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DEGREES OF BI-EMBEDDABLE CATEGORICITY

NIKOLAY BAZHENOV, EKATERINA FOKINA, DINO ROSSEGGER,
AND LUCA SAN MAURO

Abstract. We investigate the complexity of embeddings between bi-embed-
dable structures. In analogy with categoricity spectra, we define the bi-
embeddable categoricity spectrum of a structure A as the family of Turing
degrees that compute embeddings between any computable bi-embeddable
copies of A; the degree of bi-embeddable categoricity of A is the least de-
gree in this spectrum (if it exists). We extend many known results about
categoricity spectra to the case of bi-embeddability. In particular, we exhibit
structures without degree of bi-embeddable categoricity, and we show that ev-
ery degree d.c.e above 0

(α) for α a computable successor ordinal and 0
(λ) for λ

a computable limit ordinal is a degree of bi-embeddable categoricity. We also
give examples of families of degrees that are not bi-embeddable categoricity
spectra.

1. Introduction

Two mathematical structures are considered the same if they are isomorphic.
While this classification is valid for structural properties of structures, for compu-
tational properties it is too coarse. Indeed, two isomorphic structures can have
very different computational properties. Even two isomorphic computable struc-
tures may have different algorithmic properties. Fröhlich and Shepherdson [FS56],
and independently, Malt’sev [Mal62] discovered that there are isomorphic com-
putable structures which behave differently computationally in the sense that in
one structure an additional relation is computable while in the other one it is not.
They concluded that there can not be a computable isomorphism between these
structures, since any two computably isomorphic structures must have the same
algorithmic properties. Since this discovery, the study of the complexity of iso-
morphisms between computable structures has been one of the main themes of
effective mathematics and computable structure theory in particular. One of the
main goals in the area is to find connections between the structural properties of
structures, as defined by their isomorphism types, and the computational properties
its isomorphic copies might possess.

In this article we extend this study to investigate the complexity of embeddings
between bi-embeddable structures. Two structures A and B are bi-embeddable (no-
tation: A ≈ B) if there is an embedding of either in the other. The bi-embeddability
relation has attracted a lot of attention of specialists in computable structure the-
ory and descriptive set theory in recent years (see, e.g, [LR05; FM11]). Mon-
talbán [Mon05] showed that every hyperarithmetic linear ordering is bi-embeddable
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with a computable one, and in [GM08], together with Greenberg, they showed that
the same is true for abelian p-groups, Boolean algebras, and compact metric spaces.
In [FRM18], Fokina, Rossegger, and San Mauro, observed that every equivalence
structure is bi-embeddable with a computable one. These results show that in many
natural classes of structures, one of the main notions one usually uses to measure
the complexity of a structure, its degree spectrum1, fails to properly capture the de-
sired computational content. This motivates the systematic study of the complexity
of embeddings between bi-embeddable structures. We develop this in analogy to
the study of the complexity of isomorphisms between computable structures. Our
main notion is the following.

Definition 1. Let d be a Turing degree. We say that a computable structure
S is d-computably bi-embeddably categorical (or d-computably b.e. categorical, for
short) if for any computable structure A ≈ S, there are d-computable isomorphic
embeddings f : A →֒ S and g : S →֒ A. The bi-embeddable categoricity spectrum of
S is the set

CatSpec≈(S) = {d : S is d-computably bi-embeddably categorical}.

A degree c is the degree of bi-embeddable categoricity of S if c is the least degree in
the spectrum CatSpec≈(S).

Notice that the bi-embeddable categoricity spectrum of a structure does not
necessarily have a degree of bi-embeddable categoricity. We study such structures
in Section 2.1.

Definition 1 is similar to the notions of categoricity spectrum and degree of cat-
egoricity which were introduced in [FKM10]. The categoricity spectrum of a com-
putable structure S is the set of all Turing degrees which are capable of computing
isomorphisms among arbitrary computable isomorphic copies of S. The degree of
categoricity of S is the least degree from the categoricity spectrum of S. In recent
years, researchers have been extensively investigated what classes of Turing degrees
can be categoricity spectra [FKM10; C+13; MS15; Baz17] and what can not [AC16;
FS14; FT18]. In the present paper we will discuss in detail to which extent such
results can be transferred to the realm of bi-embeddability.

Definition 1 already appeared in our article [Baz+18b], where we gave a com-
plete characterization of the degrees of bi-embeddable categoricity of equivalence
structures by showing that these are either 0, 0′, or 0′′. In this article we focus
on general results, especially, on the question which Turing degrees can and can
not be degrees of categoricity. Some of the results of the paper were announced
in [Baz+18a].

2. Examples of bi-embeddable categoricity spectra

We now give several examples of bi-embeddable categoricity spectra. In partic-
ular we exhibit structures without degree of bi-embeddable categoricity and show
that every degree d.c.e above 0(α) for α a computable successor ordinal and 0(λ)

for λ a computable limit ordinal is a degree of bi-embeddable categoricity. Our
examples have in common that they are only bi-embeddable with their isomorphic

1The degree spectrum of a structure is the family of Turing degrees of its isomorphic copies.
This notion is easily generalized to work with bi-embeddability by considering the family of Turing
degrees of the bi-embeddable copies of a structure.



DEGREES OF BI-EMBEDDABLE CATEGORICITY 3

copies. We call such structures b.e. trivial. More formally, a structure S is b.e.
trivial if

Iso(S) := {A : A ∼= S} = {A : A≈S} =: BiEmb(S).

B.e. triviality has been thoroughly studied in the context of degree spectra in [FRM18].
For b.e. trivial structures there is a strong connection between computable cate-
goricity and computable bi-embeddable categoricity. In particular, if a b.e. trivial
structure is d-computably categorical for some degree d, then it is d-computably
bi-embeddably categorical.

The main results in this section are stated in Theorems 2.1 and 2.2. Their
proofs follow the ideas of the proofs of similar theorems for degrees of categoricity
given in [C+13]. The key ingredient of the proofs is jump inversion using pairs
of structures. Csima, Franklin, and Shore used back-and-forth trees to accomplish
the jump inversion. These trees have the downside that they are not b.e. trivial.
We therefore jump invert using pairs of well-orderings. This technique has recently
been used in [Chi+09; Baz17; Ros18]. In what follows we fix a path P through
Kleene’s O and identify computable ordinals with their notations on this path. We
will not distinguish between the notation of an ordinal on P and the ordinal itself.
However, there should not arise any confusion as what we mean should be clear
from the context.

