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Effective aspects of Hausdorff and Fourier dimension

Alberto Marcone Manlio Valenti

Abstract

In this paper, we study Hausdorff and Fourier dimension from the point of view of effective
descriptive set theory and Type-2 Theory of Effectivity. Working in the hyperspace K(X) of
compact subsets of X, with X = [0, 1]d or X = Rd, we characterize the complexity of the family
of sets having sufficiently large Hausdorff or Fourier dimension. This, in turn, allows us to show
that the family of all the closed Salem sets is Π0

3-complete. One of our main tools is a careful
analysis of the effectiveness of a classical theorem of Kaufman. We furthermore compute the
Weihrauch degree of the functions computing Hausdorff and Fourier dimension of closed sets.
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1 Introduction

Hausdorff dimension is probably the most important and well studied among the notions of fractal
dimensions, and it plays a central role in analysis and geometric measure theory. In recent work,
Jack and Neil Lutz [31] proved a point-to-set principle linking the (classical) Hausdorff dimension
of a set with the (relative) effective Hausdorff dimension of its points. If we restrict our attention to
singletons, we can characterize the effective Hausdorff dimension of {ξ} by means of the Kolmogorov
complexity of ξ [32], which establishes a surprising connection between two (apparently) very distant
notions.

A powerful tool to study the Hausdorff dimension of Borel subsets of Rd is provided by the
Fourier transform. Indeed, Frostman’s lemma draws an interesting connection between the Hausdorff
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dimension of a set and the decay of the Fourier transform of a (probability) measure supported on
it. This leads to the notion of Fourier dimension. It is known that the Fourier dimension of a Borel
set cannot exceed its Hausdorff dimension.

This work is part of a long-term effort, involving many researchers, aimed at exploring the
recursion-theoretic properties of the Fourier dimension. While no point-to-set principles can hold
for the Fourier dimension (in such a generality), analyzing the complexity of the Fourier dimension
in simpler cases can shed light on the general behavior of the Fourier dimension itself (up to now,
still not deeply understood).

Salem sets arise naturally when combining geometric measure theory and harmonic analysis. A
set A ⊂ Rd is called Salem iff dimH(A) = dimF(A), where dimH and dimF denote the Hausdorff
and the Fourier dimension respectively. Explicit (i.e. non-random) Salem sets are not easy to build.
A classic example comes from the theory of Diophantine approximation of real numbers: for every
α ≥ 0, the set E(α) of α-well approximable numbers is Salem with dimension 2/(2 + α). The
computation of its Hausdorff dimension is due to Jarńık [26] and Besicovitch [3], while the result
on its Fourier dimension is due to Kaufman [27]. The reader is referred to [4] or [49] for detailed
proofs of Kaufman’s theorem. The construction presented in [49] will play a central role in the rest
of this work.

As a consequence of a result of Gatesoupe [20], subsets of Rd obtained by the rotation of a
1-dimensional Salem sets with dimension α (having at least two points) are Salem of dimension
d− 1 + α, and this provides a simple way for building Salem sets of dimension at least d− 1 in Rd.

Explicit examples of non-Salem sets are the symmetric Cantor sets with dissection ratio 1/n
for n > 2: they are known to have null Fourier dimension and Hausdorff dimension log(2)/ log(n)
(see [34, Sec. 4.10] and [35, Thm. 8.1]). Every subset of a n-dimensional hyperplane is a 0-Fourier
dimensional subset of Rd when n < d, while it can have any Hausdorff dimension up to n.

In recent work [33], we studied the complexity, from the point of view of classical descriptive set
theory, of a number of relations involving the Hausdorff and the Fourier dimension. In particular,
we studied the conditions dimH(A) > p, dimF(A) > p, dimH(A) ≥ p, dimF(A) ≥ p, “A is Salem”,
when p ∈ R and A is a closed subset of [0, 1], [0, 1]d, and Rd. In particular, we proved that having
Hausdorff/Fourier dimension > p and ≥ p are, respectively, a

∼

Σ0
2-complete and a

∼

Π0
3-complete

conditions. Similarly, we showed that the family of Salem sets is
∼

Π0
3-complete. In this paper we

explore the same conditions from the point of view of effective descriptive set theory and Type-2
Theory of Effectivity (TTE). Notice that in [23] the authors showed that the sets of elements of
the Cantor space having (respectively) effective Hausdorff dimension > α and ≥ α, where α is a
∆0

2-computable real, are (respectively) Σ0
2 and Π0

3.

