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MEASURING THE COMPLEXITY OF REDUCTIONS

BETWEEN EQUIVALENCE RELATIONS

EKATERINA FOKINA, DINO ROSSEGGER, AND LUCA SAN MAURO

Abstract. Computable reducibility is a well-established notion that allows
to compare the complexity of various equivalence relations over the natural
numbers. We generalize computable reducibility by introducing degree spectra
of reducibility and bi-reducibility. These spectra provide a natural way of
measuring the complexity of reductions between equivalence relations. We
prove that any upward closed collection of Turing degrees with a countable
basis can be realised as a reducibility spectrum or as a bi-reducibility spectrum.
We show also that there is a reducibility spectrum of computably enumerable
equivalence relations with no countable basis and a reducibility spectrum of
computably enumerable equivalence relations which is downward dense, thus
has no basis.

1. Introduction

Computable reducibility is a long-standing notion that has proven to be fruit-
ful for ranking the complexity of equivalence relations over the set ω of natural
numbers. The following definition is the relativised version of the one commonly
considered in the literature.

Definition 1.1. Let R and S be two equivalence relations on ω, and let d be a
Turing degree. R is d-computably reducible to S (notation: R ≤d S), if there is
a d-computable function f such that, for all natural numbers x, y, the following
holds

xRy ⇔ f(x)Sf(y).

If R ≤d S and S ≤d R, we write R ≡d S, and we say that R and S are bi-reducible
by d.

The case d = 0 has been thoroughly explored. The standard underlying intu-
ition is that, if R ≤0 S via some f , then S is at least as complex as R, since all
that is needed to decide whether x and y are R-equivalent is to know if f(x) and
f(y) are S-equivalent. A main benefit of computable reducibility is that it provides
a single formal setting for classifying countable equivalence relations, even if they
arise from very different contexts. For instance, Miller III [28] showed that there
is a finitely presented group such that all computably enumerable equivalence re-
lations are computably reducible to its word problem. As another example — this
one concerning relations that are not even hyperarithmetical — Fokina, S. Fried-
man, Harizanov, Knight, McCoy, and Montalbán [15] proved that the isomorphism
relations on several classes of computable structures (e.g., graphs, trees, torsion
abelian groups, fields of characteristic 0 or p, linear orderings) is complete among
Σ1

1 equivalence relations.
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More generally, researchers studied computable reducibility for decades, and ap-
proached it from several different perspectives, often unveiling significant connec-
tions with other fields, such as descriptive set theory and proof theory. Ershov [12]
initiated this research program in a category-theoretic fashion, while dealing with
the theory of numberings (see [11] for a survey in English). Following Ershov, one
can define the category of equivalence relations on ω, in which a morphism from R
to S is a function µ : ω/R → ω/S such that there is a computable function f with
µ([x]R) = [f(x)]S . So morphisms are induced by computable functions f such that
xRy ⇒ f(x)Sf(y), and thus R ≤ S holds if and only if there is monomorphism
from R to S.

Scholars continued Ershov’s work by pursuing different goals, such as studying
provable equivalence of formal systems (see, e.g., [36, 29, 6, 7]). This proof-theoretic
motivation explains why they focused on the Σ0

1 case: the set of theorems of any
computably axiomatizable theory is obviously a computably enumerable set. In
the Russian literature, c.e. equivalence relations are often called positive, but as
in [20] and many other contributions, we adopt the acronym ceers for referring to
them. The interested reader can see Andrews, Badaev, and Sorbi [1] for a nice and
up-to-date survey on ceers, with a special focus on universal ceers, i.e., ceers to
which all others can be computably reduced.

Computable reducibility shall also be regarded as the computable analogue of
Borel reducibility, a central object of study of modern descriptive set theory. In-
troduced by H. Friedman and Stanley [18], the notion of Borel reducibility allows
to compare the complexity of equivalence relations on Polish spaces, such as the
Cantor space 2ω (see [19, 25]). This is particularly meaningful for calculating the
complexity of different classification problems, i.e., problems associated to the task
of characterizing some collection of mathematical objects in terms of invariants (up
to isomorphism, or some other nice equivalence relation expressing structural re-
semblance). Calvert, Cummins, Knight, and S. Miller [8] introduced an effective
version of this study, by considering effective transformations between classes of
structures. Another possible approach is that of regarding computable reducibility
itself as representing a computable counterpart of Borel reducibility, where the for-
mer naturally applies to equivalence relations with domain ω and the latter refers
to equivalence relations on 2ω (or similar spaces). This interpretation appears, e.g.,
in [20, 10, 16, 27]. In particular, Coskey, Hamkins, and R. Miller [10] investigated
equivalence relations on (indices of) c.e. sets — or, of families of c.e. sets — that
mirror classical combinatorial equivalence relations of crucial importance for Borel
theory.

1.1. Reducibility and bi-reducibility spectra. Our motivating question is the
following: given two arbitrary equivalence relations R and S, how much information
is needed to compute possible ways of reducing R to S? As our main tool, we
introduce the following spectra of Turing degrees, that stand in analogy with many
similar notions from computable structure theory.

Definition 1.2. Let (R,S) be a pair of equivalence relations. The degree spectrum
of reducibility of (R,S) (or, the reducibility spectrum of (R,S)) is the following set
of Turing degrees

DgSp⇒(R,S) = {d | R ≤d S}.

Similarly, we define the degree spectrum of bi-reducibility of (R,S) (or, the bi-
reducibility spectrum of (R,S)) as

DgSp⇔(R,S) = {d |R ≡d S}.

