
ar
X

iv
:1

80
5.

10
24

9v
2 

 [
m

at
h.

L
O

] 
 1

 A
ug

 2
01

8

Degrees of Categoricity Above Limit Ordinals

Barbara F. Csima∗, Michael Deveau †,

Matthew Harrison-Trainor‡, Mohammad Assem Mahmoud

August 25, 2021

Abstract

A computable structure A has degree of categoricity d if d is exactly the degree
of difficulty of computing isomorphisms between isomorphic computable copies of A.
Fokina, Kalimullin, and Miller showed that every degree d.c.e. in and above 0(n), for
any n < ω, and also the degree 0(ω), are degrees of categoricity. Later, Csima, Franklin,
and Shore showed that every degree 0(α) for any computable ordinal α, and every
degree d.c.e. in and above 0(α) for any successor ordinal α, is a degree of categoricity.
We show that every degree c.e. in and above 0(α), for α a limit ordinal, is a degree of
categoricity. We also show that every degree c.e. in and above 0(ω) is the degree of
categoricity of a prime model, making progress towards a question of Bazhenov and
Marchuk.

1 Introduction

Isomorphisms of the vector space QN are easy to understand: given two presentations
of this vector space, one chooses a basis of each and then bijectively identifies basis
elements from one presentation with basis elements from the other, in any manner one
likes. Finally, the map is extended linearly to produce the full isomorphism. This
classical method is straightforward, but could a computer be given this task and create
such an isomorphism? That is, if the presentations of QN are computable – so the
computer knows simple facts about each copy – could we write a program that would
provide an effective isomorphism, outputting the corresponding element in the second
copy when given some element in the first copy as input?

The answer is no. It has long been known that there are two computable presenta-
tions of QN, one with a computable basis, and the other without a computable basis.
Certainly there can be no computable isomorphism between these presentations, as
the image of the computable basis from the first presentation would be a computable
basis in the second presentation. Indeed the problem of building an isomorphism be-
tween two computable presentations of QN amounts to computing bases for each of

∗Partially supported by Canadian NSERC Discovery Grant 312501.
†Partially supported by Canadian NSERC Postgraduate Scholarship PGSD1-234567-2017.
‡Supported by an NSERC Banting Fellowship.

1

http://arxiv.org/abs/1805.10249v2


them, since the process of matching bases and extending linearly is effective; a com-
puter could easily be given an algorithm explaining how to do this. To give a basis of
a computable presentation of QN requires only the ability to answer single quantifier
questions: Is the next potential basis member a linear combination of what we have
already included? The Turing degree of the Halting set, denoted 0′, is able to answer
such questions. We say that QN is 0′-computably categorical because we can compute,
using 0′, an isomorphism between any two computable presentations. More generally:

Definition 1.1. Let d be a Turing degree. A computable structure A is d-computably
categorical if, for every computable copy B of A, there is a d-computable isomorphism
between A and B.

For many structures A, there is a least degree d such that A is d-computably
categorical. In the case of QN, there are actually two computable presentations of QN

such that any isomorphism between the two computes 0′. So 0′ is exactly the difficulty
of computing isomorphisms between copies of QN. This natural idea was formalized
by Fokina, Kalimullin, and Miller [FKM10].

Definition 1.2 (Fokina, Kalimullin, and Miller [FKM10]). A Turing degree d is said
to be the degree of categoricity of a computable structure A if d is the least degree
such that A is d-computably categorical.

The Turing degree 0′, the level of complexity of the Halting set, is arguably the
most natural Turing degree after 0, the degree of the computable sets. The jump
operator in computability theory takes a set A to the halting set relative to A, denoted
A′, and gives rise to a corresponding operator on Turing degrees. Iterating the jump
operator n times on 0 is called the n-th jump of 0, denoted 0(n). Taking unions at
limit ordinals, one can define 0(α) for any computable ordinal α. It turns out that
these definitions are very robust, see Ash Knight [AK00]. These Turing degrees are
very natural. Just as 0′ is able to answer single-quantifier questions, 0(n) can answer
questions expressible with n alternating quantifiers.

Fokina, Kalimullin, and Miller showed that every degree that can be realized as a
difference of computably enumerable (d.c.e.) sets in and above 0(n), for any n < ω, and
also the degree 0(ω), are degrees of categoricity. Later, Csima, Franklin, and Shore
[CFS13] showed that every degree 0(α) for any computable ordinal α, and every degree
d.c.e. in and above 0(α) for any successor ordinal α, is a degree of categoricity. Csima
and Ng have announced a proof that every ∆0

2
degree is a degree of categoricity.

It is often the case when trying to prove some property P (α) for ordinals α that
things get tricky at limit ordinals. Roughly speaking, if α is a successor ordinal and
we know something must happen before α, we can safely say it has happened by α−1.
For α a limit ordinal, in such a situation there is no canonical choice of earlier ordinal
to look at. This is why the methods of [CFS13] did not work above limit ordinals.

