extend the Luzin hierarchy of qcb0-spaces introduced in [ScS13] to all countable
ordinals, obtaining in this way the hyperprojective hierarchy of qcb0-spaces. We generalize
all main results of [ScS13] to this larger hierarchy. In particular, we extend the Kleene-Kreisel
continuous functionals of finite types to the continuous functionals of countable types and
relate them to the new hierarchy. We show that the category of hyperprojective qcb0-spaces
has much better closure properties than the category of projective qcb0-space. As a result,
there are natural examples of spaces that are hyperprojective but not projective.
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This is an extended version of the conference paper [ScS14].

1 Introduction

A basic notion of Computable Analysis [We00] is the notion of an admissible representation of
a topological space X. This is a partial continuous surjection δ from the Baire space N onto
X satisfying a certain universality property (see Subsection 2.3 for some more details). Such a
representation of X usually induces a reasonable computability theory on X, and the class of
admissibly represented spaces is wide enough to include most spaces of interest for Analysis or
Numerical Mathematics. As shown by the first author [Sch03], this class coincides with the class
of the so-called qcb0-spaces, i.e. T0-spaces which are quotients of countably based spaces, and it
forms a cartesian closed category (with the continuous functions as morphisms). Thus, among
qcb0-spaces one meets many important function spaces including the continuous functionals of
finite types [Kl59, Kr59] interesting for several branches of logic and computability theory.

Along with the mentioned nice properties of qcb0-spaces, this class seems to be too broad to
admit a deep understanding. Hence, it makes sense to search for natural subclasses of this class
which still include “practically” important spaces but are (hopefully) easier to study. Interesting
examples of such subclasses are obtained if we consider, for each level Γ of the classical Borel or
Luzin (projective) hierarchies of Descriptive Set Theory [Ke95], the class of spaces which have
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an admissible representation of the complexity Γ (below we make this precise). A study of the
resulting Borel and Luzin hierarchies of qcb0-spaces was undertaken in [ScS13]. In particular,
it was shown that the Luzin hierarchy of qcb0-spaces is closely related to the Kleene-Kreisel
continuous functionals of finite types, and that the category of projective qcb0-spaces is cartesian
closed.

However, the class of projective qcb0-spaces is in a sense too restricted. In particular, it is
not closed under some natural constructions (e.g., countable products and coproducts) and does
not contain some spaces of interest for Computable Analysis.

In this paper we extend the Luzin hierarchy of qcb0-spaces to all countable ordinals, obtaining
in this way the hyperprojective hierarchy of qcb0-spaces. We generalize to this larger hierarchy
all main results of [ScS13] concerning the Luzin hierarchy. In particular, we extend the Kleene-
Kreisel continuous functionals of finite types to the continuous functionals of countable types
and relate them to the new hierarchy. We show that the category of hyperprojective qcb0-spaces
has much better closure properties than the category of projective qcb0-space. As a result, there
are natural examples of spaces that are hyperprojective but not projective.

After recalling some notions and known facts in the next section, we summarize some basic
facts on the hyperprojective hierarchy of sets in Section 3. In Section 4 we study the hyper-
projective hierarchy of qcb0-spaces, in particular we show that the category of hyperprojective
qcb0-spaces is closed under countable limits and countable colimits and function spaces. In Sec-
tion 5 we introduce and study the continuous functionals of countable types and relate them in
Section 6 to the hyperprojective hierarchy of qcb0-spaces. In Section 7 we establish some prop-
erties of categories of hyperprojective qcb0-spaces. Finally, in Section 8 we provide additional
natural examples of hyperprojective qcb0-spaces.

2 Notation and preliminaries

2.1 Notation

We freely use the standard set-theoretic notation like dom(f), rng(f) and graph(f) for the
domain, range and graph of a function f , respectively, X × Y for the Cartesian product, X ⊕ Y
for the disjoint union of sets X and Y , Y X for the set of functions f : X → Y (but in the case
when X,Y are qcb0-spaces we use the same notation to denote the set of continuous functions
from X to Y ), and P (X) for the set of all subsets of X. For A ⊆ X, A denotes the complement
X \ A of A in X. We identify the set of natural numbers with the first infinite ordinal ω. The
first uncountable ordinal is denoted by ω1. The notation f : X → Y means that f is a (total)
function from a set X to a set Y .

2.2 Topological spaces

We assume the reader to be familiar with the basic notions of topology. The collection of all open
subsets of a topological space X (i.e. the topology of X) is denoted by τX ; for the underlying
set of X we will write X in abuse of notation. We will usually abbreviate “topological space”
to “space”. Remember that a space is zero-dimensional, if it has a basis of clopen sets. A basis
for the topology on X is a set B of open subsets of X such that for every x ∈ X and open
U containing x, there is B ∈ B satisfying x ∈ B ⊆ U . A space is countably based, if it has a
countable basis. By a cb0-space we mean a countably based T0-space. The class of cb0-spaces is
denoted by CB0. We write X ∼= Y , if X and Y are homeomorphic.

A space Y is called a (continuous) retract of a space X if there are continuous functions
s : Y → X and r : X → Y such that composition rs coincides with the identity function idY
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on Y . Such a pair of functions (s, r) is called a section-retraction pair. Note that the section
s is a homeomorphism between Y and the subspace s(Y ) = {x ∈ X | sr(x) = x} of X, and
s−1 = r|s(Y ).

Let ω be the space of non-negative integers with the discrete topology. Of course, the spaces
ω × ω = ω2, and ω ⊕ ω are homeomorphic to ω, the first homeomorphism is realized by the
Cantor pairing function 〈·, ·〉.

Let N = ωω be the set of all infinite sequences of natural numbers (i.e., of all functions
ξ : ω → ω). Let ω∗ be the set of finite sequences of elements of ω, including the empty sequence.
For σ ∈ ω∗ and ξ ∈ N , we write σ ⊑ ξ to denote that σ is an initial segment of the sequence ξ.
By σξ = σ · ξ we denote the concatenation of σ and ξ, and by σ · N the set of all extensions of
σ in N . For x ∈ N , we can write x = x(0)x(1) . . . where x(i) ∈ ω for each i ∈ ω. For x ∈ N
and n ∈ ω, let x<n = x(0) . . . x(n− 1) denote the initial segment of x of length n.

By endowing N with the product of the discrete topologies on ω, we obtain the so-called Baire
space. The product topology coincides with the topology generated by the collection of sets of
the form σ ·N for σ ∈ ω∗. The Baire space is of primary importance for Descriptive Set Theory
and Computable Analysis. The importance stems from the fact that many countable objects
are coded straightforwardly by elements of N , and it has very specific topological properties. In
particular, it is a perfect zero-dimensional space, and the spaces N 2, N ω, ω×N = N ⊕N ⊕ . . .
(endowed with the product topology) are all homeomorphic to N . Let (x, y) 7→ 〈x, y〉 be a
homeomorphism between N 2 and N . Let (x0, x1, . . . ) 7→ 〈x0, x1, . . . 〉 be the homeomorphism
between N ω and N defined by 〈x0, x1, . . .〉〈m,n〉 = xm(n).

The space Pω is formed by the set of subsets of ω equipped with the Scott topology, the basic
open sets of which are the sets {A ⊆ ω | F ⊆ A}, where F ranges over the finite subsets of ω.
It has the following well-known universality property:

Proposition 2.1 A topological space X embeds into Pω iff X is a cb0-space.

Remember that a space X is Polish, if it is countably based and metrizable with a metric d
such that (X, d) is a complete metric space. Important examples of Polish spaces are ω, N , the
space of reals R and its Cartesian powers Rn (n < ω), the closed unit interval [0, 1], the Hilbert
cube [0, 1]ω and the Hilbert space R

ω. Simple examples of non-Polish spaces are the Sierpinski
space S = {⊥,⊤}, where the set {⊤} is open but not closed, and the space of rationals.