The paper is organized as follows. After briefly introducing the relevant background notions
(Section 2), we present some results on the lightface structure of the hyperspaces of closed and
compact sets (Section 3) and on computable measure theory (Section 4) that will be needed for
the main results. In particular, we show that the hyperspace of compact subsets of a computably
compact space is computably compact (Lemma 3.5), the hyperspace of closed subsets of the Eu-
clidean space is computably compact (Proposition 3.6) and that the space of probability measures
on a computably compact space is computably compact (Theorem 4.1). Section 5 is devoted to the
proof of an effective version of the above mentioned theorem by Kaufman, stated in Theorem 5.6.
Section 6 contains the main results on the effective complexity of the conditions mentioned above,
and can be summarized as follows: if X = [0, 1]d or X = Rd then,

2



p < d {A ∈ K(X) : dimH(A) > p} Σ0
2-complete

p > d {A ∈ K(X) : dimH(A) ≥ p} Π0
3-complete

p < d {A ∈ K(X) : dimF(A) > p} Σ0
2-complete

p > d {A ∈ K(X) : dimF(A) ≥ p} Π0
3-complete

{A ∈ K(X) : A is Salem} Π0
3-complete

where K(X) is the hyperspace of compact subsets of X (endowed with the canonical lightface
structure induced by the Hausdorff metric, introduced in Section 3). The complexities remain the
same if we consider the hyperspace of closed sets. In particular, the fact that the family of closed
Salem subsets of [0, 1] is Π0

3-complete answers a question asked by Slaman during the IMS Graduate
Summer School in Logic, held in Singapore in 2018. In Section 7, we use our results to characterize
the Weihrauch degree of the maps computing the Hausdorff and the Fourier dimension of a closed
set, in particular answering a question raised by Fouché ([9]) and Pauly.
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2 Background

Throughout the paper, we will use B (x, r) to denote the open ball with center x and radius r. We
also fix a computable enumeration (qi)i∈N of Q+.

2.1 Hausdorff and Fourier dimension

Let us briefly introduce the relevant notions from geometric measure theory. For a more thorough
presentation the reader is referred to [18].

Let (X, d) be a separable metric space and let A ⊂ X . We denote the diameter of A by diam(A).
For every s ≥ 0, δ ∈ (0,+∞] we define

Hs
δ(A) := inf

{∑

i∈I

diam(Ei)
s : {Ei}i∈I is a δ-cover of A

}
,

Hs(A) := lim
δ→0+

Hs
δ(A) = sup

δ>0
Hs
δ(A),

where {Ei}i∈I is a δ-cover of A if A ⊂
⋃
i∈I Ei and diam(Ei) ≤ δ for each i ∈ I. The function Hs

is called s-dimensional Hausdorff measure. The Hausdorff dimension of A is defined as

dimH(A) := sup{s ∈ [0,+∞) : Hs(A) > 0}.

It is well-known that, as a consequence of Frostman’s lemma (see [34, Thm. 8.8]), the Hausdorff
dimension of a Borel subset of Rd can be equivalently written as

sup{s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)},
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where P(A) is the set of Borel probability measures supported on A (in other words, for Borel sets
Hausdorff and capacitary dimensions coincide).

This characterization suggests the possibility to use the tools of harmonic analysis to obtain
estimates on the Hausdorff dimension. We can define the Fourier transform of a probability measure
µ ∈ P(Rd) as the function

µ̂ : Rd → C := x 7→

∫

Rd

e−i ξ·x dµ(x)

where ξ · x denotes scalar product. The Fourier dimension of A ⊂ Rd is then defined as

dimF(A) := sup{s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(|µ̂(x)| ≤ c|x|−s/2)}.

It is known that, for every Borel A ⊂ Rd, dimF(A) ≤ dimH(A) (see [34, Chap. 12]). If dimF(A) =
dimH(A) then A is called Salem set . We denote the collection of Salem subsets of X ⊂ Rd with
S (X).

For background notions on the Fourier transform the reader is referred to [46]. For its applications
to geometric measure theory see [35].

We notice that the Hausdorff dimension is

countably stable : for every family {Ai}i∈N, dimH(
⋃
iAi) = supi dimH(Ai) [34, p. 59];

invariant under bi-Lipschitz maps : for every α-Hölder continuous map f : Rn → Rm we have
dimH(f(A)) ≤ α−1 dimH(A) [18, Prop. 3.3].