Theorem 2.1. Let α be a computable successor ordinal. Suppose that d is a Turing
degree such that d is d.c.e. in 0(α) and d ≥ 0(α). There is a computable, bi-embed-
dably trivial structure S with degree of bi-embeddable categoricity d.

Theorem 2.2. Let α be a computable limit ordinal. There is a computable, bi-
embeddably trivial structure S with degree of bi-embeddable categoricity 0(α).

Before we give the proofs of the above theorems we need to recall some prelim-
inaries. We assume that the reader is familiar with computable infinitary logic. If
they are not, we suggest Ash and Knight [AK00] as reference. Recall that a family
of computable infinitary formulas Ψ is a formally Σ0

α Scott family for a structure
A with parameters c if

(1) Ψ is c.e.,
(2) every formula in Ψ is computable Σα,
(3) for every a ∈ A<ω there is a unique formula ϕa ∈ Ψ such that (A, a) |=

ϕa(a, c),
(4) and for a, b ∈ A<ω of the same length if ϕa = ϕb, then there is an auto-

morphism of A taking a to b.

In other words, Ψ is a c.e. family of computable Σα formulas defining the automor-
phism orbits of A. It follows from a classical result by Ash, Knight, Manasse, and
Slaman [Ash+89] that structures having formally c.e. Σ0

α Scott families are ∆0
α

categorical. See [AK00] for more background on this topic.
In order to prove Theorems 2.1 and 2.2 we still need to establish some properties

of the well-orderings we will use for jump inversion. In the case where α = 2β + 1
we will use the ordinals ωβ and ωβ · 2 and in the case where α = 2β+2 we will use
ωβ+1 and ωβ+1 + ωβ . For limit ordinals we will use the corresponding successor
ordinals obtained from their fundamental sequences. The following will be central
to our proofs.
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Lemma 2.3 ([Baz17, Proposition 2]). Assume that α is a non-zero computable
ordinal, and n is a natural number. Suppose that M and N are computable struc-
tures, Ψ is a formally Σ0

α Scott family for M without parameters, Ξ is a formally
Σ0

α Scott family for N with parameters c. Assume that Ψ ⊂ Ξ and that ξ(x) is a
Σc

α+n formula such that M |= ¬∃xξ(x) and c is the unique tuple from N satisfy-
ing ξ(x). Then, given computable indices of computable structures A and B such
that A ∼= B ∼= C ∈ {M,N}, one can effectively determine a ∆0

α+n index for an
isomorphism F from A onto B.

We will use the following relations on linear orderings.

Definition 2. Let L be a linear ordering and x, y ∈ L. Then let

(1) x ∼0 y if x = y,
(2) x ∼1 y if [x, y] or [y, x] is finite,
(3) for α = β + 1, x ∼α y if in L/∼β, [x]∼β

∼1 [y]∼β
,

(4) for α = limβ, x ∼α y if for some β < α, x ∼β y.

The relation ∼1 is commonly known as the block relation. We refer to ∼α as the
α-block relation.

The α-block relation is relatively intrinsically Σ0
2α. To see this first note that for

α = β + 1, ∼α is definable by

x ∼α y ⇔
∨

n∈ω

∀y1, . . . , yn


x < y1 < · · · < yn < y →

∨

1≤i<j≤n

yi ∼β yj


 .

For λ a limit ordinal, let ϕ be a fundamental sequence of λ in P . Then ∼λ is
definable by

x ∼λ y ⇔
∨

i∈ω

x ∼ϕ(i) y.

Using transfinite induction it is immediate from the definition that for each com-
putable ordinal α, ∼α is definable by a computable Σ2α formula and thus relatively
intrinsically Σ0

2α. We are now ready to show that our pairs ωβ , ωβ · 2 and ωβ+1,
ωβ+1+ωβ satisfy the conditions of Lemma 2.3. The lemmas follow from the proofs
in [Ash86] (see also [AK00, Theorem 17.5]). We sketch the proofs for the sake of
completeness.

Lemma 2.4. The ordering ωβ has a formally Σ0
2β Scott family Ψ without param-

eters, and ωβ · 2 has a formally Σ0
2β Scott family with one parameter c such that

Ψ ⊆ Ξ and there is a Σ2β+1 formula ξ(x) such that ωβ · 2 |= ξ(c) but no element of
ωβ satisfies ξ(x).

Proof. Since well-orderings are rigid it is sufficient to give a defining family, i.e., a
family of formulas such that each element satisfies a formula in the family and not
two formulas are satisfied by two elements. From this it is easy to obtain the Scott
family of the ordering. We therefore give Ψ and Ξ as defining families instead.
Towards this notice that for every non-zero ordinal γ < ωβ there is a computable
Σ2β formula θγ(x) without parameters such that for any well-ordering W

(W , a) |= θγ(a) iff [0W , a) ∼= γ,

where 0W is the first element of W [AK00, Proposition 7.2]. Let Ψ = {θγ(x) : γ <
ωβ}. Then it is not hard to see that this is a defining family for ωβ . Let c be the
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first element of the second copy of ωβ in ωβ · 2. Then Ξ consists of all the formulas
of Ψ and formulas θγ(x, y) such that

(W , c, a) |= θγ(c, a) iff [c, a) ∼= γ.

Clearly Ξ is a Σ2β defining family for ωβ · 2 with one parameter. Furthermore the
parameter c is definable in ωβ · 2 by the Σ2β+1 formula

ξ(x) = ∃y ≤ x ∧ ∀z < x z 6∼β x.

�

Lemma 2.5. The ordering ωβ+1 has a formally Σ0
2β+2 Scott family Ψ without

parameters, and ωβ+1 + ωβ has a formally Σ0
2β+2 Scott family with one parameter

c such that Ψ ⊆ Ξ and there is a Π2β+1 formula ξ(x) such that ωβ+1 + ωβ |= ξ(c)
but no element of ωβ satisfies ξ(x).