Our main result in this paper is:

Theorem 1.3. Let α be a computable limit ordinal and d a degree c.e. in and above
0(α). There is a computable structure with (strong) degree of categoricity d.

This fills in a gap that was missing from [CFS13] above limit ordinals, making further
progress towards Question 5.1 of that paper.

We have not yet explained what a strong degree of categoricity is. For a long time,
all of the known examples had the following property: If A had degree of categoricity

2



d, then there is a copy B of A such that every isomorphism between A and B computes
d. Thus, we can witness with just two computable copies the fact that d is the least
degree such that A is d-computably categorical. In this case, we say that A has strong
degree of categoricity d. Recently, Bazhenov, Kalimullin, and Yamaleev [BKY18] have
shown that there is a c.e. degree d and a structure A with degree of categoricity d,
but d is not a strong degree of categoricity for A. Csima and Stephenson [CS] have
shown that there is a structure of finite computable dimension that has a degree of
categoricity but no strong degree of categoricity.

Recall that the theory of a structure is the set of first order formulas true in the
structure, and that models of the same theory need not be isomorphic. The type of a
tuple in a structure is the set of formulas (with the appropriate number of free variables)
that the tuple satisfies in the structure. The types of a theory are the types that are
realized by models of the theory. A type is called principal if there is one formula
from which the rest follow. A model of a theory is prime if it elementarily embeds into
all other models of the theory, and when everything is countable, this is the same as
saying that the model only realizes principal types. In a sense, prime structures are the
most basic or natural structures. Our second result gives progress towards a question
of Bazhenov and Marchuk.

Question (Bazhenov and Marchuk [BM]). What can be the degrees of categoricity of
computable prime models?

A computable prime model—in fact, as [BM] shows, a computable homogeneous model—
is always 0(ω+1)-categorical, as we can ask 0(ω+1) if two tuples satisfy the same type.
Bazhenov and Marchuk construct a computable homogeneous model with degree of
categoricty 0(ω+1). The complexity here is in the structure itself, rather than in the
theory. To build a prime model with degree of categoricity 0(ω+1), the complexity
must be in the theory: If A is a computable prime model of a theory T , then A is
T ′ ⊕ 0(ω)-categorical as T ′ can decide whether a formula is complete, and 0(ω) can
decide whether a formula holds of a tuple in A. We build a computable prime model
with degree of categoricity 0(ω+1) (or any other degree c.e. in and above 0(ω)), showing
that the bound cannot be lowered.

Theorem 1.4. Let d be a degree c.e. in and above 0(ω). There is a computable prime
model A with strong degree of categoricity d.

Bazhenov and Marchuk stated in [BM] that a careful examination of the structures
constructed in [FKM10] shows they are prime models, so that all degrees d.c.e. in
and above 0(n) for a finite n, as well as 0(ω), are strong degrees of categoricity of
prime models. Along the way to proving Theorem 1.4 we verify in Lemma 3.3 that
the building blocks used by Csima, Franklin and Shore for their examples in [CFS13]
are prime. This is enough to see that their structures realizing degrees of categoricity
less than or equal to 0(ω) are prime. However, the structure in [CFS13] with degree of
categoricity 0(ω+1) is not prime. With Theorem 1.4, we see that all known degrees of
categoricity less than or equal to the 0(ω+1) bound can be realized by a prime model.

2 Categoricity Relative to Decidable Models

As a warm-up to illustrate the methods used to prove these two theorems, we give
a simple proof of a result of Goncharov [Gon11] that for every c.e. degree d, there

3



is a decidable prime model with degree of categoricity d with respect to decidable
copies. Recall that a structure is said to be decidable if its full elementary diagram is
computable. In [Gon11], Goncharov made the following definitions:

Definition 2.1. Let d be a Turing degree and A a decidable structure. Then A is
d-categorical with respect to decidable copies if for every decidable copy B of A, d

computes an isomorphism between A and B.

Definition 2.2. Let d be a Turing degree and A a decidable structure. Then d is the
degree of categoricity of A with respect to decidable copies if:

• A is d-categorical with respect to decidable copies, and

• whenever A is c-categorical with respect to decidable copies, c ≥ d.

It is not hard to see that between any two decidable copies of a prime model,
there is a 0′-computable isomorphism. Goncharov showed that any c.e. degree can
be the degree of categoricity with respect to decidable copies of a prime model. We
give a different proof, which we think is simpler, and which demonstrates some of the
techniques that we will use later.

Theorem 2.3 (Goncharov [Gon11, Theorem 3]). Let d be a c.e. degree. Then there
is a decidable prime model M which has strong degree of categoricity d with respect to
decidable models.

