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Abstract. The conjugacy problem for a finitely generated group G is
the two-variable problem of deciding for an arbitrary pair (u, v) of el-
ements of G, whether or not u is conjugate to v in G. We construct
examples of finitely generated, computably presented groups such that
for every element u0 of G, the problem of deciding if an arbitrary ele-
ment is conjugate to u0 is decidable in quadratic time but the worst-case
complexity of the global conjugacy problem is arbitrary: it can be any
c.e. Turing degree , can exactly mirror the Time Hierarchy Theorem, or
can be NP-complete. Our groups also have the property that the con-
jugacy problem is generically linear time: that is, there is a linear time
partial algorithm for the conjugacy problem whose domain has density
1, so hard instances are very rare. We also consider the complexity rela-
tionship of the “half-conjugacy” problem to the conjugacy problem. In
the last section we discuss the extreme opposite situation: groups with
algorithmically finite conjugation.
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1. Introduction

The word problem is a special case of the conjugacy problem since an
element in a group G is equal to the identity if and only if it is conjugate
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to the identity. The individual conjugacy problem, ICP(u0), for a fixed ele-
ment u0 of a group G is the problem of deciding whether or not arbitrary
elements v of G are conjugate to u0. The complexity of an individual con-
jugacy problem depends on the fixed element u0, and its complexity may be
much less than that of the conjugacy problem in G. The word problem for
semigroups resembles the conjugacy problem for groups in that it is a two
variable problem since an equation u = v cannot generally be reduced to
an equation with one fixed side. In 1965, J.C. Shepherdson [20] constructed
finitely presented semigroups in which each individual problem u0 = v?,
with u0 fixed and v arbitary, is decidable but the global word problem is
undecidable of arbitrary c.e. degree. Shortly thereafter Donald Collins [7]
constructed finitely presented groups in which each individual conjugacy
problem was decidable but the groups had undeciable conjuacy problem of
arbitrary c.e. degree. Indeed, both papers show that if one has a uniformly
computable set di of c.e. degrees then the complexity of each individual
problem problem is bounded by the join of a finite number of the di while
the global two-variable problem can be of any c.e. degree d greater than or
equal to any of the di.

The constructions of Collins used HNN extensions. Although HNN ex-
tensions may generally have complicated conjugacy problems, the time com-
plexity of many individual conjugacy problems may be quite low. Miller [15]
constructed a group K which is an HNN extension of a free group of finite
rank with finitely generated associated subgroups in which the conjugacy
problem is undecidable. However, it was shown in [5] that the individual
conjugacy problem for a generic element w0 ∈ K is decidable in at most cu-
bic time. See [3, 4] for other examples of HNN extensions and free products
with amalgamation where the the complexity of the individual conjugacy
problems of many elements is low.

In this article we construct finitely generated, computably presented groups
where all individual conjugacy problems are decidable in quadratic time
but the global conjugacy problem can have arbitrary worst-case complexity.
complexity. (Note in particular that the word problem is decidable in qua-
dratic time.) We discuss this from the viewpoints of the general theory of
computability, the Time Hierarchy Theorem and NP-completeness. There
is also now a general awareness that many decision problems are generi-
cally easy and this phenomenon for decision problems in group theory was
investigated in detail in [10]. Although having arbitrary worst-case com-
plexity, the conjugacy problem in the groups we construct will have linear
time generic-case complexity. This means that there is a linear time partial
algorithm for the conjugacy problem whose domain has density 1.

The paper [6] raised the fascinating question of the “half-conjugacy prob-
lem”. Suppose that we have a finitely generated group G with an algorithm
which decides, given an arbitrary pair (u, v) of elements of G, whether or not
u is conjugate to one of v or v−1: Must G have solvable conjugacy problem?
One supposes that the answer is “No”, but the question seems very subtle.
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We do not answer the basic question but we show that for every computable
function f : N→ {0, 1}, there is a group P with solvable conjugacy problem
in which the half-conjugacy problem is decidable in quadratic time while
the conjugacy problem has time complexity greater than f . The group P
also satisfies the above constraints on individual conjugacy problems and
generic-case complexity.

Finally, in the last section we discuss the extreme opposite situation where
complexity is the worst possible. A finitely generated group G with a com-
putably enumerable set of defining relators is algorithmically finite if every
infinite computably enumerable subset has two distinct words which define
elements equal in G. Miasnikov and Osin [16] showed how to use the Golod-
Shafarevich inequality to construct such groups. We say that a finitely
generated group G has algorithmically finite conjugation if G has infinitely
many conjugacy classes and every infinite computablely enumerable set of
elements of G must contain two elements which are conjugate. We show
that algorithmically finite groups have algorithmically finite conjugation.