Proof. The construction of the Scott families Ψ and Ξ is analogous to the construc-
tion of Ψ and Ξ in Lemma 2.4. The parameter c of Ξ is the first element of the last
copy of ωβ in ωβ+1 + ωβ. It is definable by the Π2β+1 formula

ξ(x) = ∀z ≥ x(z ∼β x) ∧ ∀z < x(z 6∼β x).

�

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We build two b.e. trivial computable structures A and B
such that A ∼= B, A is d-computably categorical, and any embedding from A into
B must compute d. We first give the construction for the case when d is d.c.e. over
0(2β+1), where β is an infinite ordinal. For finite ordinals the construction is the
same except for a shift of indices by 1.

Ash’s characterization of the back-and-forth relations for linear orders and his
pairs of structures theorem, see Chapters 11 and 16 in [AK00], tells us that for any
Σ0

2β+1 set S, there is a computable sequence (Ce)e∈ω of linear orders such that

(1) Ce
∼=

{
ωβ · 2 if e ∈ S,

ωβ if e 6∈ S.

A relativized version of the argument from [FKM10, Theorem 3.1] shows that
one can choose a set D ∈ d such that D is d.c.e. in 0(2β+1) and for any oracle X ,
we have:

(D is c.e. in X) ⇒ D ≤T X ⊕ 0(2β+1).

As D is d.c.e. above 0(2β+1) we have that D = U \ V for U and V c.e. in
0(2β+1) and we may assume that V ⊂ U . The language of our structures contains
an equivalence relation ∼, a partial order ≤, a unary predicate T , and a unary
predicate Pe, for each e ∈ ω. We first describe the construction of A. For every e,
we choose elements ae and be in A, and for every Pe, we let Pe(A) be infinite and
include ae, be.

For a fixed e, we give the construction for the substructure on Pe(A). We let
Pe(A) consist of two infinite equivalence classes (with respect to ∼) such that
ae 6∼ be. The two classes [ae] and [be] will both contain pairs of linear orders, i.e.,
structures of the form (L1, L2) where L1 and L2 are linear orders (with respect to
≤), any x ∈ L1 and y ∈ L2 are incomparable, and T ([ae]) = L1.
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If e = 2m, then we encode the information whether or not m is an element of D
in Pe(A). There are three cases:

(1) m 6∈ U : we build T ([ae]),¬T ([ae]), T ([be]) ∼= ωβ , and ¬T ([be]) ∼= ωβ · 2;
(2) m ∈ U \ V : we build T ([be]) ∼= ωβ and T ([ae]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2;
(3) m ∈ V : we build T ([ae]), T ([be]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2.

Analyzing this construction, we see that

[ae] ∼=

{
(ωβ · 2, ωβ · 2) if m ∈ U,

(ωβ, ωβ) if m 6∈ U,
and [be] ∼=

{
(ωβ · 2, ωβ · 2) if m ∈ V,

(ωβ, ωβ · 2) if m 6∈ V.

If e = 2m+ 1, then we let [be] ∼= (ωβ , ωβ · 2), and for [ae] we let

[ae] ∼=

{
(ωβ · 2, ωβ · 2) if m ∈ ∅(2β+1),

(ωβ , ωβ) if m 6∈ ∅(2β+1).

The existence of the uniformly computable sequence of structures (Ce)e∈ω from (1)
implies that we can do the construction computably.

For B, we again choose elements âe, b̂e for every e, and for e = 2m we build B
like A with the difference that the roles of âe and b̂e are switched. For e = 2m+ 1
we let

[âe] =

{
(ωβ · 2, ωβ · 2) if m ∈ ∅(2β+1),

(ωβ , ωβ · 2) if m 6∈ ∅(2β+1),
and [b̂e] =

{
(ωβ, ωβ · 2) m ∈ ∅(2β+1),

(ωβ, ωβ) m 6∈ ∅(2β+1).

Clearly, B and A are isomorphic and computable. It is not hard to show that they
are b.e. trivial: Indeed, every embedding of A into a bi-embeddable copy Â must

map elements in Pe(A) to elements in Pe(Â), for every e ∈ ω. Every Pe(Â) must

have exactly two equivalence classes as otherwise Pe(Â) 6≈ Pe(A). Moreover, the
pairs of structures that we use are pairs of well-orders, and thus b.e. trivial.

Claim 2.5.1. The structure A is d-computably categorical.

Proof. Let B and C be computable copies of A. Clearly every isomorphism must
map Pe(B) to Pe(C). Fix some e ∈ ω. We produce a d-computably partial isomor-
phism from Pe(B) to Pe(C). That there is a d-computable isomorphism B → C
will follow from the fact that our construction does not depend on the choice of e.

Note that the formula ξ(x) given in Lemma 2.4 is computably Σ2β+1 and that we
can restrict the quantifiers in this formula to elements in Pe(B)∩T (B) (respectively
Pe(B) ∩ ¬T (B)), and to elements that are in the same ∼ equivalence class as x,

without changing its complexity. Let ξ̃Te (x) and ξ̃
¬T
e (x) be the relativized formula.

These formulas are also Σ2β+1. It is thus c.e. in d to find an element x ∈ B or C
of which these formulas hold.

We distinguish the following cases.

(1) e = 2m + 1 and m ∈ ∅(2β+1). Search for elements b ∈ B and c ∈ C that

satisfy ξ̃Te (x). By construction we will find such elements and [b] ∼= [c] ∼=
(ωβ · 2, ωβ · 2). Using Lemma 2.4 and Lemma 2.3 d can compute a partial

isomorphism between [b] and [c]. Now look for two elements b̂ ∈ Pe(B) and

ĉ ∈ Pe(C) such that b̂ 6∼ b and ĉ 6∼ c. Then [b̂] ∼= [ĉ] ∼= (ωβ , ωβ · 2) and
again by Lemma 2.4 and Lemma 2.3 d can compute a partial isomorphism

between [b̂] and [ĉ]. We thus get a partial isomorphism from Pe(B) to
Pe(C).
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(2) e = 2m+ 1 and m 6∈ ∅(2β+1). This case is similar to (1).
(3) e = 2m and m ∈ D. Then m ∈ U \ V and the construction proceeds

similarly to the two former cases.
(4) e = 2m and m 6∈ D. Search for elements b ∈ B and c ∈ C satisfying

ξ̃¬T
e (x). By construction we will find such elements, get that [b] ∼= [c], and
obtain that d can compute a partial isomorphism between [b] and [c]. Then

find elements b̂ ∈ Pe(B) and ĉ ∈ Pe(C) such that b 6∼ b̂ and c 6∼ ĉ. These
elements again exist by construction and from Lemma 2.3 and Lemma 2.4

we obtain a d-computable partial isomorphism from [b̂] to [ĉ].