Definition 1.3. The degree of reducibility of (R,S) is the least degree of DgSp⇒(R,S)
if any such degree exists. The degree of bi-reducibility of (R,S) is defined similarly.
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Different degree spectra have been considered in the literature. The isomor-
phism spectrum of a structure A (in symbols: DgSp∼=(A)) is classically defined
as the collection of all Turing degrees that compute a copy of A and is the most
common way to measure the computational complexity of A. Isomorphism spectra
have been widely investigated (see, e.g., [26, 24, 2, 21]; they are also called “degree
spectra” or “spectra of structures”: our terminology emphasizes the difference with
the other spectra discussed below). In recent years researchers considered also al-
ternative degree spectra, such as theory spectra [4], Σn-spectra [14], bi-embeddability
spectra [13], and elementary bi-embeddability spectra [32]. The notion of computable
categoricity gives rise to the categoricity spectrum, that measures how difficult it is
to compute isomorphisms between computable copies of a given structure (see [17],
where the notion was introduced). Our perspective is to some extent close to the
latter spectra, since we similarly fix the structures involved and then analyse the
information needed to witness a possible reduction between them.

The main problem when dealing with a given class of spectra is that of charac-
terizing which kind of information they can encode, in terms of the classes of Turing
degrees that can be realised by them. Even if A is a familiar structure, DgSp∼=(A)
(or some other possible spectrum of A) might be very complicated: for example, the
isomorphism spectrum of a linear order L is a cone (i.e., DgSp∼=(L) = {d : c ≤ d},
for some c) if and only if L is computably presentable, as proved by Richter [31].

In the present paper we aim to compare reducibility and bi-reducibility spectra
with other spectra considered in the literature.

Definition 1.4. Let A be a set of Turing degrees. A set of Turing degrees B is a
basis of A if

(1) all elements of B are Turing-incomparable,
(2) and A = {d : (∃b ∈ B)(b ≤ d)}.

In Section 2 we prove that any upward closed set of Turing degrees with a
countable basis can be realised as a reducibility spectrum. In Section 3 we show
that there is a reducibility spectrum with no countable basis, while in Section 4 we
show that there is a reducibility spectrum having no basis at all. In Section 5 we
partially extend these results to the case of bi-reducibility spectra.

1.2. Notation and terminology. For all X ⊆ ω, we denote ω r X by X. All
our equivalence relations have domain ω. We denote by [x]R the R-equivalence
class of any given x. We denote by cR the number of equivalence classes of R. An
equivalence relation R is n-bounded if all its equivalence classes have size at most
n; R is bounded if it is n-bounded for some natural number n. The following basic
equivalence relations will appear many times:

• Id1 is the equivalence relation consisting of just one equivalence class, i.e.,
xId1y, for all x, y;

• Id is the equivalence relation consisting of all singletons, i.e., xIdy if and
only if x = y.

Our computability theoretic notions are standard, and as in [34]. In particular,
recall how the principal function of a given infinite set A is defined. Let a0 < a1 <
. . . be the ascending sequence of all elements of A. The principal function of A is
the following injective function: pA(x) = ax. It is immediate that pA is computable
in A.

2. Classes of Turing degrees realised by reducibility spectra

For the sake of exposition, we begin by focusing on reducibility spectra. The
discussion about bi-reducibility spectra is postponed to the last section.
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It is easy to see from the definition of reducibility spectra that they are either
upwards closed or empty.

Proposition 2.1. Let (R,S) be any pair of equivalence relations. Then DgSp⇒(R,S)
is either empty or upward closed and, if empty, then cR > cS.

Proof. If cR > cS , then obviously there can be no reduction from R into S, since
any function would necessarily map distinct equivalence classes of R into one single
class of S.

Next, assume cR ≤ cS . Let a = deg(R⊕S), and define f to be the a-computable
function such that f(0) = 0 and

f(x+ 1) =

{

f(y) (∃y ≤ x)(y ∈ [x+ 1]R)

µz[(∀y ≤ x)(z /∈ [f(y)]S)] otherwise.

The hypothesis that cR ≤ cS holds guarantees that any fresh equivalence class
of R can be mapped into a fresh equivalence class of S. Thus, f is well-defined and
R ≤a S via f . This proves that DgSp⇒(R,S) is not empty. For the upward closure
just notice that if R a-computably reduces to S, then the reduction holds also for
any d such that d ≥ a. �

Convention. To avoid empty spectra, in what follows we assume that all our
equivalence relations have infinitely many equivalence classes.

Although our analysis of reducibility spectra will focus mainly on positive results,
we begin with a negative one: standard set-theoretic considerations show that
reducibility spectra do not coincide with the class of all upward closed collections
of Turing degrees.

Proposition 2.2. There exists an upward closed collection of Turing degrees that
can not be realised as a reducibility spectrum.

Proof. On the one hand, there are 2ℵ0 many reducibility spectra. This follows
immediately from the fact that any such spectrum is associated with a pair of

equivalence relations with domain ω. On the other hand, there are 22
ℵ0

many
upward closed collections of Turing degrees. To see this, recall that there are 2ℵ0

minimal degrees with respect to Turing reducibility and notice that any of set of
minimal degrees form the basis of an upward closed collection of degrees. �

Proposition 2.1 implies that any pair (R,S) has degree of reducibility if and
only if its reducibility spectrum is a cone. The next result says that, for any Turing
degree d, there is a pair of equivalence relations (R,S) that encodes d as its degree
of reducibility. We begin by introducing a convenient way of coding sets of numbers
by equivalence relations.

Definition 2.1. Let A0, . . . , An−1 be a collection of n pairwise disjoint sets of
numbers. An equivalence relation RA0,...,An−1

is generated by A0, . . . , An−1 if

xRA0,...,An−1
y ⇔ x = y ∨ (∃i < n)(x, y ∈ Ai).

This way of representing sets by equivalence relations is common in the literature
(see, for instance, the characterization of set-induced degrees of equivalence relations
in Ng and Yu [30]). Gao and Gerdes [20] call equivalence relations generated by
n sets n-dimensional. We adopt their terminology when convenient. A special
reason of interest for 1-dimensional ceers is due to the fact that the interval [01,0

′
1]

of the 1-degrees is embeddable into the degree structure generated by computable
reducibility on ceers (computably enumerable equivalence relations). As a corollary,
the first-order theory of ceers is undecidable, as is shown in [3].
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The 1-dimensional equivalence relations can easily encode any given Turing de-
gree as a degree of reducibility.

Proposition 2.3. For any Turing degree a, there is a pair of equivalence relations
(R,S), such that DgSp⇒(R,S) = {d : a ≤ d}.