We obtain very precise control over complexity by using non-metric small
cancellation theory so we first review the condition which which use. This
condition ensures that the structure of conjugacy diagrams in the groups
we construct is very simple, thus proving the desired results. We note that
our groups require using an infinite number of relators since any group with
a finite presentation satisfying our condition has global conjugacy problem
decidable in quadratic time. We then review each desired complexity condi-
tion and discuss the corresponding groups in separate sections. Howevery,
there is really only one basic construction and the different cases require
only small adjustments in the defining relators.

We thank the referee for very helpful suggestions.

2. Non-metic small cancellation theory

We construct the desired groups using small cancellation theory. For this
we need results developed in Chapter V of Lyndon and Schupp [13] but we
recall some essential definitions and details here.

Definition 1. Let F = 〈X〉 be a finitely generated free group. A subset R
of F is symmetrized if all elements of R are cyclically reduced and, for each
r ∈ R, all cyclic permutations of both r and r−1 are also in R. We write
r ≡ bc if b is an initial segment of r and c consists of the remaining letters
of r, so bc is reduced without cancellation. If r1 6= r2 are distinct elements
of R with r1 ≡ bc1 and r2 ≡ bc2 where b is nonempty, then b is called a
piece relative to R.

The basic non-metric small cancellation condition is

Condition C(p) : No element of R is a product of fewer than p pieces.



4 ALEXEI MIASNIKOV AND PAUL SCHUPP

The sets of defining relators which we construct will satisfy the condition
C(20). Even though we will not have a metric condition on the lengths of
pieces, we need a good notion of reduction.

Definition 2. Fix a symmetrized subset R of the free group F = 〈X〉. We
assume that all generators are pieces. If w is any cyclically reduced word,
consider the factorization w ≡ b1b2 . . . bl of w into maximal pieces. That is,
each bi is a piece and, if bi is not a suffix of w then biy is not a piece where
y is the letter following bi in w. The integer l is the piece length of w with
respect to R. We denote the piece length of w by ||w||R.

The following lemma is immediate.

Lemma 2.1. Let R be a symmetrized subset of F . If w is a cyclically
reduced word and w′ is a cyclic permutation of w then ||w||R and ||w′||R
differ by at most 1.

We need a notion of reduction tailored to the sets of relators which we
will use.

Definition 2.2. A word w contains an element of R with at most k pieces
missing if w ≡ usv and there is an element r ∈ R with r ≡ st where ||t||R ≤
k. A word w is weakly cyclically R-reduced if w is cyclically reduced in the
free group F , w does not begin and end with powers of the same generator
unless w is simply a power of a generator, and no cyclic permutation of w
contains a relator from R with at most 7 pieces missing.

The basic result of small cancellation theory is that if G = 〈X;R〉 where
R satisfies the condition C(p) with p ≥ 6 then every nontrivial word w which
is equal to the identity in G contains a subword which is an element of R
with at most 3 pieces missing. (If R satisfies the metric condition C ′(16), so

that the length of any piece is less than 1
6 of the length of any element of R

in which it occurs, we then have Dehn’s Algorithm.)

3. Groups with global conjugacy problem of arbitrary c.e.
degree

A set A of positive integers is computably enumerable, written c.e., if there
is a Turing machine M which enumerates all the elements of A. The basic
relation between computably enumerable sets is that of Turing reducibility.
A set A is Turing reducible to a set B, denoted A ≤T B, if there is an oracle
Turing machine MB with an oracle for B which computes A. Two sets A
and B are Turing equivalent if A ≤T B and B ≤T A. Turing equivalence
is indeed an equivalence relation and equivalence classes are called Turing
degrees. A Turing degree d is c.e. if it contains a c.e. set. (Not all sets in a
nonzero c.e. degree are themselves c.e. since a set is always Turing equivalent
to its complement.) The c.e. Turing degrees are partially ordered by Turing
reducibility and it is an important fact that there infinitely many distinct
c.e. Turing degrees.
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Traditionally, a recursive presentation of a group is a group presentation
〈X;R〉 where the set X of generators is finite and the set R of defining rela-
tors is computably enumerable. A computable presentation of a group is a
group presentation 〈X;R〉 where the set X of generators is finite and the set
R of defining relators is computable. We use these terms as distinguishing
two different classes of presentations. If a group G has a recursive presen-
tation it also has a computable presentation, but this requires changing the
presentation.

It was shown in the early 1970’s that the word and conjugacy problems for
recursively presented, indeed, finitely presented, groups mirror all possible
relations of Turing reducibility between c.e. Turing degrees: The c.e. Turing
degrees d1 and d2 satisfy d1 ≤T d2 if and only if there is a recursively
presented ( finitely presented) group G with word problem of Turing degree
d1 and conjugacy problem of Turing degree d2. The result for recursive
presentations is in Miller [14] and the stronger version for finite presentations
is due to Collins [8].