�

It remains to show that every embedding f : A →֒ B computes D. We have that
f ≥T 0(2β+1) because

m ∈ ∅(2β+1) ⇔ f(a2m+1) ∼ b̂2m+1 and m 6∈ ∅(2β+1) ⇔ f(a2m+1) ∼ â2m+1.

Similarly, we have that

m 6∈ U \ V ⇔ (f(a2m) ∼ â2m) or (m ∈ V ).

Thus, D is c.e. in f ⊕ 0(2β+1). Hence, D ≤T (f ⊕ 0(2β+1)) ≡T f .
The construction for the case α = 2β+2 is nearly the same. The only difference

is that in place of (1), we use the following fact: For any Σ0
2β+2 set S, there is a

computable sequence (Ce)e∈ω of linear orders such that

Ce
∼=

{
ωβ+1 + ωβ if e ∈ S,

ωβ+1 if e 6∈ S.

�

The main ideas behind the proof of Theorem 2.2 are similar to those used in
the successor case. But we have to take into account that if α is a limit ordinal,
then the definition of ∅(α) is different from the successor case. We will use that
∅(α) ≡T {〈i, n〉 ∈ ω : n ∈ ∅(ϕ(i))} where ϕ is a fundamental sequence for α. To
do this we will use pairs (ωβ · 2, ωβ) not only for fixed β but for infinitely many
different β below α. Ash and Knight [AK90], see also [AK00, Theorem 18.9], proved
a variation of the pairs of structure theorem which works for our purposes. We state
it here in slightly different terminology.

Lemma 2.6. Let (ei, αi)i∈ω be a computable sequence of Π0
αi

sets Pei and let
(Ai,Bi)i∈ω be a sequence of structures such that Bi ≤αi

Ai and {Ai,Bi} is αi-
friendly, uniformly in i. Then there is a uniformly computable sequence of struc-
tures (C〈i,n〉)〈i,n〉∈ω such that

C〈i,n〉 ∼=

{
Ai if n ∈ Pei ,

Bi otherwise.

Proof of Theorem 2.2. As in the proof of Theorem 2.1 we will build two b.e. trivial
computable structures A ∼= B, such that A is 0(α)-computably categorical and any
embedding from A into B must compute 0(α). Let ϕ be a fundamental sequence for
α such that without loss of generality for all i ∈ ω, ϕ(i) ∼= 2β + 1 for some β < α.
By definition we have that

∅(α) ≡T {〈i, n〉 ∈ ω : n ∈ ∅(ϕ(i))} = ∅ϕ.
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We can now use Lemma 2.6 with Pei = {x : 〈i, x〉 ∈ ∅ϕ} = ∅(ϕ(i)), and (Ai,Bi) =
(ωβi · 2, ωβi) where βi is such that ϕ(i) = 2βi + 1. Our structures A and B are
similar to the successor cases with the exception that for our designated elements

ae, be and âe, b̂e where e = 〈i, n〉 we let

[ae] ∼=

{
(ωβi · 2, ωβi · 2) if n ∈ ∅(ϕ(i)),

(ωβi , ωβi) if n 6∈ ∅(ϕ(i)),
and [be] ∼= (ωβi , ωβi · 2),

and we let

[âe] ∼=

{
(ωβi · 2, ωβi · 2) if n ∈ ∅(ϕ(i)),

(ωβi , ωβi · 2) if n 6∈ ∅(ϕ(i)),
and [b̂e] ∼=

{
(ωβi , ωβi · 2) if n ∈ ∅(ϕ(i)),

(ωβi , ωβi) if n 6∈ ∅(ϕ(i)).

Lemma 2.6 implies that A and B are computable. That A is 0(α)-computably
categorical follows by a similar argument as in the successor case. First notice that
elements satisfying Pe must be sent to Pe. Thus, we may fix e = 〈i, n〉. By the
same arguments as in the proof of Theorem 2.1, 0(2βi+1) can compute a partial
isomorphism between the Pe substructures of arbitrary computable copies of A.
As the βi are bounded by α we have that 0(α) can compute a partial isomorphism
between all substructures on Pe, e ∈ ω, uniformly in e. It follows that 0(α) can
compute an isomorphism.

It remains to prove that every embedding between A and B computes 0(α). It is
sufficient to show that every embedding f : A →֒ B computes ∅ϕ. This is the case
as

m = 〈i, n〉 ∈ ∅ϕ ⇔ n ∈ ∅(ϕ(i)) ⇔ f(am) = âm

and likewise m 6∈ ∅ϕ ⇔ f(am) = b̂m. As degT (∅
ϕ) = 0(α), this proves the theorem.

�

2.1. Structures with no degree of b.e. categoricity. Here we build exam-
ples of b.e. categoricity spectra with no least degree. The exposition mainly fol-
lows [MS15; Baz19].

In this section, trees are treated as substructures of ω<ω. For a tree T , the
branching function bT : T → ω∪{ω} gives the number of children of a node σ from
T , or more formally:

bT (σ) = card({n ∈ ω : σ 〈̂n〉 ∈ T }).

Let X ⊆ ω be an oracle. A Turing degree d is a PA degree over X if for any
infinite X-computable, finite-branching tree T with an X-computable branching
function bT , there is a d-computable (infinite) path through T . Note that the
notion of a PA degree over X depends only on the choice of the Turing degree of
a set X .