Proof. Let D ∈ d be a c.e. set. We will construct the structures M and N . They are
the disjoint union of infinitely many structures Mn and Nn, with Mn and Nn picked
out by unary relations Rn. The nth sort will code whether n ∈ D. Fix n. Mn will have
infinitely many elements (ai)i∈ω. There will be infinitely many unary relations (Uℓ)ℓ∈ω
defined on Mn so that:

a0 ∈ Us ⇐⇒ n ∈ Dat s

where n ∈Dat s means that n enters D at exactly stage s, and

ai ∉ Us for i > 0 and all s.

Similarly, Nn will have infinitely many elements (bi)i∈ω with the unary relations defined
so that:

bi ∈ Us ⇐⇒ i = s and n ∈ Dat s.

It is easy to see that we can build computable copies of M and N . These copies are
in fact decidable.

Claim 1. M and N are decidable.

Proof. Given a formula ϕ(x1, . . . , xn) with k quantifiers and ai1 , . . . , ain ∈M, it is not
hard to see that M ⊧ ϕ(ai1 , . . . , ain) if and only if the finite substructure M′ of M
whose domain consists of a1, . . . , ak+n+1 and ai1 , . . . , ain also has M′ ⊧ ϕ(ai1 , . . . , ain).
Thus M is decidable.

For N , suppose we have a formula ϕ(x1, . . . , xn) with at most k quantifiers and
which uses only some subset of the relations U0, . . . ,Uk. Let bi1 , . . . , bin be elements
of N . Then N ⊧ ϕ(bi1 , . . . , bin) if and only if the finite substructure N ′ of M whose
domain consists of b1, . . . , bk+n+1 and bi1 , . . . , bin also has N ′ ⊧ ϕ(bi1 , . . . , bin). Thus N
is decidable.

4



Claim 2. M and N are isomorphic.

Proof. It suffices to show that for each n, Mn and Nn are isomorphic. If n ∉ D, then
ai ↦ bi induces an isomorphism between Mn and Nn. If n ∈ Dat s, then the map

a0 ↦ bs

ai ↦ bi−1 when 0 < i ≤ s

ai ↦ bi when i > s

is an isomorphism between Mn and Nn.

Claim 3. M and N are prime.

Proof. It suffices to show that each Mn and Nn are prime, since these structures are
determined inside M and N uniquely by the relation Rn. It is not hard to see that
Mn and Nn are models of an ℵ0-categorical theory, and hence are prime.

Claim 4. Any isomorphism between M and N can compute D.

Proof. Let g be an isomorphism between M and N . For each n, let (ai)i∈ω and (bi)i∈ω
be the elements in the definition of Mn and Nn. Let s be such that g(a0) = bs. Then
n ∈ D if and only if n ∈Ds.

Claim 5. Given a computable copy M̃ of M, D can compute an isomorphism between
M and M̃.

Proof. For each n, let M̃n be the structure with domain Rn in M̃. It suffices to
compute an isomorphism g betweenMn and M̃n for each n. Let (ci)i∈ω be the elements
of M̃n. If n ∉ D, no relation Uj holds of any of the the elements (ai)i∈ω or (ci)i∈ω.
So ai ↦ ci is an isomorphism. On the other hand, if n ∈ D, then for some unique s,
a0 ∈ Us. We can look for ck such that ck ∈ Us. Map a0 to ck; map each other ai to some
other ci.

These claims complete the proof of the theorem.

3 Back-and-forth Trees

Fix a path through O. We will identify computable ordinals with their notation on
this path. We will always first fix a limit ordinal α and work below it. Recall that
one can decide effectively whether a given computable ordinal is a limit ordinal or a
successor ordinal. For each limit ordinal β < α, fix a fundamental sequence for β, that
is, an increasing sequence of successor ordinals whose limit is β.

Hirschfeldt and White defined, for each successor ordinal β, a pair of trees Aβ and
Eβ which can be differentiated exactly by β jumps. These trees are called back-and-forth
trees.

5



A1 E1

⋯

Figure 1: A1 and E1

Aβ+1 Eβ+1

Aβ Aβ Eβ ⋯EβEβEβ ⋯ Eβ⋯

Figure 2: Aβ+1 and Eβ+1 when β is a successor ordinal.

Definition 3.1 ([HW02, Definition 3.1]). Back-and-forth trees are defined recursively
in β. We view these as structures in the language of graphs with the root node distin-
guished.

We take A1 to be the tree with just a root node and no children, and we take E1
to be the tree where the root node has infinitely many children, none of which have
children. See Fig. 1. We say that these trees have back-and-forth rank 1.