We will show

Theorem 3.1. For every c.e. Turing degree d there is computably presented
group G such that for every fixed element u0 of G, the problem of deciding if
an arbitrary element is conjugate to u0 is decidable in quadratic time but the
conjugacy problem of G has degree d but linear time generic-case complexity.

Alexander Ol’shanskii and Mark Sapir [17] proved the deep theorem that
any finitely generated group with solvable conjugacy problem can be embed-
ded in a finitely presented group with solvable conjugacy problem, estab-
lishing a direct conjugacy analog of the Higman Embedding Theorem. Such
a result depends on Ol’shanskii and Sapir’s development of the theory of S-
machines. It seems plausible that a very detailed analysis of the definitions
and lemmas in their monograph applied to our groups would yield finitely
presented groups where the complexity of all the individual conjugacy prob-
lems is bounded by a fixed tower of exponentials while the global conjugacy
problem is undecidable, but this would need to be carefully verified.

Since we want to discuss computational complexity, we need to be precise
about how the lengths of inputs are measured. The standard length function
for free groups is essentially a unary notation since it requires reduced words
to be completely written out. Thus the length of ai is i. We therefore use
a unary notation for positive integers, representing n by a repetition of n
identical symbols. It is a basic fact that if A is any infinite c.e. set, there is a
computable bijection f : N+ → A. Given an infinite c.e. set A not containing
0, fix such an f and let M be a Turing machine which, on input i written in
unary, computes j = f(i) in unary. Let ti be the number of steps used by
M in computing f(i). Let F = 〈a1, . . . , a20, b1, . . . , b20, c1, c2, c3, d1, d2, d3〉.
The defining relators for the group G for A will be the symmetrized closure
R of the the set {ri : i ∈ N+} of relators where
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ri = a1
j . . . a20

jc1
id1

tic2
id2

tic3
id3

tib20
−j . . . b1

−jd3
−tic3

−id2
−tic2

−id1
−tic1

−i, j = f(i)

Given the defining relators R, it will be immediate from small cancellation
theory that

a1
j . . . a20

j ∼ b1
j . . . b20

j ⇐⇒ j ∈ A.
and thus the conjugacy problem in G has the same Turing degree as A.
After discussing the geometry of conjugacy diagrams it will be clear that
this is essentially the only difficult case, establishing the desired results.

We first verify that R satisfies the piece condition C(20). The conjugating
subwords of the relator ri are the subword

c1
id1

tic2
id2

tic3
id3

ti

and its inverse. A conjugating part of a relator is of course a piece. Note that
for any full power of a generator ak or bk or cl occurring in an ri, say ak

j , that
power flanked on both sides by occurrences of the neighboring generators,
say ak−1ak

jak+1, is not a piece. Since the function f is one-to-one, ak
j

and cl
i occur only in the relator ri where f(i) = j. On the other hand,

the subword consisting of two successive powers, say ak
jak+1

j , is a piece
because the set A is infinite and there are i′ > i, j′ > j with f(i′) = j′ ∈ A
so ak

j′ak+1
j′ occurs in the relator ri′ . Since the time ti required to compute

f(i) and the time ti′ required to compute f(i′) may be the same for different
values of i and i′, the three syllables at either end of the conjugating part,
say c3

id3
tib20

−j , may occur in different relators.
The relators have been chosen so that the following lemma holds. Indeed,

it will hold for the set of relators of all the groups which we construct.

Lemma 3.2 (Reduction Lemma). There is an algorithm which, given an
arbitrary word w, calculates a weakly cyclically R-reduced conjugate of w in
quadratic time.

Proof. First, in linear time we calculate a cyclically reduced conjugate w′

in the free group which does not begin and end with powers of the same
generator, unless it is simply a power of a generator. In the latter case, it
weakly cyclically R-reduced. The point of the form of the relators is that
a relator with at most 7 pieces missing must contain a critical subword of
either the form

a20
jc1

id1
tic2

id2
tic3

id3
tib20

−j

or the form

b1
−jd3

−tic3
−id2

−tic2
−id1

−tic1
−ia1

j

or their inverses. This is because there are 9 pieces between the occurrences
of critical subwords in the defining relators. On seeing such a subword in
w′, run the Turing machine M which calculates f for ti steps on input i
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and see if M calculates j in exactly that number of steps. If so, we indeed
have part of a conjugate of the relator ri or its inverse. Next, check that
the part of w′ containing the above subword has the correct form, that is,
generators are in the correct order and have the appropriate powers j or −j.
If we expand the occurrence to a subword s which is part of a relator r ≡ st
and t is a product of at most 7 pieces, replace s by t−1 and freely cyclically
reduce the resulting word to obtain w′′. Note that the piece length of w′′ is
at least 12 less than the piece length of w. Repeat until we do not find any
critical subwords. The proof for the other sets of relators we construct will
be the same. �

We review the idea of generic-case complexity from the paper [10]. Let
Σ be a nonempty finite alphabet and let S ⊆ Σ∗. The density of S at n,
written ρn(S), is the number of words in S of length less than or equal to
n divided by the number of all words of length less than or equal to n. If
limit ρ(S) = limn→∞ρn(S) = 1 we say that S is generic in Σ∗. A particular
decision problem D on words over Σ∗ is said to generically computable in
time T (n) if there is a partial algorithm Φ for D which answers correctly on
an input w in time T (|w|) or else does not give an answer and such that the
domain of Φ is generic in Σ∗.