2.3 Admissible representations and qcb0-spaces

A representation of a space X is a surjection of a subspace of the Baire space N onto X. A
representation δ of X is admissible, if it is continuous and any continuous function ν : Z → X
from a subspace Z of N to X is continuously reducible to δ, i.e. ν = δg for some continuous
function g : Z → N . A topological space is admissibly representable if it has an admissible
representation.

The notion of admissibility was introduced in [KW85] for representations of countably based
spaces (in a different but equivalent formulation) and was extensively studied by many au-
thors. In [Sch02, Sch03] the notion was extended to non-countably based spaces and a nice
characterization of the admissibly represented spaces was achieved. Namely, the admissibly
represented sequential topological spaces coincide with the qcb0-spaces. Spaces which arise as
topological quotients of countably based spaces are called qcb-spaces, and qcb-spaces that have
the T0-property are called qcb0-spaces.

The category QCB of qcb-spaces as objects and continuous functions as morphisms is known
to be cartesian closed (cf. [ELS04, Sch03]). The same is true for its full subcategory QCB0 of
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qcb0-spaces. The exponential Y X to qcb-spaces X,Y has the set of continuous functions from
X to Y as the underlying set, and its topology is the sequentialization of the compact-open
topology on Y X . By the sequentialization of a topology τ we mean the family of all sequentially
open sets pertaining to this topology. (Remember that sequentially open sets are defined to be
the complements of the sets that are closed under forming limits of converging sequences.) The
sequentialization of τ is finer than or equal to τ . The topology of the QCB-product to X and
Y , which we denote by X ×Y , is the sequentialization of the well-known Tychonoff topology on
the cartesian product of the underlying sets of X and Y . If X and Y are additionally T0, then
X × Y and Y X are T0 as well. So products and exponentials in QCB and in QCB0 are formed
in the same way as in its supercategory Seq of sequential topological spaces.

We will also use the following well-known facts (see e.g. [Sch03, We00]).

Proposition 2.2 There is a partial continuous function u :⊆ N 2 → N such that dom(u) ∈
Π0

2(N
2), for any partial continuous function g on N there is some p ∈ N such that up :=

λx.u(p, x) is an extension of g, and for any partial continuous function G :⊆ N ×N → N there
is a total continuous function g on N such that u(g(p), q) = F (p, q) for all (p, q) ∈ dom(G).

We describe the construction of canonical admissible representations for products and function
spaces formed in QCB0 (cf. [Sch03]).

Proposition 2.3 Let δ and γ be admissible representations for qcb0-spaces X and Y , respec-
tively. Then canonical admissible representations [δ × γ] for the QCB0-product X × Y and [γδ]
for the QCB0-exponential Y

X can be defined by:

[δ × γ](〈p, q〉) = (x, y) iff δ(p) = x ∧ γ(q) = y and [γδ](p) = f iff fδ = γup|dom(δ).

for p, q ∈ N , x ∈ X, y ∈ Y , and f : X → Y .

Along with the binary product, the category QCB0 is closed under countable product. The
countable product of a sequence X0,X1, . . . of qcb0-spaces is denoted by

∏

n∈ωXn. If δn is an
admissible representation of Xn for each n, the induced admissible representation of

∏

n∈ωXn

is denoted by
∏

n∈ω δn. The category QCB0 is also closed under other constructions including
countable limits and colimits. We will discuss some such constructions in Section 4 where we
also recall some relevant notions of Category Theory.

For any qcb0-space X, let O(X) be the hyperspace of open sets in X endowed with the Scott
topology. The space O(X) is well known to be homeomorphic to the function space S

X , where
S is the Sierpinski space.

3 Hyperprojective hierarchy of sets

Here we recall some facts on hierarchies in arbitrary spaces, with the emphasis on the hyperpro-
jective hierarchy in the Baire space. Additional information on the hyperprojective hierarchy
may be found in [Ke83].

A pointclass on X is simply a collection Γ(X) of subsets of X. A family of pointclasses [Se13]
is a family Γ = {Γ(X)} indexed by arbitrary topological spaces X such that each Γ(X) is a
pointclass on X and Γ is closed under continuous preimages, i.e. f−1(A) ∈ Γ(X) for every
A ∈ Γ(Y ) and every continuous function f : X → Y . A basic example of a family of pointclasses
is given by the family O = {τX} of the topologies of all the spaces X.
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We will use some operations on families of pointclasses. First, the usual set-theoretic opera-
tions will be applied to the families of pointclasses pointwise: for example, the union

⋃

i Γi of
the families of pointclasses Γ0,Γ1, . . . is defined by (

⋃

i Γi)(X) =
⋃

i Γi(X).
Second, a large class of such operations is induced by the set-theoretic operations of L.V.

Kantorovich and E.M. Livenson (see e.g. [Se13] for the general definition). Among them are
the operation Γ 7→ Γσ, where Γ(X)σ is the set of all countable unions of sets in Γ(X), the
operation Γ 7→ Γδ, where Γ(X)δ is the set of all countable intersections of sets in Γ(X), the
operation Γ 7→ Γc, where Γ(X)c is the set of all complements of sets in Γ(X), the operation
Γ 7→ Γd, where Γ(X)d is the set of all differences of sets in Γ(X), the operation Γ 7→ Γ∃ defined
by Γ∃(X) := {∃N (A) | A ∈ Γ(N × X)}, where ∃N (A) := {x ∈ X | ∃p ∈ N .(p, x) ∈ A} is
the projection of A ⊆ N × X along the axis N , and finally the operation Γ 7→ Γ∀ defined by
Γ∀(X) := {∀N (A) | A ∈ Γ(N ×X)}, where ∀N (A) := {x ∈ X | ∀p ∈ N .(p, x) ∈ A}.

The operations on families of pointclasses enable to provide short uniform descriptions of the
classical hierarchies in arbitrary spaces. E.g., the Borel hierarchy is the family of pointclasses
{Σ0

α}α<ω1
defined by induction on α as follows [Se06, Br13]:

Σ0
0(X) := {∅},Σ0

1 := O,Σ0
2 := (Σ0

1)dσ , and Σ0
α(X) := (

⋃

β<α

Σ0
β(X))cσ

for α > 2. The sequence {Σ0
α(X)}α<ω1

is called the Borel hierarchy in X. We also let Π0
β(X) :=

(Σ0
β(X))c and ∆0

α(X) := Σ0
α(X) ∩ Π0

α(X). The classes Σ0
α(X),Π0

α(X),∆0
α(X) are called the

levels of the Borel hierarchy in X.
For this paper, the hyperprojective hierarchy is of main interest.

Definition 3.1 The hyperprojective hierarchy is the family of pointclasses {Σ1
α}α<ω1

defined
by induction on α as follows: Σ1

0 = Σ0
2, Σ

1
α+1 = (Σ1

α)c∃, Σ
1
λ = (Σ1

<λ)δ∃, where α, λ < ω1, λ is a
limit ordinal, and Σ1

<λ(X) :=
⋃

α<λΣ
1
α(X).

In this way, we obtain for any topological space X the sequence {Σ1
α(X)}α<ω1

, which we call
here the hyperprojective hierarchy in X. The pointclasses Σ1

α(X), Π1
α(X) := (Σ1

α(X))c and
∆1

α(X) := Σ1
α(X) ∩ Π1

α(X) are called levels of the hyperprojective hierarchy in X. The finite
non-zero levels of the hyperprojective hierarchy coincide with the corresponding levels of the
Luzin’s projective hierarchy [Br13, ScS13]. The class of hyperprojective sets in X is defined as
the union of all levels of the hyperprojective hierarchy in X.

Remarks 3.2 (1) If X is Polish then one can equivalently take Σ1
0 = Σ0

1 in the definition
of the hyperprojective hierarchy and obtain the same non-zero levels as above. For non-
Polish spaces our definition guarantees the “right” inclusions of the levels, as the first item
of the next proposition states.