In particular, the inclusion map ι : Rn → Rm, with n ≤ m, preserves the Hausdorff dimension.
None of the above properties hold, in full generality, for the Fourier dimension. In fact, it is not

even finitely stable [16, Sec. 1.3] and does not behave well under Hölder continuous transformations
[17, Sec. 8]. Moreover, it is sensitive to the choice of the ambient space: as mentioned, every A ⊂ Rn

has null Fourier dimension when seen as a subset of Rm with n < m. However, some regularity
properties hold if we restrict our attention to special cases. We mention, in particular, that the
Fourier dimension is inner regular for compact sets , i.e.

dimF(A) = sup{dimF(K) : K ⊂ A and K is compact},

and countably stable for closed sets [16, Prop. 5], i.e. for every countable family {Ak}k of closed
subsets of Rd we have

dimF

(⋃

k

Ak

)
= sup

k
dimF(Ak).

Moreover, the Fourier dimension is invariant under similarities or affine (invertible) transformations
(this is a simple consequence of the properties of the Fourier transform).

2.2 Computability on represented spaces

In this paper, we use the standard approach of Type-2 Theory of Effectivity (TTE) to define a
notion of computability on a wide range of spaces. We now introduce the main definitions, for a
more detailed presentation the reader is referred to [39, 48].

Let NN be the Baire space and let N<N be the set of finite sequences of natural numbers. Let
also 2N be the Cantor space and 2<N be the set of finite binary sequences. Both NN and 2N are
endowed with the usual product topology. We sometimes describe a string by a list of its elements.
E.g. we write (n0, n1, . . . , nk) for the string σ := i 7→ ni. Similarly, we can describe an infinite string
by (n0, n1, . . .), when it is clear from the context how to continue the sequence. We write () for the
empty sequence. We write |σ| for the length of σ and σaτ for the concatenation of the strings σ and
τ . We will use the symbol 〈·〉 to denote a fixed computable bijection N<N → N with computable
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inverse. It is often convenient to write 〈n0, . . . , nk〉 in place of 〈(n0, . . . , nk)〉. In the literature, the
symbol 〈·〉 is often used to denote also the join between two (of the same length, finite or infinite)
strings. With a (relatively) small abuse of notation, if x,y are two strings of the same length we will
write1 〈x, y〉(i) := 〈x(i), y(i)〉 and 〈x0, x1, . . .〉(〈i, j〉) := xi(j).

A represented space is a pair (X, δX) where X is a set and δX :⊆ NN → X is a partial surjection
called representation map. For every x ∈ X , the elements of δ−1

X (x) are called δX -names for x (we
just say names if there is no ambiguity on the representation map).

We can exploit the classical notion of computability on NN (see [48] for an introduction) to induce
a notion of computability on any represented space: let f be a partial multi-valued function between
the represented spaces (X, δX) and (Y, δY ) (in symbols f :⊆ X ⇒ Y ). A realizer for f is a partial
function F :⊆ NN → NN such that, for every p ∈ dom(f ◦ δX), we have that δY (F (p)) ∈ f(δX(p)).
We say that f is (δX , δY )-computable if it has a computable realizer (again, we just say computable
if the representation maps are clear from the context). We say that f is realizer-continuous if it has
a continuous realizer. The set of realizer-continuous partial functions between represented spaces is
a represented space itself ([48, Sec. 2.3]).

As the notation suggests, the induced notion of computability is intrinsically tied to the choice
of the representation maps. If δ and δ′ are two representation maps for X , we say that δ is (topo-
logically) reducible to δ′, and we write δ ≤ δ′ (resp. δ ≤t δ

′), if there is a (continuous) computable
map F :⊆ NN → NN s.t. δ(p) = δ′(F (p)) for every p ∈ dom(δ). The maps δ and δ′ are called
(topologically) equivalent , written δ ≡ δ′ (resp. δ ≡t δ′), if δ ≤ δ′ and δ′ ≤ δ (resp. δ ≤t δ′ and
δ′ ≤t δ).

Often times, spaces are naturally endowed with some canonical topology, and it would be de-
sirable that the topological structure agrees with the computational one, i.e. that the notions of
continuity and realizer-continuity agree. We will consider (and mainly focus our attention on) the
so-called admissible representations , which intuitively are those that satisfy this requirement.

Definition 2.1 ([43, Def. 1]). Let (X, τX) be a topological space. A representation map δX of X
is called admissible w.r.t. τX if it is continuous and, for every other continuous representation map
δ on X , we have δ ≤t δX .

In other words, an admissible representation of X is ≤t-maximal among the continuous repre-
sentation of X . We will just say that a representation is admissible if there is no ambiguity on the
topology.