We point out that while worst-case complexity of the word or conju-
gacy problems is independent of a given presentation for a finitely gener-
ated group, this is not the case for generic-case complexity. To show that
a decision problem having a certain generic-case complexity is a property
of the group G one needs to show that for every finitely generated presen-
tation of G there is a partial algorithm working in the given time bound.
For the groups which we construct, the conjugacy problem is generically
linear time by Theorem C of [10] since our groups have infinite abelianiza-
tions containing Z6. From the form of the relators, after abelianization the
c and d generators disappear, so they generate a free abelian subgroup in
the abelianization, and the abelianization is independent of presentation.

4. The groups for the Time Hierarchy Theorem

We now want to mirror the Time Hierarchy Theorem. We discuss a few
details of the proof following the presentation in Arora and Barak [2]. They
consider Turing machines with a special input tape, some number k ≥ 1 of
work tapes and an output tape. Such a machine is completely determined
by a complete listing of its transition function, which can easily be encoded
by a string of 0’s and 1’s beginning with 1, and thus can be regarded as
a binary number. Many strings are not valid codes of Turing machines.
We then express strings coding Turing machines as unary numbers and Mx

is the Turing machine coded by a unary x. Of course, there are infinitely
many numbers coding machines with exactly the same behavior. (Just add
an arbitrary number of non-reachable states.)
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If f(n) ≥ n is a fully time constructable function then there is a language
Lf ⊆ {1}∗ with L ∈ TIME(f2(n)) but such that Lf /∈ TIME(f(n)). It is a
fact that there is a universal Turing machine U which, on input x, simulates

Mx on input x in time |x|log(|x|). Now consider the Turing machine M̂
which, on unary input x, halts and outputs 1 if x does not code a Turing
machine and otherwise uses the universal machine U to simulate Mx on input

x for f(x)1.5 steps. If Mx halts and outputs 1 then M̂ halts and outputs

0. Otherwise M̂ halts and outputs 1. Let Lf be the set of unary inputs

on which M̂ halts and outputs 1. Then Lf ⊆ DTIME(f2(n)) but Lf *
DTIME(f(n)). If Lf were in DTIME(f(n)), there would a Turing machine

M which obtains the same output as M̂ in time f(|n|). For any constant
c, there is an n0 such that n2 > cnlog(n) for all n > n0. Since there are
infinitely many Turing machines with the same behavior as M , let x be the
code of such a machine with x > n0. Then Mx would obtain the same result
as M̂ on input x in time f(|x|), a contradiction.

We again use the free group F = 〈a1, . . . , a20, b1, . . . , b20, c1, c2, c3, d1, d2, d3〉.
Now let ti be the time used by M̂ in deciding if i ∈ Lf . We will use almost
the same set of relators as before. The defining relators for the group H for
f will be the symmetrized closure R of the following set {rj : j ∈ Lf} of
relators where we now have

rj = a1
j . . . a20

jc1
jd1

tjc2
jd2

tjc3
jd3

tjb20
−j . . . b1

−jd3
−tjc3

−jd2
−tjc2

−jd1
−tjc1

−j , j ∈ Lf
The same considerations as before shows that this R satisfies the piece

condition C(20) and that there is a quadratic time algorithm which, given
w, calculates a weakly cyclically reduced conjugate of w. Given the defining
relators R, it will again be immediate from small cancellation theory that

a1
j . . . a20

j ∼ b1
j . . . b20

j ⇐⇒ j ∈ Lf .
and that the conjugacy problem for H is not in DTIME(f(n) but is in
DTIME(f2(n).

We have

Theorem 4.1. For every fully time constructable function f with f(n) ≥ n2,
there is a computably presented group H such that for every fixed element
u0 of H, the problem of deciding if an arbitrary element is conjugate to u0
is decidable in quadratic time while the conjugacy problem of H is decidable
in time f2(n) but is not decidable in time f(n). The conjugacy problem of
H has linear time generic-case complexity.

5. The half-conjugacy problem

Our result on the half-conjugacy problem is the following.

Theorem 5.1. For every computable function f : N → {0, 1} there is a
computably presented group P with solvable conjugacy problem for which the
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half-conjugacy problem is solvable in quadratic time but the time complexity
function of the conjugacy problem satisfies T (n) > f(n) for all n ≥ 1. The
group P retains the property that all individual conjugacy problems are de-
cidable in quadratic time and the conjugacy problem has linear time generic-
case complexity.