(2) In the case of Polish spaces our “hyperprojective hierarchy” is in fact an initial segment of
the hyperprojective hierarchy from [Ke83], so “ω1-hyperprojective” would be more precise
name for our hierarchy; nevertheless, we prefer to use the easier term “hyperprojective”
for our hierarchy.

(3) In the literature one can find two slightly different definitions of hyperprojective hierarchy.
Our definition corresponds to that in [Ke83]. The other one (see e.g. Exercise 39.18 in
[Ke95]) differs from ours only for limit levels, namely it takes (Σ1

<λ)σ instead of our Σ1
λ.

Our choice simplifies several formulations in Sections 5 and 7. The classes (Σ1
<λ)σ and

their duals are also of interest for this paper, they are used in Sections 4 and 5.
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The next assertion collects some properties of the hyperprojective hierarchy. They are proved
just in the same way as for the classical projective hierarchy in Polish spaces [Ke95], we omit
the corresponding details.

Proposition 3.3 (1) For any α < β < ω1, Σ
1
α ∪Π1

α ⊆ ∆1
β.

(2) For any limit countable ordinal λ, Σ1
<λ = Π1

<λ and (Σ1
<λ)δ = (Π1

<λ)σc.

(3) For any non-zero α < ω1, Σ1
α = (Σ1

α)σ = (Σ1
α)δ = (Σ1

α)∃. In particular, the class
Σ1

α(N ) is closed under countable unions, countable intersections, continuous images, and
continuous preimages of functions with a Π0

2-domain.

(4) For any non-zero α < ω1, Π
1
α = (Π1

α)σ = (Π1
α)δ = (Π1

α)∀. In particular, the class Π1
α(N )

is closed under countable unions and countable intersections, and continuous preimages of
functions with a Π0

2-domain.

(5) For any limit countable ordinal λ, the family of pintclasses (Σ1
<λ)σ is closed under con-

tinuous preimages and the operations σ of countable union, ∃ of projection along N and
finite intersection but not under the operation δ of countable intersection.

(6) For any uncountable Polish space (and also for any uncountable quasi-Polish space [Br13])
X, the hyperprojective hierarchy in X does not collapse, i.e. Σ1

α(X) 6⊆ Π1
α(X) for each

α < ω1.

4 Hyperprojective hierarchy of qcb0-spaces

Here we discuss the hyperprojective hierarchy of qcb0-spaces. In particular we extend all results
from [ScS13] concerning the Luzin’s projective hierarchy of qcb0-spaces.

For any representation δ of a space X, let EQ(δ) := {(p, q) ∈ N 2 | p, q ∈ dom(δ)∧δ(p) = δ(q)}.
Let Γ be a family of pointclasses. A topological space X is called Γ-representable, if X has
an admissible representation δ with EQ(δ) ∈ Γ(N 2). The class of all Γ-representable spaces
is denoted QCB0(Γ). This notion from [ScS13] enables to transfer hierarchies of sets to the
corresponding hierarchies of qcb0-spaces. In particular, we arrive at the following definition.

Definition 4.1 The sequence {QCB0(Σ
1
α)}α<ω1

is called the hyperprojective hierarchy of qcb0-
spaces. By levels of this hierarchy we mean the classes QCB0(Σ

1
α) as well as the classes

QCB0(Π
1
α) and QCB0(∆

1
α).

The next assertion summarizes extensions of the corresponding results from [ScS13] about the
Luzin hierarchy. They are proved just in the same way as in [ScS13].

Proposition 4.2 (1) Let Γ ∈ {Σ1
α,Π

1
α | 0 ≤ α < ω1} and let X be a Hausdorff space. Then

X is Γ-representable, if X has an admissible representation δ with dom(δ) ∈ Γ(N ).

(2) Let Γ ∈ {Σ1
α,Π

1
α | 0 ≤ α < ω1}. Then any continuous retract of a Γ-representable space

is a Γ-representable space.

(3) The hyperprojective hierarchy of qcb0-spaces does not collapse, more precisely, QCB0(Σ
1
α) 6⊆

QCB0(Π
1
α) for each α < ω1.

(4) For any Γ ∈ {Σ1
α,Π

1
α | 1 ≤ α < ω1}, we have QCB0(Γ) ∩ CB0 = CB0(Γ), where CB0(Γ) is

the class of spaces homeomorphic to a Γ-subspace of Pω.
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Now we establish some closure properties of the hyperprojective hierarchy of qcb0-spaces. We
begin with exponentiation in QCB0. The next proposition extends and improves Theorem 7.1
in [ScS13].

Proposition 4.3 Let 1 ≤ α < ω1, X ∈ QCB0(Σ
1
α) and Y ∈ QCB0(Π

1
α). Then Y X ∈

QCB0(Π
1
α).

Proof. Let δ be a quotient representation of a qcb-space X with EQ(δ) ∈ Σ1
α(N

2), and let γ
be an admissible representation of a qcb0-spce Y with EQ(γ) ∈ Π1

α(N
2). By Proposition 4.2.5

in [Sch03], γδ is an admissible representation of Y X . Using the universal function u from
Section 2.3, we define the subset M ⊆ N 4 by

M :=
{

(p1, p2, q1, q2) ∈ N 4
∣

∣

∣
(p1, q1), (p1, q2), (p2, q1), (p2, q2) ∈ dom(u) and

(u(p1, q1), u(p1, q2)), (u(p1, q1), u(p2, q1)), (u(p2, q1), u(p2, q2)) ∈ EQ(γ)
}

.

By the definition of γδ we have for all p1, p2 ∈ N

(p1, p2) ∈ EQ(γδ) ⇐⇒ ∀(q1, q2) ∈ EQ(δ). (p1, p2, q1, q2) ∈M

⇐⇒ ∀(q1, q2) ∈ N 2.
(

(q1, q2) /∈ EQ(δ) ∨ (p1, p2, q1, q2) ∈M
)

.

Since Π1
α is closed under forming preimages of partial continuous functions with a Π0

2-domain,
M is in Π1

α(N
4). Thus EQ(γδ) ∈ Π1

α(N
2), because Π1

α = (Π1
α)∀ = (Π1

α)σ (see Proposition 3.3).
Hence Y X ∈ QCB0(Π

1
α). ✷

The next proposition provides some complexity bounds on products and co-products formed
in QCB0.

Proposition 4.4 (1) Any non-zero level of the hyperprojective hierarchy of qcb0-spaces is
closed under countable QCB0-products and coproducts.

(2) Let λ be a countable limit ordinal. Let {Xk}k∈ω be a sequence of qcb0-spaces such that
Xk ∈ QCB0(Σ

1
<λ) for all k. Then the QCB0-product

∏

k∈ωXk is in QCB0((Σ
1
<λ)δ) and the

co-product
⊕

k∈ωXk is in QCB0((Σ
1
<λ)σ).

Proof. Let γk : Dk → Xk be an admissible representation of Xk for every k ∈ ω. By [Sch03],
admissible representations γ =

∏

k γk : D →
∏

k∈ωXk and φ : E →
⊕

k∈ωXk for the product
and the co-product can be defined by

γ(p) :=
(

γ0(π0(p)), γ1(π1(p)), γ2(π2(p)), . . .
)

and φ(q) :=
(

q(0), γq(0)(t(q))
)

for all p ∈ D :=
⋂

k∈ω{p ∈ N |πk(p) ∈ Dk} and q ∈ E :=
⋃

k∈ω{q ∈ N | q(0) = k, t(q) ∈ Dk}.
Here πk denotes the continuous k-th projection of the inverse of the homeomorphism 〈.〉 : N ω →
N from Section 2.2, and t(q) denotes the sequence q(1)q(2)q(3) . . . ∈ N . We obtain:

EQ(γ) =
⋂

k∈ω

(πk × πk)
−1[EQ(γk)] ,

EQ(φ) =
⋃

k∈ω

(

(t× t)−1[EQ(γk)] ∩ {(p, q) ∈ N 2 | p(0) = q(0) = k}
)

.