Suppose β is a successor ordinal. Define Aβ+1 as a root node with infinitely many
children, each the root of a copy of Eβ, and define Eβ+1 as a root node with infinitely
many children, each the root of a copy of Aβ, and also infinitely many other children,
each the root of a copy of Eβ. See Fig. 2. These trees have back-and-forth rank β + 1.

Now suppose β is a non-zero limit ordinal, and let β0, β1, . . . be a fundamental
sequence of successor ordinals for β, that is, a sequence of successor ordinals below β

with limit β. We first define a family of helper trees Lβ,k where k ∈ ω ∪ {∞}. Define
Lβ,∞ to consist of a root node whose children are root nodes of copies of Aβi

, and such
that each copy appears exactly once as a child. For k ∈ ω, Lβ,k has a root node whose
children are root nodes of copies of Aβ0

, . . . ,Aβk
,Eβk+1

,Eβk+2
, . . . where again each copy

appears exactly once as a child. Such trees are shown in Fig. 3. We say these trees
have back-and-forth rank β.

We can now define Aβ+1 and Eβ+1 for the non-zero limit ordinal β. For Aβ+1, we
have a root node with infinitely many children, each the root node of a copy of Lβ,k

such that for each k ∈ ω, Lβ,k appears infinitely many times. The definition of Eβ+1 is
similar, except k is drawn from ω ∪ {∞}. See Fig. 4. These trees have back-and-forth
rank β + 1.

The next two lemmas piece together the facts that we will need about the back-

6



Lβ,∞ Lβ,k

Aβ0
Aβk

Eβk+1
⋯Aβ2

Aβ1
Aβ0

⋯ Eβk+2

Figure 3: Helper trees Lβ,∞ and Lβ,k for k ∈ ω for the non-zero limit ordinal β.

Aβ+1 Eβ+1

Lβ,0 ⋯Lβ,1Lβ,0 ⋯ ⋯⋯Lβ,∞⋯ ⋯

Figure 4: Aβ+1 and Eβ+1 for the non-zero limit ordinal β.

and-forth trees, first for arbitrary β, and second some additional properties for finite
β in particular. These facts come from [HW02] and [CFS13].

Lemma 3.2. Let α be a computable ordinal. For a successor ordinal β < α, the
structures Aβ and Eβ satisfy the following properties:

(1) Uniformly in β and an index for a Σ0

β set S, there is a computable sequence of
structures Cx such that

x ∈ S ⇐⇒ Cx ≅ Eβ and x ∉ S ⇐⇒ Cx ≅ Aβ.

(2) Uniformly in β, there is a Σ0

β sentence ϕ such that Eβ ⊧ ϕ and Aβ ⊭ ϕ.

(3) Aβ and Eβ are uniformly 0(β)-categorical.

Proof. For (1), take (Cx)x to be the computable sequence of trees given by Proposition
3.2 in [HW02].

For (2), take ϕ to be the sentence given by evaluating the formula guaranteed by
Lemma 3.5 in [HW02] for B = Eβ at its own root node. The complexity of ϕ is the
natural complexity of Eβ, which is Σβ. This lemma says that for any tree T , T ⊧ ϕ if
and only if T ≅ Eβ .

Finally, for (3), we use a result from Csima, Franklin, and Shore [CFS13] about
back-and-forth trees. We will consider Aβ; the case for Eβ is identical. We have that
Aβ is a back-and-forth tree, and hence if C is a computable structure isomorphic to
Aβ, then it is also a computable back-and-forth tree. Corollary 2.6 in [CFS13] allows
∅(γ) to uniformly compute an isomorphism between these two trees when the back-
and-forth rank of the trees is at most γ. Since the rank of Aβ is β by construction, the
isomorphism is uniformly computable in 0(β).

7



Now for finite ordinals β (and writing n for β), we have some additional properties.
We will state the lemma in full, including properties that were covered by the previous
lemma. We think that these facts are well-known, but we do not know of a reference
in print.

Lemma 3.3. For 0 < n < ω, the structures An and En satisfy the properties:

(1) Uniformly in n and an index for a Σ0

n set S, there is a computable sequence of
structures Cx such that

x ∈ S ⇐⇒ Cx ≅ En and x ∉ S ⇐⇒ Cx ≅ An.

(2) For each n, there is an elementary first-order ∃n sentence ϕn, computable uni-
formly in n, such that En ⊧ ϕ and An ⊭ ϕ.

(3) An and En are prime.

(4) An and En are 0(n)-categorical uniformly in n.

Proof. (1) and (4) are the same as in the previous lemma. We show using induction
on n that these sequences satisfy (2) and (3) as well. It is easy to see that A1 and E1
are prime models of their theories and that they are distinguishable (in the sense of (2)
in the statement of the lemma) by the existential sentence ϕ1 ∶= ∃x∃y(x ≠ y). Assume
now that An and En are prime and distinguishable by a first-order ∃n sentence ϕn (in
the sense that En ⊧ ϕn but An ⊭ ϕn). We show that An+1 and En+1 are prime and
distinguishable by a first-order ∃n+1 sentence ϕn+1.