Proof. Let A ⊆ ω be co-infinite and such that deg(A) = a. Let a be an element
of A. Consider (RA, Id). We define h as the following a-computable function, for
all x,

h(x) =

{

a if x ∈ A,

x otherwise.

We have that h a-computably reduces RA to Id. Thus, a ∈ DgSp⇒(RA, Id).
Now, suppose that f d-reduces RA to Id. It follows that there is some z such that,
for all x, f(x) = z if and only if x ∈ A. This means that f computes A, and
therefore d ≥ a. So, DgSp⇒(RA, Id) is the cone above a. �

The following question naturally arises: does every pair of equivalence relations
have a degree of reducibility? We answer to this question negatively. In fact, much
more can be proved.

It is a well known fact that the isomorphism spectrum of a structure can not
be the union of finitely many or countably many cones of Turing degrees, (see
Soskov [35]). This is not true for theory spectra. Andrews and Miller [4] showed
that there is a theory T such that its spectrum coincides with the union of two
cones. The same holds for Σn-spectra, with n ≥ 2, as proved by Fokina, Semukhin,
and Turetsky [14]. By the following theorem, we show that reducibility spectra can
be the union of n cones, for all n. In fact, given any countable set of Turing degrees
B, there is a reducibility spectrum that coincides with the upward closure of B. A
similar result holds for bi-reducibility spectra, as discussed in the final section.

Theorem 2.4. Any upward closed collection of Turing degrees with a countable
basis can be realised as a reducibility spectrum.

Before proving the theorem, let us recall the notion of introreducible set.

Definition 2.2 (see Jockusch [22]). An infinite set A ⊆ ω is introreducible if it
is computable in any of its infinite subsets, i.e., for all infinite B ⊆ A, we have
B ≥T A.

It is well known that any Turing degree d contains an introreducible set. To
prove it, from any infinite A ∈ d build a Turing equivalent set B as follows: for
each σ ⊆ χA, put (the code of) σ in B. It is not difficult to see that from any
infinite subset of B we can extract arbitrarily long initial segments of χA, and thus
compute B. A nice consequence of the fact that B consists of initial segments is
that, if some function f enumerates an infinite subset of B, then f computes B.
Since we make use of the latter property several times through the rest of the paper,
it is convenient to dignify it as a lemma.

Lemma 2.5. Let B be introreducible and let f be a function. If there is an infinite
Y ⊆ B such that Y is c.e. in f , then f ≥T B.

Proof. Every infinite c.e. set contains an infinite computable set. Relativising this,
we see that there is a Z ⊆ Y computable in f so that Z is infinite. Since B is
introreducible, Z computes B and thus f ≥T B. �

We can now prove the theorem.
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Proof of Theorem 2.4. Let A be an upward closed collection of Turing degrees hav-
ing basis B. First, assume B to be infinite. For any bi ∈ B, denote by Bi an
introreducible set that belongs to bi. Next, let

X = {〈pB0
(i), pBi

(x)〉 : i, x ∈ ω},

where pB0
(resp. pBi

) is the principal function of B0 (Bi).

We shall think of X as consisting of countably many columns such that its ith
column encodes the set Bi, indexed by the ith element of B0. We claim that
DgSp⇒(Id, RX) = A.

We first show that A ⊆ DgSp⇒(Id, RX). For j ∈ ω, consider the function

hj(x) = 〈pB0
(j), pBj

(x)〉,

We have that, for all j, Id is bj-computably reducible to RX via hj , since hj

injectively maps singletons of Id into the jth column of X , and therefore into
singletons of RX . Thus B ⊆ DgSp⇒(Id, RX) and then, since DgSp⇒(Id, RX) is
upward closed, A ⊆ DgSp⇒(Id, RX).

Now we have to prove that DgSp⇒(Id, RX) ⊆ A. Suppose that Id ≤d RX via
some f . We want to show that there is k such that f computes Bk, hence witnessing
that d ∈ A. Notice that the range of f is all contained, with the exception of at
most one element, in X . Consider two cases.

(1) Suppose that there is k such that f enumerates an infinite subset Y of the
kth column of X . If so, then the set {pBk

(x) : 〈pB0
(k), pBk

(x)〉 ∈ Y } is an
infinite subset of Bk which is c.e. in f . By Lemma 2.5, this means that f
computes Bk, and so d ≥ bk.

(2) If f enumerates only finitely many elements for each column, then it must
be the case that f picks infinitely many columns, i.e., the set

Y = {pB0
(k) : (∃y)(〈pB0

(k), y〉 ∈ range(f))}

must be infinite. Since Y ⊆ B0 and B0 is introreducible, by Lemma 2.5 we
obtain that d ≥ b0.

Thus, we have that DgSp⇒(Id, RX) ⊆ A. So we conclude that DgSp⇒(Id, RX) =A.

If B = {b0, . . . ,bn} is finite the proof is essentially the same. One can apply
the above construction as follows: when X is to be constructed, use the first n+ 1
columns of X to encode Bi ∈ bi, for i ≤ n, and then encode B0 into all remaining
columns. �

3. Reducibility spectra that contain Π0
1-classes

In the previous section, we proved that reducibility spectra are rather expressive:
any countable collection of cones can be realised as a reducibility spectrum. In this
section, we go one step further. We show that there is a reducibility spectrum that
contains a special Π0

1-class, i.e., one with no computable member. In doing so, we
continue our analysis of reducibility spectra of the form DgSp⇒(Id, R), focusing
this time on the case when R is a ceer.

The next definition appears in Andrews and Sorbi [5].

Definition 3.1 (Andrews and Sorbi [5]). A ceer R is light if Id ≤ R. Otherwise,
if R has infinitely many equivalence classes, it is dark.

Dark ceers exist. As an easy example, consider a 1-dimensional ceer RS where
S is a simple set. If Id ≤ RS via some computable f , then we would have that
range(f) r S is an infinite c.e. subset of S, contradicting the fact that the latter
is immune. More generally, the distinction between light and dark ceers reflects
a fundamental distinction about how much information we can effectively extract
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from a given ceer: light ceers are those for which there exists some computable
listing (yi)i∈ω of pairwise nonequivalent numbers, while for dark ceers no such
listing is possible (see [5] for an extensive study of light and dark ceers and how
they behave with respect to the existence of joins and meets of ceers).