The claims follow from these equations and Proposition 3.3. ✷

For equalizers we have the following result.
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Proposition 4.5 Let α be a non-zero countable ordinal. Then QCB0(Σ
1
α) and QCB0(Π

1
α) are

closed under forming equalizers.

Proof. Let Γ ∈ {Σ1
α,Π

1
α}. Let A,X ∈ QCB0(Γ) and let f1, f2 : X → A be continuous. Then

the sequential subspace Y of X with underlying set {x ∈ X | f1(x) = f2(x)} together with the
inclusion map ι : Y → X form an equalizer for f1, f2 in QCB0. Choose admissible representations
φ and δ for A andX, respectively, such that EQ(φ),EQ(δ) ∈ Γ(N 2). Then the co-restriction γ of
δ to the underlying set of Y is known to be an admissible representation for Y . There are partial
continuous functions g1, g2 on N with Π0

2-domains which realize f1 and f2, respectively. Then
dom(γ) =

{

p ∈ dom(δ)
∣

∣ (g1(p), g2(p)) ∈ EQ(φ)
}

. Since g1, g2 are continuous and have a Π0
2-

domain, dom(γ) ∈ Γ(N ) by Proposition 3.3. The equation EQ(γ) = (dom(γ)×dom(γ))∩EQ(δ)
yields us EQ(γ) ∈ Γ(N 2) and Y ∈ QCB0(Γ). ✷

Now we turn our attention to co-equalizers. Co-equalizers in QCB0 are constructed by first
forming a co-equalizer in the category QCB and then, if the resulting space is non-T0, iden-
tifying points with the same neighbourhoods. Non-T0 qcb-spaces do not have an admissible
representation, but some of them have a quotient representation. This motivates the following
definition generalizing the one from above. For a given family Γ of pointclasses, we say that a
topological space X is Γ-quotient-representable, if X has a quotient representation δ such that
EQ(δ) ∈ Γ(N 2). We denote the class of Γ-quotient-representable spaces by QTE(Γ) and the
class of Γ-quotient-representable T0-spaces by QTE0(Γ). Since any admissible representation of
a sequential space is a quotient representation, we have QCB0(Γ) ⊆ QTE0(Γ).

We study the (non-uniform) descriptive complexity of the Kolmogorov operator T0 that maps
any T0-space to itself and sends a non-T0-space X to the quotient space induced by the equiva-
lence relation ≡X given by the specification order of X, i.e., x ≡X x′ iff x and x′ have the same
open neighbourhoods.

Proposition 4.6 Let α be a non-zero countable ordinal. Then X ∈ QTE(Σ1
α) implies T0(X) ∈

QCB0(Σ
1
α+2). Moreover, QCB0(Σ

1
α) ⊆ QTE0(Σ

1
α) ⊆ QCB0(Σ

1
α+2).

The proof is based on the following slight improvement of Proposition 4.3.

Proposition 4.7 Let 1 ≤ α < ω1, X ∈ QTE(Σ1
α) and Y ∈ QCB0(Π

1
α). Then Y

X ∈ QCB0(Π
1
α).

Proof. The proof of Proposition 4.3 has been formulated to show this. ✷

Proof. (Proposition 4.6) The Sierpinski space S has {⊥,⊤} as its underlying set and {∅, {⊤},

{⊥,⊤}} as its topology. The space T0(X) is homeomorphic to the sequential subspace of SS
X

which has {e(y) | y ∈ T0(X)} as its underlying set, cf. [Sch03]. Here the continuous injection

e : T0(X) → S
SX is defined by e([x]≡X

)(h) := h(x).
An admissible representation ̺S for S is defined by ̺S(p) = ⊥ ⇐⇒ ∀i ∈ ω.p(i) = 0.

Clearly, EQ(̺S) is a Boolean combination of open sets and thus in Π1
0(N

2) ⊆ Π1
α(N

2). Two

applications of Proposition 4.7 yield that γ := ̺
[̺δ

S
]

S
is an admissible representation for SS

X

with
EQ(γ) ∈ Π1

α+1(N
2) where δ is a quotient representation of X such that EQ(δ) ∈ Σ1

α(N
2). We

define a representation δ∗ of T0(X) by δ∗(p) = y :⇐⇒ γ(p) = e(y). By Proposition 4.3.2 in
[Sch03], δ∗ is an admissible representation of T0(X). Proposition 2.2 yields a total continuous
function g : N → N with u(g(r), q) = u(q, r) for all (q, r) ∈ dom(u). One easily verifies γ(g(r)) =
e([δ(r)]≡X

) for all r ∈ dom(δ). Hence for all r ∈ N we have

p ∈ dom(δ∗) ⇐⇒ ∃r ∈ N .
(

r ∈ dom(δ) & (p, g(r)) ∈ EQ(γ)
)

.

8



By Proposition 3.3, dom(δ∗) ∈ Σ1
α+2(N

2). Since EQ(δ∗) = (dom(δ∗) × dom(δ∗)) ∩ EQ(γ), we
obtain EQ(δ∗) ∈ Σ1

α+2(N
2) and T0(X) ∈ QCB0(Σ

1
α+2).

If X is additionally a T0-space, then T0(X) = X and thus X ∈ QCB0(Σ
1
α+2). ✷

Now we can formulate our result about forming co-equalizers.

Proposition 4.8 Let λ be a countable limit ordinal. Then QCB0(Σ
1
<λ) is closed under forming

co-equalizers in QCB0.

Proof. Let α < λ. Let A,X ∈ QCB0(Σ
1
α) and let f, g : A → X be continuous. A co-equalizer

q : X → Y for f, g in QCB is constructed as follows (cf. [Sch03]): Let ≡ be the equivalence
relation obtained by the transitive closure of the relation

R := {(f(a), g(a)), (g(a), f(a)), (x, x) | a ∈ A, x ∈ X}.

Let Y be the space that has the equivalence classes of ≡ as its underlying set. The function q
is the surjection mapping x ∈ X to its equivalence class [x]≡. The topology of Y is the quotient
topology induced by q. If Y is T0, then q is a co-equalizer for f, g in QCB0 as well, otherwise
the map [.]≡Y

◦ q : X → T0(Y ) yields a co-equalizer for f, g in QCB0. It remains to show that
T0(Y ) ∈ QCB0(Σ

1
<λ).

There are admissible representations φ, δ for A,X such that dom(φ),EQ(δ) are Σ1
α-sets. Then

the partial function γ := q ◦ δ is a quotient representation of Y . There are partial continuous
F,G on N with Π0

2-domains which realize f and g, respectively. The sets

B := {(p, s) ∈ dom(δ) × dom(φ) | (p, F (s)) ∈ EQ(δ)},

C := {(s, t) ∈ dom(φ)× dom(φ) | (G(s), F (t)) ∈ EQ(δ)} and

D := {(t, p) ∈ dom(φ)× dom(δ) | (G(t), p) ∈ EQ(δ)}

are in Σ1
α(N

2) by Proposition 3.3. Using the projections πi : N → N of the inverse of the
homeomorphism 〈.〉 : N ω → N from Section 2.2, we define for k ≥ 1 sets Ek,M ⊆ N 3 by

Ek :=
{

(p, r, p′)
∣

∣ (p, π1(r)) ∈ B & ∀1 ≤ i < k. (πi(r), πi+1(r)) ∈ C & (πk(r), p
′) ∈ D

}

,

M :=
{

(p, p′, r)
∣

∣ (p, p′) ∈ EQ(δ) or (p, r, p′) ∈
⋃

k∈ωEk or (p′, r, p) ∈
⋃

k∈ωEk

}

.