It is not hard to see that we can take ϕn+1 to be the sentence ∃x¬ϕn[⪯ x] ∧
(x is a child of the root node) where x is a new variable not appearing in ϕn and
ϕn[⪯ x] is the formula obtained from ϕn by bounding every quantifier to the sub-
tree below x. (Note that in a tree of rank n, if z is a descendant of x, i.e. there is a
path from x to z, the length of the path is at most n, and so this is first-order definable
and does not change the quantifier rank.) En+1 ⊧ ϕn+1 but An+1 ⊭ ϕn+1.

It remains to show that An+1 and En+1 are prime. The same method will work
for both structures. Let ā be an arbitrary tuple in En+1. We describe a formula that
isolates the type of the tuple ā. Let r1, . . . , rk be the children of the root which are
the roots of subtrees containing elements of ā; say that ā = (ā1, . . . , āk) where āi is in
the subtree below ri. (Note that we can re-order the tuples as we like, as if the type
of some permutation of ā is isolated, so is ā.) By the induction hypothesis, we know
that the subtree with root ri is prime for every i. Hence for each i = 1, . . . , k there is
a formula which isolates the type of the tuple āi in the subtree with root ri. There is
also, for each ri, a formula (either ϕn or ¬ϕn) which distinguishes between whether the
subtree below ri is isomorphic to An or En. So we can isolate the type of ā by saying
that there are children r1, . . . , rk of the root such that āi satisfies the formula, in the
subtree below ri, which isolates it, and by saying whether the subtree below each ri is
isomorphic to An or En.

Fokina, Kalimullin, and Miller [FKM10] showed that there is a structure A with
strong degree of categoricity 0(ω). We note the well-known fact that one can also have
A be a prime model. Our proof follows that of [CFS13].

Theorem 3.4. There is a computable structure A with strong degree of categoricity
0(ω) such that A is a prime model of its theory.

8



Proof sketch. The structure is just the disjoint union of infinitely many copies of each
En for n < ω. Theorem 3.1 of [CFS13] shows that this has strong degree of categoricity
0(ω), and it is not hard to see using Lemma 3.3 that this structure is prime.

4 C.E. In And Above a Limit Ordinal

We begin this section by a short discussion of how we code a c.e. set into a structure.
Consider a c.e. set C. If one knows, for each n, at what point the approximation to
C(n) has settled, then one can compute C. Moreover, one does not need to know
exactly when C settles, but just a point after which C(n) has settled. In particular,
any sufficiently large function can compute C. Moreover, C itself can compute such a
function. Following the terminology of Groszek and Slaman [GS07], we say that C has
a self-modulus.

Definition 4.1 (Groszek and Slaman [GS07]). Let F ∶ω → ω and X ⊆ ω. Then:

• F is a modulus (of computation) for X if every G∶ω → ω that dominates F

pointwise computes X.

• X has a self-modulus if X computes a modulus for itself.

The self-modulus of a c.e. set C is the function f(n) = µs(Cs(n) = C(n)). Groszek
and Slaman showed that every ∆0

2
or α-CEA set has a self-modulus. In fact, the

self-modulus of a c.e. set has a nice form; it has a non-decreasing computable approx-
imation.

Definition 4.2. A function F ∶ω → ω is limitwise monotonic if there is a computable
approximation function f ∶ω × ω → ω such that, for all n,

• F (n) = lims→∞ f(n, s).

• For all s, f(n, s) ≤ f(n, s + 1).

In fact, it is well-known and an easy exercise to show that the sets of c.e. degree are
exactly those with limitwise monotonic self-moduli. These remarks also relativize.

The next lemma encodes a limitwise monotonic function into the isomorphisms of
copies of a computable structure. Any isomorphism dominates the limitwise monotonic
function; but it does not seem to be the case that dominating the limitwise monotonic
function is sufficient to compute isomorphisms.

Lemma 4.3. Let α be a computable limit ordinal. Let f ∶ω → ω be limitwise monotonic
relative to 0(α). There is a structure with computable copies M and N such that:

(1) Every isomorphism between M and N computes a function which dominates f .

(2) f ⊕0(α) computes an isomorphism between any two computable copies of M and
N .

Proof. Let Φ be a computable operator such that f(n) = lims→∞Φ∅
(α)
(n, s) and this

is monotonic in s. Write ∅(α) =⊕γ<α∅
(γ) for successor ordinals γ < α. By convention,

for β < α, we say that Φ∅
(β)
(n, s) converges if the computation Φ∅

(α)
(n, s) halts, but

the only part of the oracle ∅(α) = ⊕γ<α∅
(γ) that is read during the computation is

9



that part with γ ≤ β. So if Φ∅
(β)
(n, s) = m then Φ∅

(α)
(n, s) = m, and because α is a

limit ordinal, if Φ∅
(α)
(n, s) =m then Φ∅

(β)
(n, s) =m for some successor ordinal β < α.