For our present interests, it is immediate to observe that R is light if and only if
DgSp⇒(Id, R) is the cone above 0. Hence, we shall turn to dark ceers for nontrivial
spectra. In particular, we want to investigate how complicated DgSp⇒(Id, R) can
be if R is dark. Our strategy is to consider the class of all partial transversals of R.

Definition 3.2. Let R be an equivalence relation. A set A ⊆ ω is a partial
transversal of R if x, y ∈ A implies ¬(xRy), for x 6= y. Denote by P (R) the class
of all partial transversals of R.

Let us stress that we think of transversals of R as sets and not functions. Hence,
according to the last definition, P (R) is a subset of Cantor space instead of a subset
of Baire space. Our choice is motivated by the fact that we want to make use of
Theorem 3.3 below, which holds for computably bounded Π0

1-classes.

Proposition 3.1. For any equivalence relation R,

d ∈ DgSp⇒(Id, R) if and only if d computes some A ∈ P (R).

Proof. (⇒): If d ∈ DgSp⇒(Id, R), then there is a d-computable function f such
that range(f) ∈ P (R).

(⇐): If A is a d-computable infinite partial transversal of R, then Id ≤ R via
pA, and therefore d ∈ DgSp⇒(Id, R). �

The transversals of a given ceer R obviously form a Π0
1-class of functions. Simi-

larly, P (R) forms a Π0
1-class of sets.

Lemma 3.2. If R is a ceer, then P (R) is a Π0
1-class.

Proof. We construct a binary computable tree TR such that [TR] (i.e., the infinite
branches through TR) coincides with P (R). The idea is to freeze a node v of TR

whenever we witness that a branch passing through it fails to encode a partial
transversal of R. This happens if the path from the root to v picks numbers from
the same equivalence class.

More formally, for any σ ∈ 2<ω of length s, let σ be in TR if and only if the
following holds

(∀x, y ≤ s)[(x 6= y ∧ σ(x) = σ(y) = 1) ⇒ ¬(xRsy)].

TR so defined is obviously a computable tree and, from the definition, it is clear
that [TR] coincides with P (R). �

Our goal is now to apply the following classical theorem due to Jockusch and
Soare [23] to the case of reducibility spectra.

Theorem 3.3 (Jockusch and Soare [23]). Let C be a special Π0
1-class. C contains

2ℵ0 elements any two of which form a minimal pair.

The main obstruction is that P (R) include also finite transversals. This means
that, for any given R, we have that 0 ∈ {deg(A) : A ∈ P (R)}, which makes the
latter set useless for the analysis of DgSp⇒(Id, R). To overcome this problem, we
consider ceers of the following kind.

Lemma 3.4. There is a dark ceer R that has no infinite equivalence classes and
such that P (R) contains an infinite nonhyperimmune element.
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Proof. We construct R by stages, i.e., R =
⋃

s∈ω Rs. We design the construction
to meet the following requirements in such a way that P (R) contains an infinite
nonhyperimmune element

Pe : if We is infinite, then We /∈ P (R),

Ne : [e]R is finite.

The priority ranking of the requirements is the following

P0 > N0 > · · · > Pe > Ne > · · ·

Notice that if all P-requirements are met, then R is necessarily dark. Otherwise,
there would be an injective computable function f such that range(f) ∈ P (R), and
this would contradict any requirement Pe with We = range(f). On the other hand,
if all N -requirements are met, then all equivalence classes of R are obviously finite.

Construction. Let us set some terminology. We collapse two equivalence classes
[x]R and [y]R by adding into R the pairs needed to obtain [x]R = [y]R. At any given
stage, a P-requirement is either in stand-by or settled. Moreover, if some action
designed to deal with a given requirement Pe has the effect of expanding [i]R, then
we say that Pe disturbs Ni.

Stage 0: R = {(x, x) : x ∈ ω}. Put all P-requirements in stand-by.

Stage s + 1 = 〈e, n〉: Deal with Pe. If Pe is in stand-by and there are x, y ∈ We,s

with min([x]Rs
∪ [y]Rs

) ≥ 3e, then do the following:

(1) Collapse [x]Rs
and [y]Rs

and call (x, y) the pair of witnesses of Pe;
(2) Set Pe as settled.

Otherwise, do nothing.

Verification. The verification is based on the following claims.

Claim 3.4.1. All N -requirements are satisfied, i.e, R has no infinite equivalence
classes.

Proof. Towards a contradiction, assume that there is a least requirement Ne that
is not satisfied. It follows from the construction that any N -requirement can be
disturbed only by P-requirements with higher priority (in fact, it is immediate
to see that if Pe disturbs Ni then e ≤

⌊

i
3

⌋

). Let s be a stage such that no P-
requirement with priority higher than Ne acts after s. Such s must exist since each
P-requirement acts at most once. We have that [e]R will never be expanded after
stage s, since no P-requirement with lower priority is allowed to disturb it, and
thus eventually remains finite. �

An immediate consequence of the last claim is that R has infinitely many classes.

Claim 3.4.2. All P-requirements are satisfied, i.e, R is dark.