The main result of the section is the following

Theorem 2.7. Let α be a computable non-limit ordinal. Then there is a b.e. trivial
computable structure M such that the b.e. categoricity spectrum of M is equal to
the set of PA degrees over 0(α).

Before the proof of the theorem, we recall some known facts about PA degrees:

(a) For any X , the set of PA degrees over X is upwards closed (see, e.g.,
Theorem 6.2 in [Sim77]).
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(b) If d is a PA degree over X , then there is a degree c such that c < d and c

is also a PA degree over X (Theorem 6.5.i in [Sim77]). In other words, the
set of PA degrees over X does not have minimal elements.

(c) A degree d is a PA degree over 0 if and only if d computes a complete
extension of Peano arithmetic.

Our proof of Theorem 2.7 heavily uses the following characterization of PA
degrees, obtained by Scott [Sco62], Jockusch and Soare [JS72], and Solovay:

Proposition 2.8 (see Theorem 6.6 in [Sim77]). A Turing degree d is a PA degree
over X if and only if there is a d-computable set A with the following properties:

{e : ϕX
e (e) ↓ = 1} ⊆ A and {e : ϕX

e (e) ↓ = 0} ⊆ A.

Proof of Theorem 2.7. Here we give a detailed proof for the case when α = 2β + 2
and β ≥ ω.

Note that the set {e : ϕ∅(2β+2)

e (e) ↓ = 1} is Σ0
2β+2. Therefore, as in Theorem 2.1,

the results of Ash and Knight allow us to build two computable sequences of linear
orders (Ae)e∈ω and (Be)e∈ω such that:

Ae
∼=

{
ωβ+1 + ωβ if ϕ∅(2β+2)

e (e) ↓ = 1,

ωβ+1 otherwise;

Be
∼=

{
ωβ+1 + ωβ if ϕ∅(2β+2)

e (e) ↓ = 0,

ωβ+1 otherwise.

The desired computable structure M is arranged as follows. The language of M
consists of a partial order ≤ and infinitely many unary relations Pe, e ∈ ω. The
relations PM

e , e ∈ ω, are pairwise disjoint. If a ≤ b inside M, then a and b must
satisfy the same Pe. The ≤-substructure Pe(M) contains (copies of) Ae and Be, in
a disjoint way.

Claim 2.7.1. The structure M is b.e. trivial.

Proof. Let M̂ be a bi-embeddable copy of M. Since M̂ →֒ M, the relations PM̂
e

are pairwise disjoint, and the ≤-substructure Pe(M̂) consists of two disjoint well-

orders Âe and B̂e. Since M̂ ≈ M and every well-order is b.e. trivial, we deduce

that the posets Pe(M̂) and Pe(M) are isomorphic. Therefore, we have M̂ ∼= M. �

We show that the b.e. categoricity spectrum of the structure M coincides with
the set of all PA degrees over 0(2β+2).

For a natural number e, let ae and be be the ≤M-least elements inside Ae and
Be, respectively. W.l.o.g., we can assume that given e, one can effectively compute
ae and be.

Claim 2.7.2. Let N be a computable structure isomorphic to M, and let d be a
PA degree over 0(2β+2). There is a d-computable isomorphism from M onto N .

Proof. Given N , it is not hard to produce two computable sequences (ce)e∈ω and
(de)e∈ω of elements from N such that for every e:

(1) both ce and de satisfy Pe inside N ,
(2) ce and de are ≤N -incomparable, and
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(3) ce <N de, where ≤N is the standard ordering of natural numbers.

By Ce we denote the ≤N -substructure of N containing all elements comparable
with ce. Similarly, the linear order De consists of the elements comparable with de.
Clearly, the computable indices of Ce and De can be recovered effectively in e.

Consider a computable Σ2β+2 sentence

ξ = ∃x∀y(x ≤ y → y ∼β x).

It is not hard to show that the well-order ωβ+1 does not satisfy ξ. On the other
hand, the ordinal (ωβ+1+ωβ) satisfies ξ (just choose any x from the ωβ-part of the
ordinal).

Let U := {e : Ce |= ξ} and V := {e : De |= ξ}. It is not difficult to show that U
and V have the following properties:

(a) U and V are disjoint Σ0
2β+2 sets.

(b) If e ∈ U , then Ce ∼= ωβ+1 + ωβ and De
∼= ωβ+1.

(c) If e ∈ V , then Ce ∼= ωβ+1 and De
∼= ωβ+1 + ωβ .

(d) If e 6∈ U ∪ V , then Ce ∼= De
∼= ωβ+1.

Fix strongly 0(2β+2)-computable sequences of finite sets (Us)s∈ω and (V s)s∈ω such
that for each W ∈ {U, V }, we have W =

⋃
s∈ωW

s and W s ⊆W s+1 for all s.

We define a 0(2β+2)-computable tree T ⊂ 2<ω as follows. Suppose that a string
σ ∈ 2<ω has length s. Then σ ∈ T if and only if for each e < s, the following
conditions hold:

(1) If e ∈ Us, then ϕ∅(2β+2)

e (e) ↓ = σ(e).

(2) If e ∈ V s, then ϕ∅(2β+2)

e (e) ↓ = 1− σ(e).

Note that the tree T is well-defined: If, say, e ∈ Us, then Ce is a copy of ωβ+1+ωβ.

Since N ∼= M, we deduce that ϕ∅(2β+2)

e (e) ↓ ∈ {0, 1}.
Recall that d is a PA degree over 0(2β+2). It is easy to show that the branching

function bT is 0(2β+2)-computable. Hence, there is a d-computable path P through
T . An easy analysis of the definition of T shows the following: for any e ∈ ω,

(1) if P (e) = 1 , then Ce ∼= Ae and De
∼= Be;

(2) if P (e) = 0, then Ce ∼= Be and De
∼= Ae.

Thus, there is a d-computable function f(e, i) with the following property: If i is a
computable index of a structure Le ∈ {Ae,Be}, then f(e, i) is a computable index
of a structure Re ∈ {Ce,De} such that Re is isomorphic to Le.