Let (Aβ)β<α and (Eβ)β<α be as in Lemma 3.2. We will construct the structures M
and N . They are the disjoint union of infinitely many structures Mn and Nn, with
Mn and Nn picked out by unary relations Rn. The nth sort will code the value of
f(n).

Fix n. Mn will have infinitely many elements (ai)i∈ω satisfying a unary relation S.
Each of these elements will be attached to, for each successor ordinal β < α, a “box”
Mi,β which contains within it a copy of either Aβ or Eβ; each of the boxes are disjoint.
By this we mean that there are binary relations Tβ such that Tβ(ai, x) holds for exactly
those x ∈Mi,β. Mi,β will be a structure in the language of Lemma 3.2 and will be
defined so that:

(1) M0,β ≅ Aβ for all β.

(2) Mi,β ≅ Eβ, i ≥ 1, if there is s such that Φ∅
(β)
(n, s) ≥ i.

(3) Mi,β ≅ Aβ, i ≥ 1, otherwise.

Note that the condition in (2) is Σ0

β and so we can build such a structure Mn com-
putably.

Similarly, Nn will have infinitely many elements (bi)i∈ω, each of which is attached
to, for each β < α, a box Ni,β which contains within it:

(1) Ni,β ≅ Eβ if there is s such that Φ∅
(β)
(n, s) > i.

(2) Ni,β ≅ Aβ otherwise.

Again, the condition in (1) is Σ0

β and so we can build such a structure Nn computably.

Claim 1. Fix n.

(1) For each j < f(n), there is β < α such that:

• for γ < β, Mj+1,γ ≅Nj,γ ≅ Aγ,

• for γ ≥ β, Mj+1,γ ≅Nj,γ ≅ Eγ,

(2) For each j ≥ f(n) and β < α, Mj+1,β ≅Nj,β ≅M0,β ≅ Aβ.

Proof. For (1), it is clear from the definitions of Mj+1,β and Nj,β that for all β < α,

Mj+1,β ≅ Nj,β. Since j < f(n), there is s such that Φ∅
(α)
(n, s) = f(n) > j. In

particular, there must be some β < α such that there is s with Φ∅
(β)
(n, s) > j. Let β

be the least such ordinal. Then for all γ ≥ β, there is s such that Φ∅
(β)
(n, s) > j, and

so Mj+1,γ ≅Nj,γ ≅ Eγ . By choice of β, for γ < β, there is no s such that Φ∅
(β)
(n, s) > j,

and so Mj+1,γ ≅Nj,γ ≅ Aγ .
For (2), it is clear that Mj+1,β ≅ Nj,β for each j ≥ f(n) and each β < α, and it

is also clear that M0,β ≅ Aβ for each β < α. If j ≥ f(n), then since Φ is limitwise

monotonic approximation to f , Φ∅
(β)
(n, s) ≤ f(n) ≤ j for all s and β. Thus Nj,β ≅ Aβ

for all β.

Claim 2. M and N are isomorphic.

10



Proof. It suffices to show that for each n, Mn and Nn are isomorphic. Fix n. Using
Claim 1, we see that the map

a0 ↦ bf(n)

ai ↦ bi−1 when 0 < i ≤ f(n)

ai ↦ bi when i > f(n)

extends to an isomorphism between Mn and Nn.

Claim 3. Any isomorphism between M and N can compute a function which domi-
nates f .

Proof. Let g be an isomorphism between M and N . We will compute, using g, a
function ĝ which dominates f . For each n, define ĝ(n) as follows. Let (ai)i∈ω and
(bi)i∈ω be the elements in the definition of Mn and Nn. Then ĝ(n) is the number
satisfying g(a0) = bĝ(n).

To see that ĝ(n) ≥ f(n), we use Claim 1. For each β < α, M0,β ≅ Aβ, but if
j < f(n), there is β < α such that Nj,β ≅ Eβ. Thus no isomorphism can map a0 to bj
for j < f(n), and so ĝ(n) ≥ f(n).

Claim 4. Given a computable copy Ñ of N , f ⊕ 0(α) can compute an isomorphism
between N and Ñ .

It is more convenient for the proof to consider N rather than M in this claim, but
as they are isomorphic it does not matter which we choose.