Then we have

EQ(γ) =
{

(p, p′) ∈ dom(δ)2
∣

∣ δ(p) ≡ δ(p′)
}

=
{

(p, p′) ∈ N 2
∣

∣∃r ∈ N .(p, p′, r) ∈M
}

,

because (δ(p), δ(p′)) ∈ R(l) iff δ(p) = δ(p′) or there are k ∈ {1, . . . , l} and r ∈ N such that
(p, r, p′) ∈ Ek or (p′, r, p) ∈ Ek. By Proposition 3.3, Ek,M and EQ(γ) are Σ1

α-sets. We conclude
Y ∈ QTE(Σ1

α). By Proposition 4.6, T0(Y ) ∈ QCB0(Σ
1
α+2). Since α + 2 < λ, QCB0(Σ

1
α+2) ⊆

QCB0(Σ
1
<λ). Therefore, T0(Y ) ∈ QCB0(Σ

1
<λ). ✷

5 Kleene-Kreisel continuous functionals of countable types

Here we extend all results in [ScS13] about the continuous functionals of finite types to the
continuous functionals of countable types defined as follows:
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Definition 5.1 Using the function space construction of QCB0, we define the sequence of qcb0-
spaces {N〈α〉}α<ω1

by induction on countable ordinals α as follows:

N〈0〉 := ω, N〈α+ 1〉 := ωN〈α〉 and N〈λ〉 :=
∏

α<λ

N〈α〉 ,

where ω denotes the space of natural numbers endowed with the discrete topology, α, λ < ω1

and λ is a limit ordinal. We call N〈α〉 the space of continuous functionals of type α over ω.

Obviously, for k ∈ ω the space N〈k〉 coincides with the space of Kleene-Kreisel continuous
functionals of type k extensively studied in the literature [No80, No81, No99], and N〈1〉 coincides
with the Baire spaceN . For any finite k ≥ 2, the sequential topology on N〈k〉 is strictly finer than
the corresponding compact-open topology [Hy79]. Furthermore it is neither zero-dimensional
nor regular [Sch09].

Any of the introduced spaces has a natural canonical admissible representation δα : Dα → N〈α〉
induced by the constructions described in Proposition 2.3 and the proof of Proposition 4.4. They
may be defined (using the notation from Sections 2.3 and 4) as follows:

D0 = {n0ω | n ∈ ω}, δ0(n0
ω) := n, δ1 := idN , δα+1 := δδα0 and δλ :=

∏

α<λ

δα ,

where α > 0 and λ is a limit ordinal.
The spaces of continuous functionals enjoy the following product property, which, in the case

of the finite types, belongs to the folklore of sequential spaces ([EL08]).

Proposition 5.2 For all countable ordinals α ≤ β, N〈α〉 × N〈β〉 is homeomorphic to N〈β〉.

Proof. We proceed by showing the following instances of our claim. For countable ordinals α, β
and a countable limit ordinal λ ≥ α,

(1) ω × N〈α〉 ∼= N〈α〉

(2) (N〈α〉)ω ∼= N〈max{1, α}〉

(3) N〈α〉 × N〈α〉 ∼= N〈α〉

(4) N〈α〉 × N〈β〉 ∼= N〈β〉 implies N〈α+ 1〉 × N〈β + 1〉 ∼= N〈β + 1〉

(5) N〈α〉 × N〈λ〉 ∼= N〈λ〉

(6) N〈α〉 × N〈λ+ 1〉 ∼= N〈λ+ 1〉

(7) N〈α〉 × N〈α+ 1〉 ∼= N〈α+ 1〉

(8) N〈α〉 × N〈α+ k〉 ∼= N〈α+ k〉 for all k ∈ ω.

Now we show the above claims.

(1) For α = 0, the claim is just the statement ω × ω ∼= ω. For a limit ordinal λ > 0 we
calculate:

N〈λ〉 =
∏

β<λ

N〈β〉 ∼= ω ×
∏

1≤β<λ

N〈β〉 ∼= ω × ω ×
∏

1≤β<λ

N〈β〉 ∼= ω ×
∏

β<λ

N〈β〉 = ω × N〈λ〉.
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Now let α be a successor cardinal α = α′ + 1. We fix an element x0 ∈ N〈α′〉 and define
functions S : N〈α〉 × ω2 → N〈α〉, ϕ : ω × N〈α〉 → N〈α〉 and ψ : N〈α〉 → ω × N〈α〉 by

S(f, a, b)(x) :=







b if f(x) = a
a if f(x) = b

f(x) otherwise,

ϕ(a, f) := S
(

f, 〈a, f(x0)〉, f(x0)
)

and

ψ(f) :=
(

π1(f(x0)), S(f, π2(f(x0)), f(x0))
)

for f ∈ N〈α〉, x ∈ N〈α′〉 and a, b ∈ ω, where π1, π2 : ω → ω are the projections of the
inverse of the pairing function 〈., .〉. By cartesian closedness of QCB0, these functions are
continuous. One easily checks that ϕ and ψ are inverses of each other. Hence ω ×N〈α〉 is
homeomorphic to N〈α〉.

(2) Clearly N〈0〉ω = N〈1〉. For a successor ordinal α = α′+1, the cartesian closedness of QCB0

and Claim (1) yield us

N〈α〉ω ∼=
(

ωN〈α′〉
)ω ∼= ωω×N〈α′〉 ∼= ωN〈α′〉 ∼= N〈α〉.

For limit ordinals λ > 0 we proceed by induction and get by the induction hypothesis

N〈λ〉 ∼= N〈0〉 × N〈1〉 ×
∏

2≤β<λ

N〈β〉 ∼=
∏

1≤β<λ

N〈β〉

∼=
∏

1≤β<λ

(N〈β〉)ω ∼=
(

∏

1≤β<λ

N〈β〉
)ω ∼= N〈λ〉ω .

(3) We proceed by induction. For α = 0, the statement is simply ω × ω ∼= ω. For any limit
ordinal λ 6= 0, the induction hypothesis yields

N〈λ〉 × N〈λ〉 =
(
∏

α<λ

N〈α〉
)

×
(
∏

α<λ

N〈α〉
)

∼=
∏

α<λ

(N〈α〉 × N〈α〉) ∼=
∏

α<λ

N〈α〉 = N〈λ〉.

For any successor ordinal α = α′ + 1, the cartesian closedness of QCB0 and the induction
hypothesis yield

N〈α〉 × N〈α〉 = ωN〈α′〉 × ωN〈α′〉 ∼= (ω × ω)N〈α
′〉 ∼= ωN〈α′〉 = N〈α〉.

(4) We calculate using the cartesian closedness of QCB0 and Claim (1):

N〈α+ 1〉 × N〈β + 1〉 = ωN〈α〉 × ωN〈β〉 ∼= ωN〈α〉 × ωN〈α〉×N〈β〉 ∼= ωN〈α〉 ×
(

ωN〈β〉
)N〈α〉

∼=
(

ω × ωN〈β〉
)N〈α〉 ∼=

(

ωN〈β〉
)N〈α〉 ∼= ωN〈α〉×N〈β〉 ∼= ωN〈β〉 = N〈β + 1〉 .

(5) We calculate using Claim (3):

N〈α〉 × N〈λ〉 ∼= N〈α〉 ×
∏

β<λ

N〈β〉 ∼= N〈α〉 × N〈α〉 ×
∏

β<λ,β 6=α

N〈β〉

∼= N〈α〉 ×
∏

β<λ,β 6=α

N〈β〉 ∼=
∏

β<λ

N〈β〉 = N〈λ〉 .
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(6) For a successor ordinal α = α′ + 1 < λ, we have N〈α′〉 × N〈λ〉 ∼= N〈λ〉 by Claim (5) and
thus N〈α〉 × N〈λ+ 1〉 ∼= N〈λ+ 1〉 by Claim (4). For a limit ordinal α with 0 < α ≤ λ, we
proceed by ordinal induction and get by Claim (2):

N〈λ+ 1〉 ∼= (N〈λ+ 1〉)ω ∼=
∏

i∈ω
N〈λ+ 1〉 ∼=

∏

β<α

N〈λ+ 1〉 ∼=
∏

β<α

(N〈β〉 × N〈λ+ 1〉)

∼=
(
∏

β<α

N〈β〉
)

×
(
∏

β<α

N〈λ+ 1〉
)

∼=
(
∏

β<α

N〈β〉
)

× (N〈λ+ 1〉)ω ∼= N〈α〉 × N〈λ+ 1〉 .