We apply Lemma 2.3 to the indices provided by the function f(e, i) and recover
(uniformly in e) a ∆0

2β+2-index for a 0(2β+2)-computable isomorphism ge from Le

onto Re. Since d > 0(2β+2), one can easily construct a d-computable isomorphism
h : M ∼= N , extending the isomorphisms fe. �

Claim 2.7.2 implies that every PA degree over 0(2β+2) belongs to the b.e. cate-
goricity spectrum of M.

Now we define a new computable copy R of the structure M. We build two
computable sequences of linear orders (Ce)e∈ω and (De)e∈ω such that:

Ce ∼=

{
ωβ+1 + ωβ if ϕ∅(2β+2)

e (e) ↓ ∈ {0, 1},

ωβ+1 otherwise;
and De

∼= ωβ+1.

For every e ∈ ω, the Pe-part of the structure R contains copies of Ce and De, in a
disjoint way. Clearly, R is isomorphic to M.
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Let ce and de be the least elements inside Ce and De, respectively. As before, we
assume that one can compute ce and de, uniformly in e.

Suppose that f is an arbitrary isomorphic embedding from M into R. We define
a degT (f)-computable set X as follows: a number e belongs to X if and only if the
element f(ae) is comparable with ce inside R.

Note that the ordinal ωβ+1 + ωβ cannot be isomorphically embedded into the
well-order ωβ+1. Therefore, the set X has the following properties:

(a) If ϕ∅(2β+2)

e (e) ↓ = 1, then Ae
∼= Ce ∼= ωβ+1 + ωβ and hence, e ∈ X .

(b) If ϕ∅(2β+2)

e (e) ↓ = 0, then Be
∼= Ce ∼= ωβ+1 + ωβ and e 6∈ X .

By Proposition 2.8, we obtain that degT (f) is a PA degree over 0(2β+2). This
shows that every degree from the b.e. categoricity spectrum of M is a PA degree
over 0(2β+2).

The proof for the case α = 2β+1 is very similar, modulo the following key point:
one needs to employ the well-orders ωβ and ωβ · 2 in place of ωβ+1 and ωβ+1 +ωβ,
respectively. The proof for finite α (either even or odd) can be obtained via minor
modifications. Theorem 2.7 is proved. �

Corollary 2.9. There is a structure S without degree of bi-embeddable categoricity
but CatSpec≈(S) ∩ HYP 6= ∅ and CatSpec≈(S) does not have minimal elements.

3. Categoricity vs bi-embeddable categoricity spectra

In this section, we explore the connections between categoricity and b.e. cate-
goricity spectra. We begin by discussing limitations to b.e. categoricity spectra,
by showing examples of sets of degrees that are not b.e. categoricity spectra, and
degrees that are not degrees of b.e. categoricity. First, we give a necessary condi-
tion for a degree to be a degree of bi-embeddable categoricity and show that any
b.e. categoricity spectrum is meager. It is still open whether there are examples
separating categoricity spectra from b.e. categoricity spectra.

Theorem 3.1. Every degree of bi-embeddable categoricity is hyperarithmetical.

Proof. Let d 6∈ HYP, and let A be a computable structure. We show that d is not a
degree of b.e. categoricity for A. Towards this let A0,A1, . . . be an enumeration of
all computable structures bi-embeddable with A. For f, g : ω → ω let (f, g) : ω → ω
be defined as (f, g)(2x) = f(x) and (f, g)(2x+ 1) = g(x). Then the set

{(f, g) : f : A0 →֒ A1 & g : A1 →֒ A0}

is Π0
2, and thus Σ1

1. Therefore, by Kreisel’s Basis Theorem [Sac90, Theorem 7.2],
there exists a pair of embeddings (f1 : A0 →֒ A1, g1 : A1 →֒ A0) such that d 6≤h

f1. Suppose we are given pairs of embeddings (fi : A0 →֒ Ai, gi : Ai →֒ A0)
for 1 ≤ i ≤ n with d 6≤h

⊕
1≤i≤n(fi, gi). Then, by Kreisel’s Basis Theorem

relativized to
⊕

1≤i≤n(fi, gi), there exists a pair of embeddings (fn+1, gn+1) such

that d 6≤h

⊕
1≤i≤n+1(fi, gi). Now, let a,b be an exact pair for the sequence

(
⊕

1≤j≤i(fj , gj))i∈ω . Then a and b can compute a pair of embeddings between any
two bi-embeddable copies of A0. This implies, that if d is a degree of categoricity
for A, then d ≤ a and d ≤ b. However, since a and b are an exact pair, this implies
that d ≤T

⊕
1≤i≤n(fi, gi) for some n, a contradiction. �

We write A ≈d B if there are two d-computable embeddings witnessing that
A ≈ B.
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Theorem 3.2. For every computable structure S, CatSpec≈(S) either coincides
with all Turing degrees or is meager.

Proof. Assume that 0 /∈ CatSpec≈(S) and let A ≈ S such that 0 /∈ {d : A ≈d S}.
We will show that {d : A ≈d S} is meager. The theorem will follow by observing
that

CatSpec≈(S) =
⋂

A∈[S]≈

{d : A ≈d S}.

First, note that {d : A ≈d S} =
⋃

〈e,i〉∈ω P〈e,i〉, where

P〈e,i〉 = {X : ϕX
e : A →֒ S and ϕX

i : S →֒ A}.

We will prove that all P〈e,i〉’s are nowhere dense. Given σ ∈ 2ω, look for τ ⊇ σ such

that, for all X ⊇ τ , one of the three following holds: ϕX
e or ϕX

i is nontotal; ϕX
e is

not embedding from A to S; ϕX
i is not an embedding from S to A. We distinguish

two cases.

(i) If such τ exists, then {X : X ⊇ τ} ⊆ P〈e,i〉.
(ii) If there is no such τ , we claim that A and S are computably bi-embeddable,

a contradiction. To see this, given σ define two computable sets Y0 =
∪k∈ωρk and Y1 = ∪k∈ωξk, where

ρ0 = σ, ρk+1 = the least ρ ⊇ ρk such that ϕρ
e(k) ↓;

ξ0 = σ, ξk+1 = the least ξ ⊇ ξk such that ϕξ
i (k) ↓.