Proof. For each n, let Ñn be the structure with domain Rn in Ñ . It suffices to compute
an isomorphism g between Nn and Ñn for each n. Inside of Ñn, let (ci)i∈ω list the
elements x satisfying S(x). For each ci, let Ñi,β be the tree whose domain consists
of the elements y satisfying Tβ(ci, y). To begin, we will define g on (bi)i∈ω ⊆ Nn.
Compute f(n). Using 0(α), look for f(n) elements ci such that, for some β < α,
Ñi,β ≅ Eβ. This search is computable relative to 0(α) by Lemma 3.2 (2), and by
Claim 1 we know that there are exactly f(n) such elements and so the search will
terminate after finding every such element. Rearranging (ci)i∈ω, we may assume that
these elements are c0, . . . , cf(n)−1.

Now, for each k < f(n), find the least βk such that Nk,βk
≅ Eβk

, and the least γk such
that Ñk,γk ≅ Eγk . Again, this is computable in 0(α) by Lemma 3.2 (2). Note that we
must ask 0(α) to determine what βk and γk are least. The sets {β0, . . . , βf(n)−1} and
{γ0, . . . , γf(n)−1} must be identical including multiplicity (but possibly in a different

order) as Ñn and Nn are isomorphic. So by rearranging (ci)i∈ω once again we may
assume that βk = γk for each k < f(n).

We have now rearranged the list (ci)i∈ω so that for each i and β < α, Ni,β ≅ Ñi,β.
Define g so that g(ai) = ci. For each i and β < α, Ni,β ≅ Ñi,β are isomorphic to either
Aβ or Eβ, which are uniformly 0(β)-categorical (Lemma 3.2 (3)), and we can compute
using 0(α) which case we are in. So we can define g on Ni,β to be an isomorphism to
Ñi,β. Thus g is an isomorphism from Nn to Ñn.

These claims complete the proof of the theorem.

11



Using this lemma, and taking the limitwise monotonic function to be the self-
modulus of a c.e. set, it is not hard to prove our main theorem.

Theorem 1.3. Let α be a computable limit ordinal and d a degree c.e. in and above
0(α). There is a computable structure with strong degree of categoricity d.

Proof. Fix α and let D ∈ d be a set c.e. in and above 0(α). Since D is c.e. in and above
0(α), it has a self-modulus f that is limitwise monotonic relative to 0(α). Consider the
structureM constructed in Lemma 4.3 for this f . We will enrich this structure slightly
to produce a new structure S. Let Sα be the computable structure with strong degree
of categoricity 0(α) constructed in Theorem 3.1 of Csima, Franklin and Shore [CFS13].
The new structure S consists of M and a disjoint copy of Sα, and a new unary relation
R such that R(x) holds exactly when x belongs to the copy of Sα. We claim that S
has strong degree of categoricity d.

First, suppose that T is some other computable copy of S. We will show that
there is a d-computable isomorphism between S and T . Using the relation R, we
may identify the component of T isomorphic to Sα. Since Sa has (strong) degree of
categoricity 0(α) ≤ d, we can d-computably find an isomorphism between the copies of
Sα in S and T . We can also identify the component isomorphic toM in each structure.
By choice of M, any two such copies have an isomorphism between them computable
in f ⊕0(α), and D can compute this self-modulus f . Hence d can computably produce
such an isomorphism, since it can compute f ⊕ 0(α). Gluing these two isomorphisms
together gives us the result.

Since Sα has strong degree of categoricity 0(α), there is a computable copy Ŝα of Sα
such that every isomorphism between the two computes 0(α). Let S̃ be a computable
copy of S built in the following way. Rather than using the “standard” copy Sα,
use the “hard” copy Ŝα of Sα. Additionally, rather than using M, instead use N
as built in Lemma 4.3. Any isomorphism between Sα and Ŝα computes 0(α), and
any isomorphism between M and N must compute a function that dominates f . Let
g be any isomorphism between S and S̃. Then by using R, we can restrict g to
an isomorphism between Sα and Ŝα and hence g can compute 0(α). Since g can
also be restricted to an isomorphism between M and N , it must compute a function
dominating f . But f is a modulus for D computable in 0(α), and hence g must be
able to compute D since it can compute 0(α) and a function dominating f . Hence g

can compute d.

We now turn to prime models, working above 0(ω). Essentially, our work here is
to check that in taking α = ω in the previous theorem and lemma, the construction
results in a prime model.

Lemma 4.4. Let f ∶ω → ω be limitwise monotonic relative to 0(ω). There is a prime
model with two computable copies M and N such that:

(1) Every isomorphism between M and N computes a function which dominates f .

(2) f ⊕0(ω) computes an isomorphism between any two computable copies of M and
N .

Proof. The construction is exactly the same as that of Lemma 4.3 with α = ω. We
refer to the structures Aβ and Eβ of Lemma 3.2 as An and En, n < ω, but of course
these are the same. It remains to argue, using the properties from Lemma 3.3 which

12



hold only for the structures An and En with n finite, that the resulting structure N is
prime.