(7) We proceed by ordinal induction. For α = 0, N〈α〉×N〈α+1〉 ∼= N〈α+1〉 is an instance of
Claim (1). For a successor ordinal, N〈α〉×N〈α+1〉 ∼= N〈α+1〉 follows from the induction
hypothesis and Claim (4). For a limit ordinal λ > 0, we know N〈λ〉×N〈λ+1〉 ∼= N〈λ+1〉
from Claim (6).

(8) We proceed by induction on k ∈ ω. For k ∈ {0, 1}, we know the claim from (3) and (7).
For k ≥ 2 we obtain by Claim (7) and by the induction hypothesis

N〈α〉 × N〈α+ k〉 ∼= N〈α〉 × N〈α+ k − 1〉 ×N〈α+ k〉
∼= N〈α+ k − 1〉 × N〈α+ k〉 ∼= N〈α+ k〉 .

Now let α ≤ β < ω1. Then either there is some k ∈ ω such that β = α + k or the largest
limit ordinal λ with λ ≤ β satisfies α < λ. In the first case, N〈α〉 × N〈β〉 ∼= N〈β〉 follows from
Claim (8). Otherwise we choose l ∈ ω such that β = λ+l and calculate using Claims (5) and (8):

N〈β〉 = N〈λ+ l〉 ∼= N〈λ〉 × N〈λ+ l〉 ∼= N〈α〉 ×N〈λ〉 × N〈λ+ l〉 ∼= N〈α〉 × N〈β〉 .

✷

From this propositions, we deduce the following basic properties of continuous functionals of
countable types.

Lemma 5.3 (1) For all α < β < ω1, the spaces N〈α〉, ω×N〈β〉 and N ×N〈β〉 are continuous
retracts of N〈β〉.

(2) (N〈0〉)ω ∼= N〈1〉 and (N〈α〉)ω ∼= N〈α〉 for 1 ≤ α < ω1.

(3) For all β < ω1,
∏

α≤β N〈α〉
∼= N〈β〉.

(4) For all α < β < ω1,
∏

α<γ≤β N〈α〉
∼= N〈β〉.

(5) For all countable ordinals β0 < β1 < · · · , we have
∏

k∈ω N〈βk〉
∼= N〈sup{βk | k ∈ ω}〉.

(6) For all countable ordinals α0, α1, . . ., we have
∏

i∈ω N〈αi〉 ∼= N〈sup{1, αi | i ∈ ω}〉.

(7) For all α, β < ω1, we have N〈α〉N〈β〉 ∼= N〈max{α, β + 1}〉.

Proof.

(1) This follows immediately from Proposition 5.2.

(2) This has been shown inside the proof of Proposition 5.2.
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(3) We proceed by induction, the case β = 0 being trivial. If β = γ + 1 is successor then we
have

∏

α≤β

N〈α〉 ∼= N〈β〉 ×
∏

α≤γ

N〈α〉 ∼= N〈β〉 × N〈γ〉 ∼= N〈β〉.

If β is limit then we have

∏

α≤β

N〈α〉 ∼= N〈β〉 ×
∏

α<β

N〈α〉 ∼= N〈β〉 × N〈β〉 ∼= N〈β〉 .

(4) By induction on β, the case β = α+1 being trivial. If β = γ+1 > α+1 is successor then
we have

∏

α<δ≤β

N〈δ〉 ∼= N〈β〉 ×
∏

α<δ≤γ

N〈δ〉 ∼= N〈β〉 × N〈γ〉 ∼= N〈β〉.

If β is limit then we have by Claim (3)

∏

α<δ≤β

N〈δ〉 ∼= N〈β〉 ×
∏

α<δ<β

N〈δ〉 ∼= N〈β〉 × N〈α〉 ×
∏

α<δ<β

N〈δ〉

∼= N〈β〉 ×
∏

δ≤α

N〈δ〉 ×
∏

α<δ<β

N〈δ〉 ∼= N〈β〉 × N〈β〉 ∼= N〈β〉.

(5) Clearly, β := sup{βk | k ∈ ω} is a limit ordinal. By Claims (3) and (4) we get

N〈β〉 ∼=
∏

α<β

N〈β〉 ∼=
∏

α≤β0

N〈α〉 ×
∏

β0<α≤β1

N〈α〉 × · · · ∼= N〈β0〉 × N〈β1〉 × · · · =
∏

k

N〈βk〉.

(6) If αi = 0 for all i then
∏

iN〈αi〉 = N〈1〉. So let αi > 0 for some i ∈ ω. First we assume that
there is some j with αj = α := sup{1, αi | i ∈ ω}. From Proposition 5.2 and Claim (2) we
get

∏

i∈ω
N〈αi〉 ∼=

∏

i 6=j

N〈αi〉 × N〈α〉 ∼=
∏

i∈ω
N〈αi〉 × (N〈α〉)ω

∼=
∏

i∈ω
N〈αi〉 ×

∏

i∈ω
N〈α〉 ∼=

∏

i∈ω
(N〈αi〉 × N〈α〉) ∼=

∏

i∈ω
N〈α〉 ∼= N〈α〉 .

It remains to consider the case when αj < α for all j ∈ ω (so, in particular, α is limit).
Choose a sequence i0 < i1 < · · · of indices such that αi0 < αi1 < · · · and sup{βk | k ∈
ω} = α where βk := αik for each k ∈ ω. Claims (3) and (4) yield us

∏

{N〈αi〉 | αi ≤ β0} ∼= N〈β0〉 and
∏

{N〈αi〉 | βj−1 < αi ≤ βj} ∼= N〈βj〉,

for all j ≥. From Claim (5) we deduce

N〈α〉 ∼=
∏

k

N〈βk〉 ∼=
∏

{N〈αi〉 | αi ≤ β0} ×
∏

{N〈αi〉 | β0 < αi ≤ β1} × · · · ∼=
∏

i

N〈αi〉.

(7) If α = 0, then N〈α〉N〈β〉 = ωN〈β〉 = N〈β + 1〉. If α = γ + 1 is successor then we have by
Proposition 5.2

N〈α〉N〈β〉 = (ωN〈γ〉)N〈β〉 ∼= ωN〈γ〉×N〈β〉 ∼= ωN〈max{γ,β}〉 = N〈max{α, β + 1}〉.
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Now let α > 0 be a limit ordinal. First consider the case β < α. There are non-limit
ordinals αi such that β < α0 < α1 < · · · and sup{αi | i ∈ ω} = α. From the result for
non-limit ordinals and Claim (5) we deduce

N〈α〉N〈β〉 ∼= (
∏

i

N〈αi〉)
N〈β〉 ∼=

∏

i

(N〈αi〉
N〈β〉) ∼=

∏

i

N〈αi〉 ∼= N〈α〉.

Let now α ≤ β. Then there are non-limit ordinals αi such that α0 < α1 < · · · and
sup{αi | i ∈ ω} = α. We get by the result for non-limit ordinals and by Claims (2) and (5)

N〈α〉N〈β〉 ∼= (
∏

i

N〈αi〉)
N〈β〉 ∼=

∏

i

(N〈αi〉
N〈β〉) ∼=

∏

i

N〈β + 1〉 ∼= N〈β + 1〉.

✷

6 The relationship of the continuous functionals to the hyper-

projective hierarchies

In this section we investigate the relationship of the continuous functionals to both the hy-
perprojective hierarchy of subsets of the Baire space N and the hyperprojective hierarchy of
qcb0-spaces.

The first result generalizes the characterization of projective subsets of N with the help of
Kleene-Kreisel continuous functionals in [ScS13, Theorem 7.6] to hyperprojective subsets.