For the half-conjugacy problem, now let f be any computable function f :

N+ → {0, 1}. One can construct a Turing machine M̂ which, on unary input
i, halts and outputs 1 if i does not code a Turing machine and otherwise
uses the universal machine U to simulate Mi on input i for f(40i) steps. If

Mi halts and outputs 1 then M̂ halts and outputs 0. Otherwise M̂ halts

and outputs 1. The machine M̂ computes a total function g. Let ti be the

time used by M̂ in computing g(i). Let Lg be the set of unary inputs on
which outputs 1. Since we have diagonalized over f , Lg is computable in
time g but not in time f .

Again let F = 〈a1, . . . , a20, b1, . . . , b20, c1, c2, c3, d1, d2, d3〉. The set R of
defining relators will be {ri : i ≥ 1} where for i ∈ Lg,

ri = a1
i . . . a20

ic1
id1

tic2
id2

tic3
id3

tib20
−i . . . b1

−id3
−tic3

−id2
−tic2

−id1
−tic1

−i,

while for i /∈ Lg,

ri = a1
i . . . a20

ic1
id1

tic2
id2

tic3
id3

tib1
i . . . b20

id3
−tic3

−id2
−tic2

−id1
−tic1

−i.

The set R again satisfies the piece condition C(20). Note that the relators
show that for all i ≥ 1 the element a1

i . . . a20
i is conjugate to either b1

i . . . b20
i

or to its inverse, but which possibility holds depends on whether or not
i ∈ Lg. Furthermore, any algorithm for the conjugacy problem decides
membership in Lg and so takes as much time as g.

6. The geometry of conjugacy diagrams

Although various results of small cancellation theory are often stated for
a metric small cancellation condition, results about the geometry of the
relevant diagrams depend only on the appropriate piece condition. We have
seen that given an arbitrary element w we can effectively find a weakly
cyclically R-reduced conjugate u of w in quadratic time. What we now need
is that given two weakly cyclically R-reduced words u and v which are not
equal to the identity in G and which are conjugate in G, the conjugacy
diagram ∆ for u and v satisfies the conclusion of Theorem 5.5 of Chapter V
of Lyndon-Schupp. ([13], page 257.)

Theorem 6.1. Fix any group G among the groups we have constructed.
Let u and v be two nontrivial weakly cyclically R-reduced words which are
conjugate in G and let ∆ be a reduced conjugacy diagram for u and v with
outer boundary σ and inner boundary τ . Then every region of ∆ has edges
on both σ and τ , has at most two interior edges and has no interior vertices.
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Figure 1. Possible conjugacy diagrams

In short, the theorem says that ∆ “looks like” one of the diagrams in
Figure 1. The essential difference between the two pictures is whether or
not the inner and outer boundaries have any vertices in common.

That u and v are weakly cyclically R-reduced means that no cyclic per-
mutation of either contains an element of R with at most 7 pieces missing.
Since R satisfies the condition C(20), this means that any region D which
intersected only σ or τ and such that the intersection is a consecutive part of
the boundary would have interior degree at least 12, which will be impossible
by the counting formulas. These formulas depend only on the piece condi-
tion and thus the conclusion of Theorem 5.5 follows just as in the metric
case.

We give the detailed argument for the groups G with conjugacy problem
of desired c.e. degree. Given an arbitrary nonidentity element u0 of G, fix
a weakly cyclically reduced conjugate u of u0. For powers ak

l or bp
q which

occur in u, we need to know if k or q are in A and, if so, what arguments
of the function f give those values. We claim that this finite amount of
information suffices to decide conjugacy to u and thus conjugacy to u0.

Given an element v′, we can calculate a weakly cyclically R-reduced con-
jugate v of v′ in quadratic time by the Reduction Lemma, Lemma 3.2. If
v ∼ u in the free group F , they are conjugate in G. If not, but v ∼ u in G,
there is a minimal conjugacy diagram ∆ for u and v containing at least one
region. Let σ, labelled by u, be the outer boundary of ∆, and let τ , labelled
by v, be the inner boundary of ∆. The structure theorem shows that, since
the piece length of the intersection of the boundary of any region D with
either the outer or inner boundary of ∆ is a most 12, the intersection of
the boundary of D with both σ and τ must contain several occurrences of
generators to the same power j. Since we are just considering conjugacy to
u, the free group length C = |u| of u is a constant in this algorithm.