Recall that N is the disjoint union of structures Nn, each of which satisfies the
relation Rn. So it suffices to show that the structures Nn are prime. Nn was defined
as follows: there were infinitely many elements (bi)i∈ω (satisfying the unary relation
S), each of which is attached to (by binary relations Tm), for each m < ω, a box Ni,m

which contains within it:

(1) Ni,m ≅ Em if there is s such that Φ∅
(m)

(n, s) > i.

(2) Ni,m ≅ Am otherwise.

By Claim 1 of Lemma 4.3, for each i, either i < f(n) and there is some mi < ω such
that:

• for ℓ <mi, Ni,ℓ ≅ Aℓ,

• for ℓ ≥mi, Ni,ℓ ≅ Eℓ,

or i ≥ f(n) and for all m < ω, Ni,m ≅ Am. Note that the sequence {mi}i<f(n) is
non-decreasing.

By Lemma 3.3 (2), for i < f(n), the automorphism orbit of bi is determined by
the first-order formula with free variable x which expresses that S holds of x, that the
structure with domain Tmi

(x, ⋅) satisfies ϕmi
(and so is isomorphic to Emi

), and that
the structure with domain Tmi−1(x, ⋅) satisfies ¬ϕmi−1 (and so is isomorphic to Ami−1).
For i ≥ f(n), the automorphism orbit of bi is determined by the first-order sentence
with free variable x which expresses that S holds of x, and that the structure with
domain Tmf(n)−1

(x, ⋅) satisfies ¬ϕmf(n)−1
(and so is isomorphic to Amf(n)−1

).
Fix a tuple c̄ from Nn. We will give a first-order formula defining the orbit of c̄.

We may assume that whenever c̄ contains an element of Ni,m, c̄ contains bi as well.
We can break the tuple c̄ up into finitely many elements bi1 , . . . , bik and finitely many
tuples c̄i,m from Ni,m. The orbit of c̄ is determined by the orbits of bi1 , . . . , bik (each of
which is determined by a first-order formula as described in the previous paragraph),
the fact that Tm(bi, y) holds for any y ∈ c̄i,m, and the orbits of each of the tuples c̄i,m
within Ni,m. The latter orbits are first-order definable by Lemma 3.3 (3).

Theorem 1.4. Let d be a degree c.e. in and above 0(ω). There is a computable prime
model A with strong degree of categoricity d.

Proof. The construction of such a model is similar to Theorem 1.3, except we replace
M and N from Lemma 4.3 with those M and N from Lemma 4.4 (which are actually
the same structures, if α = ω), and we also replace the “easy” and “hard” copies of
Sα with copies of the structure from Theorem 3.4 such that any isomorphism between
them computes 0(ω). The same argument from Theorem 1.3 shows that this new
structure has strong degree of categoricity d. It remains to show that such models are
prime; they are the disjoint union of prime structures, distinguishable by the relation
R, and hence must be prime themselves.

References

[AK00] C. J. Ash and J. Knight. Computable Structures and the Hyperarithmetical
Hierarchy. Elsevier, 2000.

13



[BKY18] N. A. Bazhenov, I. Sh. Kalimullin, and M. M. Yamaleev. Degrees of cate-
goricity and spectral dimension. J. Symb. Log., 83(1):103–116, 2018.

[BM] N. Bazhenov and M. Marchuk. Degrees of categoricity for prime and homo-
geneous models. Preprint.

[CFS13] B. F. Csima, J. N. Y. Franklin, and R. A. Shore. Degrees of categoricity and
the hyperarithmetic hierarchy. Notre Dame J. Form. Log., 54(2):215–231,
2013.

[CS] B. F. Csima and J. Stephenson. Finite computable dimension and degrees
of categoricity. Preprint.

[FKM10] E. B. Fokina, I. Kalimullin, and R. Miller. Degrees of categoricity of com-
putable structures. Arch. Math. Logic, 49(1):51–67, 2010.

[Gon11] S. S. Goncharov. Degrees of autostability relative to strong constructiviza-
tions. Tr. Mat. Inst. Steklova, 274(Algoritmicheskie Voprosy Algebry i
Logiki):119–129, 2011.

[GS07] M. J. Groszek and T. A. Slaman. Moduli of computation. Talk presented
at the Conference on Logic, Computability and Randomness, Buenos Aires,
Argentina, 2007.

[HW02] D. R. Hirschfeldt and W. M. White. Realizing levels of the hyperarithmetic
hierarchy as degree spectra of relations on computable structures. Notre
Dame J. Formal Logic, 43(1):51–64 (2003), 2002.

14


	1 Introduction
	2 Categoricity Relative to Decidable Models
	3 Back-and-forth Trees
	4 C.E. In And Above a Limit Ordinal