Since (i) does not hold, it must be the case that both ϕY0
e and ϕY1

i are total,

and moreover ϕY0
e is an embedding from A to S and ϕY1

i is an embedding
from S to A. So, this case never holds.

Thus, P〈e,i〉 is nowhere dense, giving that {d : A ≈d S} is meagre. �

By calculating the complexity of the forcing condition in the above proof, it is not
hard to show that there is a ∆0

3 degree that can not be a degree of b.e. categoricity.
The same result holds for degree of categoricity. Anderson and Csima [AC12]
also proved that no noncomputable hyperimmune-free degree can be a degree of
categoricity. Their proof extends with almost no modification to b.e. categoricity.

The study of which degrees can not be degrees of categoricity recently motivated
the notion of lowness for isomorphism [FS14]. A Turing degree d is low for iso-
morphism if for any computable structures A ∼= B, the existence of a d-computable
isomorphism from A onto B implies that A and B are already computably isomor-
phic.

The next definition gives two variants of how one can formalize a notion of
lowness in the setting of isomorphic embeddings. Proposition 3.3 shows that the
two variants turn to be equivalent.

Definition 3. Let d be a Turing degree. The degree d is low for embeddings if for
any computable structures A and B, we have

(∃f ≤T d)(f : A →֒ B) ⇒ (∃g ≡T 0)(g : A →֒ B).

The degree d is low for bi-embeddings if for any computable structures A and B,

(A ≈d B) ⇒ (A ≈0 B).

Proposition 3.3. A degree d is low for embeddings if and only if it is low for
bi-embeddings.
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Proof. It is clear that every low for embeddings degree is also low for bi-embeddings.
Suppose that a degree d is not low for embeddings, i.e. there exist computable struc-
tures A and B such that there is a d-computable isomorphic embedding f : A →֒ B,
but A is not computably embeddable into B. W.l.o.g., one may assume that the
domains of A and B are both equal to ω.

We define new computable structures A∗ and B∗ as follows.

• The language of our structures contains the language of A and a new equiv-
alence relation E.

• The structure B∗ is a disjoint union of infinitely many copies of B. For
i ∈ ω, the ith copy of B inside B∗ has domain {〈i, x〉 : x ∈ ω}. Each copy
of B forms an E-equivalence class.

• The structure A∗ is arranged similarly to B∗, modulo the following modi-
fication: The 0th copy of B should be replaced by a copy of A.

It is not hard to show that A∗ and B∗ have the following properties:

(1) A∗ and B∗ are bi-embeddable.
(2) There is a computable embedding from B∗ into A∗: just map the ith copy

of B inside B∗ onto the (i+ 1)th copy of B inside A∗.
(3) There is a d-computable embedding from A∗ into B∗: The embedding uses

f to map the copy of A inside A∗ into the 0th copy of B inside B∗. All the
other EA-classes are mapped in a straightforward way.

Therefore, we obtain that A ≈d B. On the other hand, if h : A∗ →֒ B∗, then the
function

h# := h ↾ {〈0, x〉 : x ∈ ω}

induces an isomorphic embedding from A into B (or more formally, h# is an em-
bedding from the copy of A inside A∗ into the ith copy of B inside B∗, for some
i). Moreover, h# ≤T h. Thus, there is no computable embedding from A∗ into B∗,
and A∗ 6≈∆0

1
B∗. In other words, the structures A∗ and B∗ witness that d is not

low for bi-embeddings. �

3.1. Case-study: structures that are not b.e. trivial. So far in all of our
results we built structures that are bi-embeddably trivial, i.e., their isomorphism
type and their bi-embeddability type coincide. Furthermore, it is not hard to
see that in all of these examples the degree of categoricity and the degree of bi-
embeddable categoricity coincide. But what can we say about structures which are
not b.e. trivial? One example that comes to mind is η, the ordering of the rational
numbers. It is well known that η is computably categorical. However, it is not hard
to see that η is not hyperarithmetically b.e. categorical and therefore does not have
a degree of bi-embeddable categoricity.

Proposition 3.4. There is a computably categorical linear ordering which is not
hyperarithmetically bi-embeddably categorical.

Proof. That η is computably categorical follows easily by a basic back-and-forth
argument. Furthermore, it is easy to see that η is bi-embeddable with every count-
able linear ordering which has a dense subordering. Therefore it is bi-embeddable
with the Harrison linear ordering ωCK

1 · (1 + η). Take any embedding from a stan-
dard copy of η to a computable copy of the Harrison linear ordering that does
not have hyperarithmetic descending sequences. Then this embedding computes a
descending sequence and thus it can not be hyperarithmetic. �
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Proposition 3.5. For every computable ordinal β there is a proper ∆0
β computably

categorical linear ordering which is not hyperarithmetically bi-embeddably categori-
cal.

Proof. (1) First, assume that the ordinal β is even, i.e. β = 2α. Notice that
ωα + 1 has a formally Σ0

2α Scott family (see Lemma 2.4). It furthermore follows
from results of Ash [Ash86] that it does not have a Scott family of less complexity.
It is now easy to see that ωα + 1 + η has a Σ0

2α Scott family with one parameter.
Therefore it is relatively ∆0

2α categorical. However, ωα+1+η is bi-embeddable with
η which by Proposition 3.4 is not hyperarithmetically bi-embeddably categorical.

(2) Suppose that β = 2α + 1, where α is non-zero. We prove that the order
L = ωα · (1 + η) has the desired properties.

We sketch the description of a formally Σ0
2α+1 Scott family for L. A typical

example of a Scott formula ψ(x̄) is constructed as follows. Consider a tuple ā =
a0, a1, a2, a3 from L such that:

• a0 is the least element of L.
• [a0; a1)L ∼= ωγ , where γ < α.
• a2 and a3 belong to the same copy of ωα inside L, and this copy is not the
first. Let c be the least element in the copy.

• [c; a2)L ∼= ωδ0 and [a2; a3)L ∼= ωδ1 , where δ0, δ1 < α.