In a conjugacy diagram ∆ for u and v, say that an edge e ∈ σ and an edge
f ∈ τ are “opposite each other” if one of the following conditions holds:

(1) the two edges are on both boundaries and coincide;
(2) the edges form the beginning of an island in that the edge preceding

them is on both boundaries and f−1e are successive edges on the
boundary of a region of ∆;

(3) f−1he is a successive part of the boundary of a region D and h is
the label on an interior edge separating D from another region.
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The main point is that if we choose a letter y in u and a letter z in
v and suppose that they are the labels on edges which are opposite each
other in ∆, then is only one way to fill in the rest of the conjugacy diagram
and we can calculate whether or not a valid conjugacy diagram with this
initial condition exists in linear time. If we succeed in constructing a valid
conjugacy diagram for one of the 3C|v| possible initial conditions, then u
and v are conjugate, and if we cannot construct a conjugacy diagram then
they are not conjugate.

It is also clear from the structure of conjugacy diagrams that

a1
j . . . a20

j ∼ b1
j . . . b20

j ⇐⇒ j ∈ A.

so a solution to the conjugacy problem for G decides membership in A.
On the other hand, given an oracle for the set A we can calculate weakly
cyclically R-reduced conjugates for any pair of elements and then apply
the method above to decide conjugacy and the conjugacy problem for G is
Turing equivalent to deciding membership in A.

For the groups H for the Time Hierarchy Theorem it is clear that

a1
i . . . a20

i ∼ b1
i . . . b20

i ⇐⇒ i ∈ Lf

so the conjugacy problem cannot be calculated in time f .
The conjugating part of the defining relators has been chosen so that the

only way that a20c1
id1 or d1c2

id2 or d2c2
id3 or their inverses can be subwords

of the label on an interior edge in a reduced diagram is if they are matched
against the corresponding generators of the other conjugating part of the
same relator. And since the boundary labels of a conjugacy diagram are
freely reduced, the entire conjugating parts must then be exactly matched
and appear as the label on the interior edge. If all interior edges are so
labelled, the diagram shows that a power of some a1

i . . . a20
i is conjugacy to

the same power of b1
i . . . b20

i.
If it is the case that for some region of the conjugacy diagram a conjugat-

ing part of the relator is not completely matched against its inverse, then
some cl

idl
ti occurs on one of the boundaries and the padding allows us to

calculate in linear time if this is indeed a correct part of a relator. In this
case we can again see if one can construct a valid conjugacy diagram in
quadratic time. So the algorithm in time f2(n) for membership in Lf solves
the conjugacy problem for H.

The remarks for the groups H apply exactly to the groups P for the half-
conjugacy problem. The only hard case is when a power of a1

i . . . a20
i is

conjugate to the corresponding power of b1
i . . . b20

i or to its inverse. The
relators force one of the two possibilities to hold but deciding which one
requires deciding membership in Lg. So the conjugacy problem for these
groups is solvable in time g but not in time f .
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7. A group with NP-complete conjugacy problem

We now want to construct a computably presented group G with NP-
complete conjugacy problem while keeping the constraint that all individual
conjugacy problems are decidable in quadratic time and that the conju-
gacy problem for the given presentation is strongly generically quadratic
time. The previous results on imitating the Time-Hierarchy Theorem and
the half-conjugacy problem depended on using the free group unary nota-
tion since this notation gives enough padding in the conjugating parts of the
relators to check the correctness of relators. Of course, elements of a free
group also have a unique normal form with exponents, where we write pow-
ers of generators as the name of the generator with a decimal exponent. A
syllable is such a power of a generator and we require that adjacent syllables
are powers of distinct generators. For example, one element of the free group
〈a, b, c〉 is w = a25b−17a−33c3. The length of a normal form with exponents
is the total number of symbols in the normal form. Thus |w| = 13 for the
example just given. Basic decision problems in free groups mainly retain
their polynomial-time decidability in this notation. For example, Gurevich
and Schupp [9] show that the uniform membership problem for finitely gen-
erated subgroups of a free group remains in polynomial time when elements
are written in exponent normal form. We need to use exponent normal form
in order to have a coding of the satisfiability problem for Boolean expres-
sions where the coded length is proportional to the length of the standard
coding of such expressions.

The problem 3-SAT is the satisfiability problem for Boolean expressions
which are conjunctions of clauses, each of which contains exactly three lit-
erals. A literal is the symbol x with positive decimal subscript, representing
a variable, or its negation. For example, the expression

(x1 ∨ x3 ∨ ¬x7) ∧ (¬x4 ∨ x7 ∨ x11) ∧ (x1 ∨ x7 ∨ ¬x9) ∧ (¬x3 ∨ x4 ∨ x9)

is an instance of 3-SAT. A basic result of complexity theory is that 3-SAT
is NP-complete. Variables may be repeated in a clause but we assume that
a clause does not both a variable and its negation.

We will represent the clause (xi ∨ xj ∨ xk) as aibjck with the exponent
negative if the variable is negated. We represent a conjunction of clauses by
the concatenation of the representatives of the clauses. Thus we represent
the example of 3-SAT given above by

a1b3c−7a−4b7c11a1b7c−9a−3b4c9

So the length of our basic coding is even shorter than the standard coding
of instances of 3-SAT.