Theorem 2.2 ([48, Thm. 3.2.11]). Let (X, δX , τX), (Y, δY , τY ) be admissibly represented second-
countable T0 spaces. For every f :⊆ X → Y ,

f is continuous ⇐⇒ f is realizer-continuous.

In particular, whenever X and Y are admissibly represented, the space C(X,Y ) of continuous
functions from X to Y is a represented space.

Clearly, the very existence of an admissible representation for the topological space (X, τX)
depends on the topology itself: a family B of subsets of X is called a pseudobase iff for every open
set U ⊂ X , every x ∈ U and every sequence (yn)n∈N converging to x,

(∃B ∈ B)(∃n0 ∈ N)({x} ∪ {yn : n ≥ n0} ⊂ B ⊂ U).

Theorem 2.3 ([43, Thm. 13]). A topological space (X, τX) admits an admissible representation δX
iff it is T0 and admits a countable pseudobase.

1The exact details of the definition of the join are often not relevant. E.g. a common way to define the join of
x, y ∈ NN is letting 〈x, y〉(2n) := x(n) and 〈x, y〉(2n + 1) := y(n).
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2.3 Representations on (hyper)spaces

While (the proof of) Theorem 2.3 provides an explicit definition of an admissible representation for
a wide variety of spaces, in many practical situations this is not the representation map we endow
our space with. Observe that, while all admissible representation maps are topologically equivalent,
they do not necessarily induce the same notions of computability, i.e. they may not be (computably)
equivalent.

Let X = (X, d, α) be a separable metric space, where d : X × X → R is the distance function
and α : N → X is an enumeration of a dense subset of X . The Cauchy representation on X is the
map δC :⊆ NN → X defined as

δC(p) = x :⇐⇒ lim
n→∞

α(p(n)) = x,

where dom(δC) := {p ∈ NN : (∀n)(∀m > n)(|α(p(n)) − α(p(m))| ≤ 2−n)} is the set of rapidly con-
verging sequences . The Cauchy representation is the “canonical” representation map for separable
metric spaces. It is equivalent to the representation map that names x ∈ X via any q ∈ NN s.t.
{x} =

⋂
n∈NB (α(q(n)), 2−n).

Recall that (qi)i∈N is a canonical computable enumeration of the rationals. We say that X is a
computable metric space if the set

{(i, j, n,m) ∈ N4 : qi < d(α(n), α(m)) < qj}

is computably enumerable, i.e. if the restriction of the distance function to ran(α)2 is computable.
We can always assume that, if X is infinite, α is an injective map (i.e. every element of the dense
subset of X has a unique index). Indeed, for every infinite computable metric space (X, d, α) there is
an injective subsequence β of α s.t. the spaces (X, d, α) and (X, d, β) are computably homeomorphic
(i.e. there is a computable bijection with computable inverse) [21, Thm. 2.9].

Let (Y, τY ) be a second-countable topological space. We say that (Y, (Bn)n∈N) is an effective
(topological) space if (Bn)n∈N is an enumeration of a basis for τY s.t. there is a computable function
ϕ : N<N × N → N s.t. ⋂

i<|σ|

Bσ(i) =
⋃

k∈N

Bϕ(σ,k).

Every effective topological space (Y, (Bn)n∈N) can be endowed with the structure of represented
space by defining an (admissible) representation map δY that names a point y ∈ Y via an enumera-
tion of the set {i : y ∈ Bi}. Notice that a computable metric space (X, d, α) can be seen as an effec-
tive space by considering the “standard” enumeration of the basis for X (i.e. B〈i,j〉 = B (α(i), qj)).
In this case, the Cauchy representation on X is equivalent to the representation δX .

For every topological space Z, the family of Borel subsets of Z can be stratified in a hierarchy,
called the Borel hierarchy. The levels of this hierarchy are defined by transfinite recursion on
1 ≤ ξ < ω1, where ω1 is the first uncountable ordinal. We denote by

∼

Σ0
1(Z) and ∼

Π0
1(Z) respectively

the family of the open and the closed subsets of Z. For every ξ > 1 we define:

∼

Σ0
ξ(Z) :=

{⋃
nAn \Bn : An, Bn ∈

∼

Σ0
ξn(Z), ξn < ξ, n ∈ N

}
,

∼

Π0
ξ(Z) := {X \A : A ∈

∼

Σ0
ξ(Z)}.