Theorem 6.1 Let α be a non-zero countable ordinal and B a non-empty subset of N . Then
B ∈ Σ1

α(N ) iff there is a continuous function f : N〈α〉 → N with rng(f) = B.

The theorem is based on the following proposition about complementation in N , which has
been shown in [ScS13].

Proposition 6.2 Let Y be a qcb0-space and let f : Y → N be a continuous function with
rng(f) 6= N . Then there exists a continuous function g : N×ωY → N with rng(g) = N \rng(f).

Proof (Theorem 6.1). We proceed by induction. The case of non-limit levels are considered
precisely as for the finite ordinals in the proof of Proposition 7.5 and Theorem 7.6 in [ScS13].
Let now λ be a limit ordinal and f : N〈λ〉 → N a continuous function with rng(f) = B. Then
rng(f ◦δλ) = B, where δλ : Dλ → N〈λ〉 is the canonical admissible representation of N〈λ〉. Since
Dλ is in (Σ1

<λ)δ by Proposition 4.4(2), B ∈ Σ1
λ(N ) by Proposition 3.3(3).

For the other direction, let B ∈ Σ1
λ(N ). Then B = g(A) for some A ∈ (Σ1

<λ)δ and
some continuous function g : N → N . Since Σ1

<λ = Π1
<λ by Proposition 3.3, there are sets

A0, A1, . . . ∈ Π1
<λ such that A =

⋂

k∈ω Ak. Then A =
⋃

k∈ω Ak, where A = N \A. Choose ordi-
nals α(0), α(1), . . . below λ such that Ak ∈ Σ1

α(k) for each k ∈ ω. By the induction hypothesis,

there are continuous functions fk : N〈α(k)〉 → N such that rng(fk) = Ak for each k ∈ ω. Then
there is a continuous function h : X → N such that rng(h) = A, where X =

⊕

k N〈α(k)〉. By
Proposition 6.2 there is a continuous function u : N × ωX → N such that rng(u) = A. Let B
be the set {1} ∪ {α(k) + 1 | k ∈ ω}. Since QCB0 is cartesian closed and closed under countable
products and countable coproducts, we have

N × ωX ∼= N ×
∏

k∈ω

ωN〈α(k)〉 ∼= N〈1〉 ×
∏

k∈ω

N〈α(k) + 1〉.
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By Lemma 5.3(1) and (2), N〈1〉 ×
∏

k∈ω N〈α(k) + 1〉 is a continuous retract of
∏

β∈B N〈β〉. This
set is in turn a continuous retract of

∏

β<λN〈β〉 = N〈λ〉. So there is a continuous surjection

r from N〈λ〉 onto N × ωX . Since B = g(A), the continuous function f := g ◦ u ◦ r satisfies
B = rng(f). ✷

Below we make use of the following lemma.

Lemma 6.3 (1) Let X,Y be qcb0-spaces and f : Y → Y a continuous function without fixed
points. Then there is no continuous surjection from X onto Y X .

(2) For any qcb0-space X, there is no continuous surjection from X onto ωX .

Proof. The second assertion follows from the first one, where Y = ω and f(y) = y + 1. So it
suffices to prove the first one. Suppose for a contradiction that h : X → Y X is a continuous
surjection. Define a function g : X → Y by g(x) = f(h(x)(x)). By cartesian closedness of
QCB0, g is continuous, i.e. g ∈ Y X . Since h is a surjection, g = h(a) for some a ∈ X. Then
g(a) = f(h(a)(a)) = f(g(a)), hence g(a) ∈ Y is a fixed point of f . A contradiction. ✷

Finally, we relate the continuous functionals of countable types to the hyperprojective hier-
archy of qcb0-spaces (extending Theorem 7.7 of [ScS13]). The next result provides the exact
estimation of the spaces of continuous functionals of countable types in the hyperprojective
hierarchy of qcb0-spaces. On the other hand, the result provides “natural” witnesses for the
non-collapse property of this hierarchy.

Theorem 6.4 For any non-zero countable ordinal α, N〈α+ 1〉 ∈ QCB0(Π
1
α) \ QCB0(Σ

1
α). For

any countable limit ordinal λ, N〈λ〉 ∈ QCB0((Π
1
<λ)δ) \ QCB0((Σ

1
<λ)σ).

Proof. We proceed by induction. Obviously, N〈0〉,N〈1〉 ∈ QCB0(∆
1
0). By Proposition 4.3,

N〈2〉 ∈ QCB0(Π
1
1).

Let now α ≥ 2. If α is a successor ordinal, then N〈α + 1〉 ∈ QCB0(Π
1
α) by Proposition 4.3,

because N〈α〉 ∈ QCB0(Π
1
α) ⊆ QCB0(Σ

1
α+1) by the induction hypothesis. If α = λ is a limit

ordinal, we have

N〈λ〉 ∈ QCB0((Σ
1
<λ)δ) = QCB0((Π

1
<λ)δ) ⊆ QCB0(Σ

1
λ)

by the induction hypothesis and Propositions 3.3, 4.4. Again by Proposition 4.3 we obtain
N〈λ+ 1〉 ∈ QCB0(Π

1
λ). This completes the proof of the “upper bounds”.

Now we turn to the “lower bounds” and first show that N〈α + 1〉 /∈ QCB0(Σ
1
α) for any non-

zero countable ordinal α. We prove the stronger assertion that N〈α + 1〉 has no continuous
representation δ with D = dom(δ) ∈ Σ1

α(N ). Suppose for a contradiction that δ is such a
continuous representation of N〈α+ 1〉. Then there is a continuous surjection f from N〈α〉 onto
D by Theorem 6.1. Then δf is a continuous surjection from N〈α〉 onto N〈α+ 1〉 = ωN〈α〉. This
contradicts Lemma 6.3(2).

It remains to show that N〈λ〉 6∈ QCB0((Σ
1
<λ)σ). Again we prove a stronger assertion that there

is no continuous surjection δ from a set D ∈ (Σ1
<λ)σ onto N〈λ〉. Suppose for a contradiction that

δ : D → N〈λ〉 is such a surjection. Choose non-zero ordinals αk and non-empty sets Dk ∈ Σ1
αk

such that α0 < α1 < · · · , sup{αk | k ∈ ω} = λ, and D =
⋃

kDk. By Theorem 6.1, for any k ∈ ω
there is a continuous surjection from N〈αk〉 onto Dk. Then there is a continuous surjection
from X :=

⊕

k N〈αk〉 onto D. Then δf is a continuous surjection from X onto N〈λ〉. Since by
Lemma 5.3 N〈λ〉 ∼=

∏

k N〈αk+1〉 ∼= ωX , there is a continuous surjection from X onto ωX . This
contradicts Lemma 6.3(2). ✷
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7 Categories of hyperprojective qcb0-spaces

In this section we show that the hyperprojective hierarchy of qcb0-spaces gives rise to a nice
cartesian closed category. This is the full subcategory of the category QCB0 consisting of the
spaces in

⋃

α<ω1
QCB0(Σ

1
α) as objects and all continuous function between them as morphisms.

We denote this category by QCB0(HP) and call its objects hyperprojective qcb0-spaces.
Recall that a category is countably complete (resp. countably co-complete), if it is closed under

countable limits (resp. co-limits). We do not recall here the rather technical notions of limits
and co-limits, but remind the reader that a category is countably complete (resp. co-complete)
iff it is closed under countable products and equalizers (resp. countable co-products and co-
equalizers). A category is cartesian closed, if it has finite products and admits for any two
objects X,Y an exponential Y X and an evaluation morphism ev : Y X ×X → Y allowing curry
and uncurry.

According to [Sch03], the category QCB0 is cartesian closed, countably complete and countably
co-complete. Here we discuss closure properties of some natural subcategories of QCB0 including
QCB0(HP) and the category QCB0(P) of projective qcb0-spaces from [ScS13].