In order to represent 3-SAT we need to code all its instances. To do this
we put a “short-lex” well-ordering on Z3 as follows. The index of a triple
(z1, z2, z3) is |z1| + |z2| + |z3|, the sum of the absolute values of the zi. We
order triples first by index, and within the same index lexicographically but
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with positive values preceding negative ones. Note that we consider only
triples which do not contain 0 since subscripts of variables are positive.

We define an enumeration E = {ηi} of all instances of 3-SAT as follows.
We enumerate all pairs (m,n) of positive integers in the usual way. When a
pair (m,n) is enumerated, we then enumerate all instances of 3-SAT where
there are at most m clauses and the maximum index of any clause is at most
n and the instance has not previously been enumerated. The clauses in an
instance are concatenated in the short-lex order defined above and we order
instances lexicograpically.

A language L ∈ NP is characterized by the fact that for every instance
which is in L, there is a short certificate, given which one can verify in poly-
nomial time that the instance is indeed in L. For 3-SAT this certificate is
an assignment of truth values showing that the instance is actually satisfi-
able. For an instance of 3-SAT which is satisfiable we choose the the first
satisfying assignment in the usual truth-table order.

We code this satisfying assignment using generators x, y, z in the following
way. For our running example given above, the first line of the truth-table
assigning all variables the value false satisfies the instance. So we code this
assignment as

x−1y−3z−7x−4y−7z−11x−1y−7z−9x−3y−4z−9

The absolute values of the exponents again represent the variables and
the sign of the exponent is negative if the variable is assigned the value false
and positive if the variable is assigned the value.

The defining relators we use will be words in exponential normal form in
the free group F on generators

a1, b1, c1, ...., a20, b20, c20, d1, e1, f1, ..., d20, e20, f20, u1, v1, w1, ..., u3, v3, w3, x1, y1, z1, x2, y2, z2

If ηj is a satisfiable instance in the enumeration E defined above, let αηj ,l
denote the coding of this instance on the generators al, bl, cl for 1 ≤ l ≤ 20
and let βηj ,l denote the coding of this instance on the generators dl, el, fj for
1 ≤ l ≤ 21. Let γηj ,l represent the coding of this instance on the generators
ul, vl, wl for 1 ≤ l ≤ 3. Finally, let δηj ,l represent the coding of the satisfying
truth assignment for this instance on the generators xl, yl, zl, l = 1, 2.

The basic defining relators for our group G is the set R = {rηj} where rηj
is

αηj ,1...αηj ,20(γηj ,1δηj ,1γηj ,2δηj ,2γηj ,3)βηj ,20
−1...βηj ,1

−1(γηj ,3
−1δηj ,2

−1γηj ,2
−1δηj ,2

−1γηj ,1
−1)

and where ηj ranges over all satisfiable instances in the enumeration E .
Note that although the Greek letters now represent long words on the given
generators, taking them to correspond to the Roman letters of the previous
groups shows that the general form of the defining relators is essentially the
same as before.

We now need to use small cancellation theory over free products, which
is essentially like small cancellation theory over free groups. For technical
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details we again refer to Lyndon-Schupp[13], but we review some basic defi-
nitions. A free group F with a specified free basis can be viewed as the free
product of the infinite cyclic groups generated by the specified generators.
The free product normal form is given by the normal form with exponents
but the free product length |u| of a normal form is just the number of syllables
in u. We now view F as this free product.

If u = ys1 and v = s2z are free product normal forms with the last syllable
of u and the first syllable of v in the same factor, then there is cancellation in
the product uv if s2 = s1

−1 and consolidation in the product uv if s2 6= s1
−1.

An element u = y1...yn is weakly cyclically reduced if |u| ≤ 1 or yn 6= y1
−1. A

set R ⊂ F is symmetrized if every element of R is weakly cyclically reduced
and if r ∈ R then every weakly cyclically reduced conjugate of r and r−1 is
also in R.

An element w has semi-reduced form uv if there is no cancellation in the
product uv. Note that consolidation is allowed. An element p is a piece
relative to R if R contains distinct elements r1 and r2 with semi-reduced
forms r1 = py1 and r2 = p−1y2. The metric small cancellation condition is
now

Condition C ′(λ): If r ∈ R has semi-reduced form r = py where p is a
piece, then |p| < λ|r|. Also, every element of R has length greater than 1/λ.

The set R of defining relators we now use is the symmetrized closure of
the set R defined above, that is, all weakly cyclically reduced conjugates
of elements of R and their inverses. Since there can be only one basic
relator corresponding to a particular instance of 3-SAT, it is easy to see
that the maximum length of a piece relative to R is at most the length
of the conjugating part of the relator. Thus our set R of relators satisfies
C ′(1/9).