Proof. Towards a contradiction, assume that there is a least requirement Pe that
is not satisfied. By Claim 3.4.1, we know that there must be a stage s such that
all N -requirements with priority higher than Pe are never disturbed after s. This
means that there exists a least k such that

⋃

i<e[i]R ⊆ {x : 0 ≤ x < k}. Therefore,
since We is infinite and R has infinitely many classes, we have that there is a stage
t + 1 = 〈e, n〉 > s such that x, y ∈ We,t and min([x]Rt

∪ [y]Rt
) > max{k, 3e}. So,

at stage t the construction collapses [x]Rt
and [y]Rt

. But this action excludes We

from the partial transversals of R. That is to say, we obtain We /∈ P (R), which
contradicts the initial hypothesis that Pe was not satisfied. �

Claim 3.4.3. P (R) contains an infinite nonhyperimmune member.
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Proof. Let Z be the set of numbers that are not witnesses of any P-requirement.
These elements correspond to the singletons of R, as a given equivalence class [x]R
has size bigger than 1 if and only if there is a P-requirement that picks x as a
witness. Furthermore, notice that for all k the set {x : 0 ≤ x ≤ 3k} contains at
least k singletons of R. This is because, by construction, if Pe chooses a pair of
witnesses (x, y), then min(x, y) ≥ 3e. We use this fact to build a strong array
containing an infinite partial transversal as follows. Without loss of generality,
assume that |[0]R| = 1. Let f be a computable function defined by recursion

Df(0) = {0},

Df(i+1) = {x : max(Df(i)) < x ≤ 3(max(Df(i)) + 1)}.

It is immediate to notice that the so defined sets are pairwise disjoint. Recall
that for all k the set {x : 0 ≤ x ≤ 3(k + 1)} contains at least k + 1 singletons of R.
From this fact, we obtain that, for all i, there exists y such that |[y]R| = 1 and

(1) y ∈ Df(i+1) = ({x : 0 ≤ x ≤ 3(max(Df(i) + 1))}r {0 ≤ x ≤ max(Df(i))}).

Consider now the set A = {x : |[x]R| = 1 ∧ (∃i)(x ∈ Df(i))}. It is obvious that
A ∈ P (R), because A contains only singletons of R. From (1) above, it follows that
A ∩Df(i) 6= ∅ for all i. Thus, A ∈ P (R) is infinite and nonhyperimmune. �

�

Theorem 3.5. There is a reducibility spectrum (not containing 0) that contains a
special Π0

1-class.

Proof. Let R be as in Lemma 3.4 and let A ∈ P (R) be an infinite nonhyperimmune
set. Let {Df(i)}i∈ω be a strong array witnessing the nonhyperimmunity of A. From
R we construct the tree TR as in the proof of Lemma 3.2. Next, we computably
build a subtree T of TR by allowing in T only the elements of P (R) that meet
every Df(i). That is to say, we freeze a node v of T if we see that any path passing
through x fail to intersect some Df(i). More formally, for any σ ∈ 2<ω of length s,
let σ be in T if and only σ ∈ TR and

(∀i ≤ s)(∃x)(x ∈ Df(i) ∧ σ(x) = 1).

T is obviously computable, because TR is computable and in order to establish
whether some σ ∈ T we have to check only finitely many finite sets. Moreover [T ]
is special, i.e., it has no computable member. This follows from the following facts:
T is a subtree of TR; all infinite elements of P (R) are immune (since R is dark);
and any member of [T ] is (the characteristic function of) an infinite set, since no
finite set can intersect {Df(n)}n≥0 infinitely many times. �

Now, let R be the ceer constructed in the proof of Theorem 3.5 and assume
that DgSp⇒(Id, R) has a countable basis. Then, as by Theorem 3.3 DgSp⇒(Id, R)
contains continuum many minimal pairs there must be an element of the basis
Turing below a minimal pair in DgSp⇒(Id, R) and thus this element must be 0

contradicting that R is dark. We have just proven the following.

Corollary 3.6. There is a reducibility spectrum with no countable basis.

In the next section we will prove an even stronger result; that there are reducibil-
ity spectra with no basis at all.

To conclude the special focus on spectra of the form DgSp⇒(Id, R), it is worth
noticing that in the above proofs we never used the fact that all equivalence classes
of R are finite. In fact, it can be shown that the same result holds also for (properly
constructed) equivalence relations with infinite equivalence classes. Yet, our choice
makes the result sharp, in the sense of the following proposition.
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Proposition 3.7. If R is a bounded ceer, then DgSp⇒(Id, R) has a countable basis;
in fact, 0 ∈ DgSp⇒(Id, R).

Proof. Let k be the largest number such that R has infinitely many equivalence
classes of size k. Let Y = {y : |[y]R| > k}. Y is obviously finite. We can then
easily construct a c.e. partial transversal A of R: when we witness that |[x]R| = k,
for some x /∈ Y , we put the least element of [x]R into A. Then, Id ≤0 R via any
computable function f with range(f) = A. �

4. A reducibility spectrum with no basis

In this section we complete the picture about the complexity of reducibility
spectra. Having shown that these spectra can be with no countable basis, it is
natural to ask whether they all have a basis. Notice that the question has not
been already answered by Corollary 3.6, since the spectrum considered in the proof
might have a basis which is uncountable. In this section, we directly construct a
reducibility spectrum with no basis at all. As in the previous section, we prove
that the result already holds for ceers. The idea for building the desired spectrum
is to make it downward dense while at the same time excluding 0 from it. More
precisely, we aim to build a pair of ceers (R,S) such that

(1) 0 /∈ DgSp⇒(R,S),
(2) if d ∈ DgSp⇒(R,S), then {c : 0 < c < d} ∩DgSp⇒(R,S) 6= ∅.

As is clear, a spectrum that satisfies (1) and (2) can not have a basis. The
construction of R and S is based on the following notion due to Cleave [9].

Definition 4.1 (Cleave [9]). A sequence of pairwise disjoint c.e. sets E0 . . . , En−1

is creative if there is a computable function p such that, if Wi0 , . . . ,Win−1
is a

sequence of n pairwise disjoint c.e. sets such that Wik ∩Ek = ∅, for all k < n, then

p(i0, i1, . . . , in−1) ∈
⋃

0≤k<n

Ek ∪Wik .

Creative sequences generalise effective inseparability from pairs of c.e. sets to
sequences of them. The underlying intuition of the latter definition is that no set
of a creative sequence can be effectively separated from the others.