Then the Scott formula ψ(x0, x1, x2, x3) such that L |= ψ(ā) is defined as a con-
junction of the following formulas:

• x0 < x1 < x2 < x3;
• ∀y(x0 ≤ y);
• a computable Π2γ+1 formula saying that the interval [x0;x1) is isomorphic
to ωγ ;

• a computable Σ2α+1 formula postulating the following: there is an element
c such that

– c is not the least,
– ∀z < c(z 6∼α c),
– [c;x2) ∼= ωδ0 ;

• a Πc
2δ1+1-formula saying that [x2;x3) ∼= ωδ1 .

It is not hard to show that the formula ψ is equivalent to a computable Σ2α+1

formula. Furthermore, the description of ψ can be easily extended to a construction
of a Σ0

2α+1 Scott family for L.
The results of Ash and Knight (see Theorem 4.2 and p. 224 in [AK90]) imply

that for any Σ0
2α set X , one can build a uniformly computable sequence (Cn)n∈ω of

linear orders such that

Cn ∼=

{
an ordinal γ < ωα if n ∈ X,

ωα · (1 + η) if n 6∈ X.

The formal details of this construction can be recovered, e.g., from a similar proof
of Theorem 3.1 in [Baz16]. Take X as a Σ0

2α complete set, and consider the order

M :=
∑

n∈ω

(1 + Cn).

Clearly, M is a computable copy of ωα · (1+ η). Moreover, the α-block relation ∼α

inside M is a Σ0
2α complete set.
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On the other hand, it is easy to build a computable copy N of ωα · (1 + η) such
that the relation ∼α for N is computable. Thus, every isomorphism from M onto
N must compute a Σ0

2α complete set. This implies that the order L = ωα · (1 + η)
is not ∆0

2α categorical and thus an example of a properly ∆0
2α+1 categorical linear

ordering.
In order to finish the proof, notice that the order L is bi-embeddable with η. In

turn, η is not hyperarithmetically bi-embeddably categorical. �

4. Index sets

In this section we prove results on the complexity of index sets of 0′ bi-embeddably
categorical structures and the index set of structures with degree of bi-embeddable
categoricity. The structures we will construct in our proofs belong to the class of
strongly locally finite graphs. Recall that a graph is strongly locally finite if all
of its connected components are finite. It is easy to see that computable strongly
locally finite graphs have formally Σ0

2 Scott families and are thus 0′ computably
categorical. The following result about strongly locally finite graphs will be used
in the following proofs.

Proposition 4.1. There is a strongly locally finite graph that is not hyperarith-
metically bi-embeddably categorical.

Proof. Let H ⊆ ω<ω be a computable tree without hyperarithmetic paths. We
build a strongly locally finite graph GH such that the partial ordering under em-
beddability of its components is computably isomorphic to H .

For any σ ∈ H , GH contains the component Cσ: A ray of length |σ| + 1 where
the first vertex has a loop connected to it and the (i + 2)th vertex for i < |σ| has
a cycle of length σ(i) + 2 attached. Clearly the partial ordering of the components

is computably isomorphic to H by Cσ 7→ σ. Now GH has a bi-embeddable copy G̃
that skips a fixed Cσ such that σ lies on a path in H . Now consider embeddings
µ : GH → G and ν : G→ GH , then Cσ ⊂ µ(Cσ) ⊂ ν(µ(Cσ)) ⊂ . . . and thus there is
f ∈ [H ] hyperarithmetic in µ⊕ν. Hence, µ⊕ν itself can not be hyperarithmetic. �

Theorem 4.2. The index set of 0′-computably bi-embeddably categorical structures
is Π1

1-complete.

Proof. Let H be a computable tree without hyperarithmetic paths as in the proof
of Proposition 4.1 and let (Ti)i∈ω be a uniformly computable sequence of trees
such that Ti is well-founded iff i ∈ O. For two strings σ, τ of the same length let
σ ⋆ τ = σ0τ0σ1τ1 . . . σ|σ|−1τ|τ |−1, and consider the sequence of trees (Si)i∈ω

Si = {ξ : ξ ⊆ σ ⋆ τ, |σ| = |τ |, σ ∈ Ti, τ ∈ H}.

Clearly, it is uniformly computable, and Si is well-founded iff i ∈ O. Furthermore,
no path in [Si] is hyperarithmetic. Using the same coding as in the proof of Propo-
sition 4.1 we get that if i ∈ O, then GSi

is b.e. trivial and thus 0′-computably bi-
embeddably categorical. If i 6∈ O, then GSi

is not 0(α)-computably bi-embeddably
categorical for α < ωCK

1 . �

Note that in [Dow+15], it was shown that the index set of computably categorical
structures is Π1

1-complete. We leave open whether a similar result can be obtained
for computably bi-embeddably categorical structures.
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Corollary 4.3. The index set of structures with degree of bi-embeddable categoricity
is Π1

1 complete.

Proof. In the proof of Theorem 4.2 we produced a uniformly computable sequence
of structures (GSi

)i∈ω such that in the Π1
1 outcome GSi

is 0′-computably bi-
embeddably categorical. To obtain the corollary we take the cardinal sum of GSi

and a structure which has degree of bi-embeddable categoricity 0′. More formally,
the new structure Si is in the language of graphs with an additional relation symbol
R/1 such that R partitions ω into two infinite sets. We let R(Si) ∼= GSi

, and we let
the corelation of R be isomorphic to the canonical unbounded equivalence structure
– the equivalence structure E having one equivalence class of each size – i.e., the
universe of E is {〈i, n〉 : n < i} and its equivalence relation (edge relation) is defined
by 〈i1, n1〉E〈i1, n2〉 ⇔ i1 = i2.

The structure E has degree of b.e. categoricity 0′ [Baz+18b, Theorem 3.8]. Now,
every embedding of Si into a bi-embeddable copy computes an embedding be-
tween ¬R(Si) and a bi-embeddable copy of E . If i ∈ O, then between any two
bi-embeddable copies of Si there are 0′ computable embeddings and there are
bi-embeddable copies A and B such that 0′ is the least degree computing such
embeddings. Thus Si has degree of b.e. categoricity 0′. On the other hand, if
i 6∈ O, then R(Si) is not hyperarithmetically bi-embeddably categorical, and has
by Theorem 3.1 no degree of b.e. categoricity. �
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