Given this small cancellation condition the geometry of conjugacy dia-
grams is the same as in the case of quotients of free groups (not viewed as
free products). Thus in the quotient group F/N where N is the normal
closure of R we have

αηj ,1...αηj ,20 ∼ βηj ,1...βηj ,20

if and only if the instance ηj is satisfiable. It follows exactly as in our
previous discussion that powers of variants of the above are the only hard
instances. Thus each individual conjugacy problem is decidable in quadratic
time and the conjugacy problem as a whole is generically linear time. Thus
the conjugacy problem of G is NP-complete and the other requirements are
met.

8. Groups with algorithmically finite conjugation

We have shown that one can bound the complexity of all individual conju-
gacy problems while making the global conjugacy problem arbitrarily com-
plex. In Miller’s famous examples of residually finite, finitely presented
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groups G with undecidable conjugacy problem, there is always some element
q for which ICP (q) is undecidable (Lemma 4 on page 27 in [?]). However,
[5] shows that the individual conjugacy problems ICP (w) in Miller’s group
are solvable in polynomial time for for all w from an exponentially generic
subset of G. This leads one to ask about the opposite phenomenon.

Question 1. Are there recursively presented groups G with solvable word
problem such that if the individual conjugacy problems are decidable on a
computably enumerable subset Y ⊆ G then Y is negligible, or indeed expo-
nentially negligible?

Although Theorem 3.1 shows that there is no general effective way to build
a uniform decision algorithm for the conjugacy problem from solutions of
the individual conjugacy problems, the following general lemma holds.

Lemma 8.1. Let G = 〈X;R〉 be a recursively presented group. If W =
{w1, ..., wn} is a finite set of pairwise nonconjugate elements of G then there
is a partial algorithm Φ which decides the conjugacy problem on the union
Z =

⋃
i=1,...,nwi

G of the conjugacy classes of the wi ∈W .

Proof. The partial algorithm Φ works as follows. Since G is recursively
presented, when given elements u, v ∈ G, we can begin enumerating in
parallel all words equal in G to conjugates of the wi ∈ W . If u and v are
in Z, they will both eventually be enumerated in this process. If they are
enumerated as conjugates of the same wi they represent conjugate elements
of G. If they are enumerated as conjugates of distinct wi and wj they are
not conjugate in G. �

Corollary 1. A recursively presented group with only finitely many conju-
gacy classes has solvable conjugacy problem.

We say that a recursively presented group G has algorithmically finite
conjugation if G has infinitely many conjugacy classes and every infinite c.e.
set of elements of G must contain two elements which are conjugate. We note
that this condition implies that if Y is a c.e. set of elements of G for which
there is a partial algorithm Φ solving the conjugacy problem for elements
of Y then Y must have elements from only finitely many conjugacy classes
and we are in the situation of the above lemma. Given a partial algorithm
Φ deciding conjugacy for a set Y containing infinitely many pairwise non-
conjugate elements, we could computably enumerate an infinite set S of
pairwise non-conjugate elements of G as follows. Let s0 be the first element
in the enumeration of Y . Now use Φ and the enumeration Y until we find
an element s1 not conjugate to s0. Continue this process, finding at the n-th
stage, an element sn not conjugate to any of s0, ..., sn−1.

Thus the conjugacy problem is as bad as possible in a group with algo-
rithmically finite conjugation.

Recall that a group G generated by a finite set X is termed algorithmically
finite [16, 11] if every infinite computably enumerable subset of F (X) has
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two distinct words which define equal elements in G. In other words one can
computably enumerate only a finite set of words in F (X) which define pair-
wise distinct elements of G. Infinite, recursively presented, algorithmically
finite groups are also called Dehn Monsters and have been shown to exist
[16]. Indeed, there are even residually finite Dehn Monsters[11, 12]. We next
observe that any Dehn Monster has algorithmically finite conjugacy.

Theorem 8.1. Let G be an infinite, recursively presented, algorithmically
finite group generated by a finite set X. Then:

1) G has infinitely many conjugacy classes;
2) G has algorithmically finite conjugation;

Proof. Since G = 〈X;R〉 has unsolvable word problem it has unsolvable
conjugacy problem and hence must have infinitely many conjugacy classes
by the above corollary. That G has algorithmically finite conjugacy is im-
mediate since any infinite c.e. set must have two distinct words which are
equal in G and thus certainly conjugate. �

In Dehn Monsters one can solve the conjugacy problem only on finite
unions of conjugacy classes, but there is still a question about the asymp-
totic density of single conjugacy classes. There are non-amenable finitely
generated groups with finitely many conjugacy classes [18], so not all conju-
gacy classes in such groups are negligible. Also, the question of whether or
not there are finitely generated, residually finite, non-amenable groups with
only finitely many conjugacy classes seems to be open.
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