Theorem 7.1 The category QCB0(HP) of hyperprojective qcb0-spaces is cartesian closed, count-
ably complete and countably co-complete. It inherits its exponentials, countable products, count-
able co-products, equalizers and co-equalizers from QCB0.

Proof. By Propositions 4.3 and 4.4, QCB0(HP) is closed under QCB0-exponentials and count-
able products. Since QCB0(HP) is a full subcategory of the cartesian closed category QCB0, it
is also cartesian closed. The remaining properties follow from the corresponding results about
countable products, countable co-products, equalizers and co-equalizers in Section 4. ✷

The next result provides a characterization of QCB0(HP) that avoids explicit mention of the
hyperprojective hierarchy. We thank Matthew de Brecht for pointing out this fact to us and for
allowing us to include it into the paper.

Theorem 7.2 The category QCB0(HP) is (up to homeomorphic equivalence) the smallest full
subcategory of QCB0 that has the closure properties from the previous theorem and contains the
Sierpinski space as an object. So any full subcategory C of QCB0 which contains the Sierpinski
space as an object and inherits exponentials, countable limits and countable co-limits from QCB0

contains a homeomorphic copy of any space in QCB0(HP).

Proof. Let C be a full subcategory of QCB0 which contains the Sierpinski space as an object
and inherits exponentials, countable limits and countable co-limits from QCB0. So C is cartesian
closed, countably complete and countably co-complete. Without loss of generality we assume
that C is closed under homeomorphic equivalence.

First we show that ω is an object of C. Since S is a C-object and C is closed under countable
product, Sω is a C-object. By being homeomorphic to S

ω, Pω is in C as well. Clearly, ω is
homeomorphic to the subspace M of Pω consisting of all singleton subsets of ω. We define
f, g : Pω → Pω by

f(p) :=

{

∅ if p = ∅
{0} otherwise

and g(p) :=

{

{0, 1} if p contains at least two numbers
{0} otherwise

Clearly, f and g are continuous and satisfy f(p) = g(p) ⇐⇒ p ∈ X. Hence M (together with
its inclusion into Pω) is an equalizer to f, g in QCB0 and thus in C. We conclude ω ∈ C.
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Next we show that any proper hyperprojective subset D of the Baire space N , endowed with
the subspace topology, is a C-object. To see this, choose a non-zero countable ordinal α such
that N \D ∈ Σ1

α(N ). By Theorem 6.1 there is a continuous surjection f from N〈α〉 onto N \D.
We define F,G : N → S

N〈α〉 by

F (x)(y) := ⊤ and G(x)(y) :=

{

⊥ f(y) = x
⊤ otherwise

for all x ∈ N and y ∈ N〈α〉. Since N is a Hausdorff space and QCB0 is cartesian closed, F and
G are continuous. Moreover every x ∈ N satisfies F (x) = G(x) iff x /∈ rng(f) iff x ∈ D. Hence
D is an equalizer to F,G in QCB0. Since S

N〈α〉 ∈ C, we obtain D ∈ C. As N 2 is homeomorphic
to N , every subspace of N 2 with a hyperprojective carrier set is in C as well.

Finally, we employ co-equalizers to get all of the hyperprojective qcb0-spaces. Let X be a
qcb0-space having an admissible representation δ : D → X such that EQ(δ) is hyperprojective.
Thus D is hyperprojective and δ is a quotient map. Above we have seen that D and EQ(δ) with
the respective subspace topologies are spaces in C. We let p1, p2 : EQ(δ) → D be the respective
projections. One easily checks that X and δ form a co-equalizer to p1, p2 in QCB0 and thus in C.
Hence X is a C-object. ✷

Next we identify a natural “small” cartesian closed subcategory of QCB0(HP) closed under
countable product. By 1 we denote a fixed one-point space.

Theorem 7.3 The full subcategory F := {1,N〈α〉 | α < ω1} of QCB0 is cartesian closed and
closed under countable QCB0-product. Moreover, F is the smallest such subcategory in the fol-
lowing sense: if C is a full cartesian closed subcategory of QCB0 which is closed under countable
product inherited from QCB0 and contains the space ω as an object, then any F-object is home-
omorphic to a C-object.

Proof. By Lemma 5.3(6), F is closed under countable QCB0-product. By Lemma 5.3(7), F is
closed under QCB0-exponentiation, hence F is also cartesian closed.

Let now C be a subcategory with the specified properties. From the proof of Proposition
8.2 in [ScS13] it follows that exponentials formed in C are homeomorphic to the corresponding
QCB0-exponentials. Since ω is a C-object, C contains homeomorphic copies of all the spaces of
continuous functionals of countable types. ✷

Corollary 7.4 There is no full cartesian closed subcategory C of QCB0 such that C inherits
countable products from QCB0, contains the discrete space ω of natural numbers and is contained
itself in QCB0(Σ

1
α) for some α < ω1.

Proof. Suppose for a contradiction that C were a cartesian closed subcategory of QCB0 with
the specified properties. By the previous theorem, there is a space E ∈ C homeomorphic to
N〈α+ 1〉. Hence N〈α+ 1〉 has an admissible representation δ such that EQ(δ) ∈ Σ1

α(N
2). This

contradicts Theorem 6.4. ✷

We conclude this section by formulating “finite” versions of the results above. They are proved
in the same way and provide a bit of new information to some results in [ScS13]. A category is
finitely complete (resp. co-complete) if it is closed under finite limits (resp. co-limits).

Theorem 7.5 The category QCB0(P) is the smallest full subcategory of QCB0 that inherits
exponentials, finite limits and finite co-limits from QCB0 and contains the Sierpinski space and
the space ω as objects.
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Theorem 7.6 The full subcategory F := {1, N〈k〉 | k ∈ ω} of QCB0 is cartesian closed and
closed under finite QCB0-product. Moreover, F is the smallest such subcategory in the following
sense: if C is a full cartesian closed subcategory of QCB0 which is closed under finite product
inherited from QCB0 and contains the space ω as an object, then any F-object is homeomorphic
to a C-object.

Remark 7.7 The above results characterize some subcategories of QCB0 in terms of minimality
in a class of subcategories of QCB0 that enjoy certain structural properties. In most cases we
have demanded that the corresponding constructions of new spaces are inherited from QCB0.
However, for some of these constructions this requirement is not necessary. We omit the details.

8 Final Remarks

We hope that the established closure properties of QCB0(HP) motivates to study many other
spaces of interest for Computable Analysis. We give two examples of sequences of function
spaces which are interesting objects of investigation.

The first example is the sequence of hyperprojective qcb0-spaces {R〈α〉}α<ω1
, defined by

induction on α as follows:

R〈0〉 := R, R〈α+ 1〉 := R
R〈α〉, and R〈λ〉 :=

∏

α<λ

R〈α〉,

where R denotes the space of real numbers endowed with the standard Euclidean topology,
α, λ < ω1 and λ is a non-zero limit ordinal. We call R〈α〉 the space of continuous functionals of
type α over R. Again, for finite ordinals we obtain the functionals over R of finite types which
are rather popular. Propositions 4.3 and 4.4 yield R〈α + 1〉 ∈ QCB0(Π

1
α) with an analogous

proof as for Theorem 6.4. With more effort one can establish R〈α+ 1〉 /∈ QCB0(Σ
1
α).

Recall that for any qcb0-space X byO(X) we denote the hyperspace of open sets inX endowed
with the Scott topology. The space O(X) is homeomorphic to the function space S

X , where S

is the Sierpinski space. We define the sequence of hyperprojective qcb0-spaces {O
α(X)}α<ω1

by
induction on α as follows: O0(X) := X, Oα+1(X) := O(Oα(X)), and Oλ(X) :=

∏

α<λ O
α(X),

where again α, λ < ω1 and λ 6= 0 is a limit ordinal. It seems to be worth investigating the
behavior of {R〈α〉}α<ω1

and {Oα(X)}α<ω1
with respect to the hyperprojective hierarchy of

qcb0-spaces.
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