Effective inseparability plays a crucial role for the theory of ceers. For example,
Andrews, Lempp, J. Miller, Ng, San Mauro, and Sorbi [3] showed that uniformly ef-
fectively inseparable ceers (i.e., ceers whose equivalence classes are pairwise effective
inseparable, and such that this effective inseparability can be witnessed uniformly)
are universal. This fact subsumes all known results of universality for ceers and
stands in analogy with the following classical results: any pair of effectively insep-
arable sets is 1-complete, as proven by Smullyan [33], and any creative sequence is
1-complete, as proved by Cleave [9]. Cleave’s result, in particular, means that, if
E0, . . . , En−1 is a creative sequence, then for all sequences of pairwise disjoint c.e.
sets G0, . . . , Gm−1 with m ≤ n, there is an injective computable function h such
that

if x ∈ Gk for some k < n, then h(x) ∈ Ek;

if x /∈
⋃

k<n

Gk, then h(x) /∈
⋃

k<n

Ek.

As an immediate corollary of the last fact we obtain the following.

Proposition 4.1. For all n, there is a n-dimensional ceer RE0,...,En−1
such that,

for any m-dimensional ceer RG0,...,Gm−1
with m ≤ n, RG0,...,Gm−1

≤0 RE0,...,En−1
.
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Proof. Just choose the sequence E0, . . . , En−1 to be creative. Cleave’s result guar-
antees that, given any sequence G0, . . . , Gm−1 with m ≤ n, there is a 1-reduction
h from G0, . . . , Gm−1 into E0, . . . , En−1. Since h is injective, h will also induce a
computable reduction from RG0,...,Gm−1

into RE0,...,En−1
. �

From now on, we denote by {Ui}i∈ω a uniformly c.e. sequence of ceers such that,
for all i, Ui is generated by a creative sequence of length i + 1. As an example
of such a sequence the reader can think of each Ui as RK0,...,Ki

, where Kj =
{x : φx(x) ↓= j} for j ≤ i.

For the next lemma, recall that B and C split A (notation: A = B ⊔ C) if
B ∩C = ∅ and A = B ∪ C.

Lemma 4.2. Let A be a noncomputable c.e. set. There are computable functions
f, g such that Wf(0) = A, Wg(0) = ∅, and, for all i,

(1) Wf(i+1) ⊔Wg(i+1) = Wf(i),
(2) and Wf(i) >T Wf(i+1) >T 0.

Proof. Given any noncomputable c.e. set A, Sacks Splitting theorem [34, Theorem
7.5.1.] allows to construct a splitting B ⊔C of A into noncomputable c.e. sets such
that both B and C avoid the cone above A. It is enough to apply the theorem
infinitely many times to obtain f and g. Indeed, suppose we have defined Wf(i)

and Wg(i). By applying Sacks’ construction to Wf(i), one obtains a splitting Bi⊔Ci

of Wf(i). Then, we define f(i + 1) and g(i + 1) equal (respectively) to an index of
Bi and an index of Ci, where these indices are uniformly obtained by the s-m-n
theorem. �

Definition 4.2. The cylinder of a (possibly infinite) family F = {A0, A1, . . .} of
sets is the equivalence relation R defined by

〈i, x〉R〈j, y〉 ⇔ i = j ∧ [x = y ∨ (i < |F| ∧ x, y ∈ Ai)].

Theorem 4.3. There is a reducibility spectrum of ceers with no basis.

Proof. We build equivalence relations R and S in columns, in such a way that
DgSp⇒(R,S) has no basis. To do so, let B be a noncomputable co-c.e. introre-
ducibile set with 0 /∈ B (Lachlan proved that such B must be hyperimmune, see
the addendum at the end of Jockusch [22]). We define R as the cylinder of the
family {Wf(i)}i∈ω, where f is as in Lemma 4.2 and Wf(0) = B, i.e.,

〈i, x〉R〈j, y〉 ⇔ i = j ∧ (x = y ∨ x, y ∈ Wf(i)).

We define S as follows. We keep the 0th column of S isomorphic to Id, and
then we encode the cylinder of {Ui}i≥0 into the remaining columns of S, with the
further condition of making its ith column isomorphic to Id1 if we witness that i
enters in B. More formally, S is the following equivalence relation

〈i, x〉S〈j, y〉 ⇔ 〈i, x〉 = 〈j, y〉 ∨ (i = j ∧ i > 0 ∧ (xUi−1y ∨ i ∈ B)).

The relations R and S defined in this way are obviously ceers. Denote by A the
upward closure of {deg(Wf(i)) : i ∈ ω}. We claim that DgSp⇒(R,S) = A.

On the one hand, let d ∈ A and let n be the least number such that d ≥
deg(Wf(n)). By construction, any column of S is either finite dimensional or iso-
morphic to Id1. Moreover, since B is infinite, there are infinitely many columns
of S that we never collapse to Id1. Let k be the least number such that the kth
column of S is m-dimensional with m > n. Denote by C the cylinder of the family
Wf(0), . . . ,Wf(n). Since C is n + 1-dimensional, there must be a function r that
computably reduces C to Um. Indeed, by Proposition 4.1, the latter is universal
with respect to all ceers of dimension ≤ m. Consider now the following function
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p(〈i, x〉) =











〈k, r(〈i, x〉)〉 if i < n,

〈0, 〈i, 0〉〉 if i ≥ n and x ∈ Wf(i),

〈0, 〈i, x+ 1〉〉 if i ≥ n and x /∈ Wf(i).

We want to show that R ≤d S via p. First, notice that p is d-computable.
Indeed, the uniformity of Sacks’ Splitting guarantees that, for all m, Wf(m+1)

is uniformly reducible to Wf(m). Hence, d can compute any Wf(i) with i ≥ n.
Moreover, it is not difficult to see that p reduces R into S, by mapping the first
n+ 1 columns of R into the kth column of S and all remaining columns of R into
singletons of the 0th column of S (the latter being isomorphic to Id). This proves
that A ⊆ DgSp⇒(R,S).

For the other inclusion, assume that R ≤d S via some h. We distinguish three
cases:

(1) h maps a noncomputable equivalence class of R into a singleton of S, i.e.,
there exists z such that, for some k, h−1(z) = {〈k, y〉 : y ∈ Wf(k)}. If so,
we obtain that h computes Wf(k), i.e., d ≥ deg(Wf(k));

(2) h maps a noncomputable equivalence class of R into a collapsed column
of S, i.e., there exists k such that, for some b ∈ B, {〈k, y〉 : y ∈ Wf(k)} ⊆
{〈b, x〉 : x ∈ ω}. If so, since the bth column of S is isomorphic to Id1, we
obtain again that h computes Wf(k), i.e., d ≥ deg(Wf(k));

(3) h maps all noncomputable equivalence classes of R into noncomputable
equivalence classes of S. If so, we claim that h enumerates an infinite sub-
set of B: choose in a c.e. way a witness from each noncomputable equiva-
lence class of R and then list the indices of the column into which h map
such witnesses. More formally, let (yi)i∈ω be an infinite c.e. sequence of
numbers such that, for all i, yi ∈ Wf(i), and let Y = {〈k, yk〉 : k ∈ ω}.
Notice that the set Y ∗ = {j : (∃x)(〈j, x〉 ∈ h[Y ])} must be infinite. Oth-
erwise, since each column of S is finitely dimensional, h would map some
noncomputable equivalence class of R into a singleton of S, and therefore
we would be in Case (1). Moreover, Y ∗ ⊆ B. Otherwise, h would map
some noncomputable equivalence class of R into a collapsed column of S,
and therefore we would be in Case (2). Thus, Y ∗ is an infinite subset of
B which is c.e. in h. Since B is introreducible, by Lemma 2.5 we obtain
h ≥T B. This proves that d ≥ deg(B) = deg(Wf(0)).

In all the three cases d ∈ {deg(Wf(i)) : i ∈ ω}. Therefore, DgSp⇒(R,S) ⊆ A.

Hence, we proved that DgSp⇒(R,S) = A. To conclude that DgSp⇒(R,S) has
no basis is enough to recall that deg(Wf(0)) > deg(Wf(1)) > . . . is an infinite
descending sequence of c.e. degrees not containing 0. �

5. Bi-reducibility spectra

We now turn our attention to bi-reducibility spectra. By definition, any bi-
reducibility spectrum is the intersection of two reducibility spectra. Indeed, for any
pair of equivalence relations (R,S), the following holds

DgSp⇔(R,S) = DgSp⇒(R,S) ∩DgSp⇒(S,R).

It follows immediately that any bi-reducibility spectrum of equivalence relations
with infinitely many equivalence classes is upward closed. It is not difficult to see
that all Turing degrees are degrees of bi-reducibility. But in fact, much more is true.
In this section we obtain a natural companion of Theorem 2.4 for bi-reducibility
spectra, by proving that the latter realise any upward closed collection of Turing
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degrees with a countable basis. Moreover, we show that the result still holds if we
limit our attention to equivalence relations with no infinite equivalence classes.

Bi-reducibility spectra are harder to deal with than reducibility spectra. This
is because, while encoding or forbidding a given reduction, one has also to control
backwards reductions. This explains why the next proof is more delicate than that
of Theorem 2.4.

Theorem 5.1. Let A be an upward closed collection of Turing degrees with count-
able basis B. There is a pair of equivalence relations (R,S) with no infinite equiv-
alence classes such that DgSp⇔(R,S) = A.

Proof. We prove the theorem for the case in which the basis B = {b0,b1, . . .} is
infinite, the finite case being a simpler variation of the following argument. For any
bi ∈ B, let Bi ∈ bi be an introreducible set such that {0, 1}∩Bi = ∅. Our strategy
is to use B0 and B1 to encode the information provided by the other introreducible
sets. In doing so, it is convenient to introduce some notation. First, similarly
to the definition of X in the proof of Theorem 2.4, denote by fi the following
bi-computable function, for all i,

fi(x) = 〈pB0
(i), pBi

(x)〉.

It is immediate to see that the ranges of the functions so defined are pairwise
disjoint. Secondly, if X is a finite set with canonical index z (i.e., X = Dz), denote
〈0, pB1

(z)〉 by pXq. In what follows, we will use the following observation several
times: for any finite set X , pXq /∈ (

⋃

k∈ω range(fk)).

To define the desired pair of equivalence relations (R,S), we start by considering
the following sequence of families of finite sets

C0 = {{〈0, 0〉, 〈0, 1〉}},

Cn+1 = {fi[X ] ∪ {pXq} : X ∈ Cn ∧ i ∈ ω},

Let C =
⋃

k∈ω Ck.

Claim 5.1.1. C satisfies the following properties.

(1) If X ∈ Cn, then |X | = n+ 1.
(2) If X ∈ Cn and Y ∈ Cm, then X ∩ Y = ∅.

Proof. (1) By induction we prove that, for all n, any two elements of Cn have the
same size. This is trivially true for C0. Towards a contradiction, let n be the least
number such that there exists {X,Y } ⊆ Cn with |X | 6= |Y |. By construction, there
must be {X0, Y0} ⊆ Cn−1 such that X = {fi[X0] ∪ {pX0q}}, for some fi, and Y =
{fj[Y0] ∪ {pY0q}}, for some fj. Since fi and fj are both injective and n is chosen to
be minimal, we have that |fi[X0]| = |fj[Y0]|. It follows that |X0| ≤ |X | ≤ |X0|+ 1,
and |X | < |X0|+1 can hold only if there is z ∈ X0 such that pX0q = fi(z). But the
latter equality is impossible, since pX0q /∈ (

⋃

k∈ω range(fk)). Therefore, we have
|X | = |X0|+ 1. By reasoning in a similar way, it can be shown that |Y | = |Y0|+ 1.
So, any two elements of Cn have the same size, and in fact they all have size |A|+1,
for all A ∈ Cn−1.

(2) Towards a contradiction, assume that (n,m) is the least pair for which there
exist X ∈ Cn and Y ∈ Cm such that z ∈ X ∩ Y , for some z. Indeed, from the fact
that {0, 1} ∩Bi = ∅ for all i, we obtain that for any finite X the following holds

{〈0, 0〉, 〈0, 1〉} ∩ (
⋃

k∈ω

range(fk) ∪ pXq) = ∅.

Thus, 0 /∈ {n,m}. By construction, we have that there is a unique pair of
functions (fi, fj) such that X = fi[X0] ∪ {pX0q} and Y = fj[Y0] ∪ {pY0q}, with
X0 ∈ Cn−1 and Y0 ∈ Cm−1. We have that z /∈ {pX0q, pY0q}. This is because
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(1) pX0q 6= pY0q,
(2) and {pX0q, pY0q} ∩ (

⋃

k∈ω range(fk)) = ∅.

Therefore, it must be z ∈ {fi[X0] ∩ fj[Y0]}. If i 6= j we immediately obtain a
contradiction, since we know that range(fi) ∩ range(fj) = ∅. Hence, fi = fj and

f−1
i (z) = f−1

j (z) must be in X0 ∩ Y0. But this would imply that Cn−1 and Cm−1

overlap, contradicting the minimality of the pair (n,m). �

Let R and S be the equivalence relations generated respectively by
⋃

k∈ω C2k and
⋃

k∈ω C2k+1, i.e.,

xRy ⇔ x = y ∨ (∃Z ∈
⋃

k∈ω

C2k)(x, y ∈ Z)

and

xSy ⇔ x = y ∨ (∃Z ∈
⋃

k∈ω

C2k+1)(x, y ∈ Z).

Item (2) of the last claim ensures that the two equivalence relations are well-
defined, by guaranteeing that all equivalence classes of R and S are pairwise dis-
joint. Moreover, as a consequence of item (1) of the last claim, we obtain that all
equivalence classes of R and S are finite, but they have arbitrary large size: any
equivalence class of R is either a singleton or has even size; all equivalence class of
S have odd size. We claim that DgSp⇔(R,S) = A.

Claim 5.1.2. A ⊆ DgSp⇔(R,S).

Proof. Since any bi-reducibility spectrum is upward closed, it is enough to prove
that B ⊆ DgSp⇔(R,S). Let bi ∈ B. We show that R ≤bi

S via fi. If xRy,
with x 6= y, then there is Z ∈ C2k, for some k, such that x, y ∈ Z. It fol-
lows that {fi[Z] ∪ {pZq}} ∈ C2k+1. Since

⋃

i∈ω C2i+1 generates S, we obtain that
{fi[Z] ∪ {pZq}} forms an equivalence class of S which contains fi[Z], and in par-
ticular fi(x) and fi(y). Hence, fi(x)Sfi(y) holds.

On the other hand, assume ¬(xRy) and, towards a contradiction, suppose that
fi(x)Sfi(y). By construction of S, this implies that there is Z ∈ C2k, for some k,
such that {fi(x), fi(y)} ⊆ {fi[Z] ∪ pZq}. Since pZq /∈ range(fi), it follows that
{fi(x), fi(y)} ⊆ fi[Z], and therefore {x, y} ⊆ Z. By construction of R this would
imply xRy, contradicting our assumption.

We proved that B ⊆ DgSp⇒(R,S). By a similar argument, it can be shown that,
for all i, S ≤bi

R via fi. Thus, B ⊆ DgSp⇒(S,R). Since DgSp⇔(R,S) coincides
with DgSp⇒(R,S) ∩DgSp⇒(S,R), we conclude that A ⊆ DgSp⇔(R,S). �

It remains to show that DgSp⇔ (R,S) ⊆ A. We say that a total function f is
eventually injective if there is n such that f restricted to x > n is injective. Let
d ∈ DgSp⇔ (R,S). Assume that R ≤d S via some function s and S ≤d R via some
function t.

Claim 5.1.3. There exists an infinite set A, computable in d, such that if z ∈ A
then |[z]R| > 1.

Proof. We distinguish two cases. If s (resp. t) is not eventually injective, let A =
{x0, x1, . . .} be an infinite set such that, for all k, s(x2k) = s(x2k+1) (t(x2k) =
t(x2k+1)). If s and t are both eventually injective, define the following sequence,
for all x,

x0 = x

xn+1 =

{

s(xn) if n is even,

t(xn) if n is odd,



REDUCTIONS BETWEEN EQUIVALENCE RELATIONS 15

and the following function

hx(n) =

{

|[xn]R| if n is even,

|[xn]S | if n is odd.

We claim that there exists x and m such that hx restricted to y > m is strictly
increasing. Otherwise, s would map infinitely many equivalence classes of R into
classes of smaller size of S; or, vice versa, t would map infinitely many equivalence
classes of S into classes of smaller size of R. In both cases, this contradicts the
assumption that s and t are eventually injective.

Thus, let z and k be such that hz restricted to y > 2k is strictly increasing and
hz(2k) > 1. We have that A = {z2k : k ∈ ω} is a partial transversal of R and each
element of A is in a class of size larger than 1. �

From the fact that A intersects no singleton of R, it follows that any element
of A is either of the form 〈0, pB1

(k)〉, for some k, or the form 〈pB0
(i), pBi

(y)〉, for
some i and y: indeed, a number which is not in any of these forms is necessarily a
singleton in R. We distinguish three cases.

(1) The set Y = {pB1
(k) : 〈0, pB1

(k)〉 ∈ X} is infinite: If so, we can reason in
a familiar way. Y ⊆ B1 is c.e. in s. By Lemma 2.5, we obtain that s
computes B1, and therefore d ≥ b1;

(2) There is j such that the set Yj = {pBj
(k) : 〈pB0

(j), pBj
(k)〉 ∈ X} is infinite:

If so, Yj ⊆ Bj is c.e. in s. By Lemma 2.5, we obtain that s computes Bj ,
and therefore d ≥ bj ;

(3) The set Y ∗ = {pB0
(k) : (∃z)(〈pB0

(k), pBj
(z)〉 ∈ X)} is infinite: If so, Y ∗ ⊆

B0 is c.e. in s. By Lemma 2.5, we obtain that s computes B0, and therefore
d ≥ b0.

Therefore, d ∈ {c : c ≥ b0 ∨ c ≥ b1 ∨ c ≥ bj}, which means that d ∈ A and
DgSp⇔(R,S) ⊆ A. By recalling Claim 5.1.2, we conclude that DgSp⇔(R,S) =
A. �
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