Moreover, for every ξ, we define
∼

∆0
ξ(Z) := ∼

Σ0
ξ(Z) ∩ ∼

Π0
ξ(Z). In particular,

∼

∆0
1(Z) is the family of

clopen subsets of Y . The families
∼

Σ0
2(Z) and ∼

Π0
2(Z) are often written resp. F σ(Z) and Gδ(Z). It is

known that
∼

B(Z) =
⋃
ξ ∼

Σ0
ξ(Z) =

⋃
ξ ∼

Π0
ξ(Z) =

⋃
ξ ∼

∆0
ξ(Z), where ∼

B(Z) denotes the family of Borel
subsets of Z. We will omit the dependency from the space if there is no ambiguity.
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For metric spaces (in fact, for Hausdorff spaces), the definition of the pointclass
∼

Σ0
ξ can be

simplified letting

∼

Σ0
ξ =

{⋃

n

An : An ∈
∼

Π0
ξn , ξn < ξ, n ∈ N

}
.

Let W and Z be topological spaces and let A ⊂ W , B ⊂ Z. We say that A is Wadge reducible
to B if there is a continuous function f : W → Z s.t.

x ∈ A ⇐⇒ f(x) ∈ B .

Let
∼

Γ be a Borel class and assume that Z is Polish. We say that B is
∼

Γ-hard if A ≤W B for
every A ∈

∼

Γ(NN). If B is
∼

Γ-hard and B ∈
∼

Γ(Z) then we say that B is
∼

Γ-complete.

For every effective second-countable space (Y, (Bn)n∈N), we say that A ⊂ Y is effectively open if
A =

⋃
n∈NBϕ(n) for some computable function ϕ : N → N. The set of effectively open subsets of Y

is denoted by Σ0
1(Y ). In other words, an effective open set is a computable union of basic open sets.

The complement of an effectively open set is called effectively closed and the family of all effectively
closed subsets of Y is denoted by Π0

1(Y ).
Notice that Σ0

1(Y ) sets can be indexed using the code for a computable function defining them.
In other words, there is a canonical indexing (Ai)i∈N of the Σ0

1(Y ) sets. This allows us to define

Σ0
2(Y ) := {A ⊂ Y : A =

⋃
n∈NAϕ(2n+1) \Aϕ(2n), for some computable ϕ};

Π0
2(Y ) := {Y \A : A ∈ Σ0

2(Y )}.

We can inductively define the (Kleene’s) arithmetical hierarchy, also called lightface hierarchy, by
letting (Ani )i∈N be an effective indexing of the Σ0

n(Y ) sets and defining

Σ0
n+1(Y ) := {A ⊂ Y : A =

⋃
i∈NA

n
ϕ(2n+1) \A

n
ϕ(2n), for some computable ϕ};

Π0
n+1(Y ) := {Y \A : A ∈ Σ0

n+1(Y )}.

The lightface hierarchy can be relativized in a straightforward manner, by defining, for z ∈ 2N,

Σ0,z
1 (Y ) :=

{
A ⊂ Y : A =

⋃

n∈N

Bf(n) for some z-computable function f

}
,

and then, define the classes Π0,z
n , Σ0,z

n+1, ∆0,z
n accordingly. It is important to mention that the

lightface classes are universal for their corresponding boldface ones. Formally, if Γ is a lightface
class among Σ0

n,Π
0
n and

∼

Γ is the corresponding boldface pointclass, then

P ∈
∼

Γ(Y ) ⇐⇒ (∃z ∈ NN)(P ∈ Γz(Y )),

see e.g. [36, Thm. 3E.4].

For every effective space (Y, (Bn)n∈N) and every k ≥ 1, we can define the represented spaces
(
∼

Σ0
k, δ

∼

Σ0
k
), (

∼

Π0
k, δ

∼

Π0
k
), (

∼

∆0
k, δ

∼

∆0
k
) inductively by:

• δ
∼

Σ0
1
(p) :=

⋃
i∈ran(p)Bi;

• δ
∼

Π0
k
(p) := Y \ δ

∼

Σ0
k
(p);

• δ
∼

Σ
0
k+1

(〈p0, q0, p1, q1, . . .〉) :=
⋃
i∈N δ

∼

Σ
0
k
(pi) \ δ

∼

Σ
0
k
(qi);

• δ
∼

∆0
k
(〈p, q〉) := δ

∼

Σ0
k
(p), iff p, q ∈ dom(δ

∼

Σ0
k
) and δ

∼

Σ0
k
(p) = Y \ δ

∼

Σ0
k
(q).
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We notice that the Σ0
k sets are exactly those having a computable δ

∼

Σ0
k
-name (and similarly for

Π0
k, ∆

0
k).

If Y and Y ′ are effective spaces, we say that A ⊂ Y ′ is effectively Wadge reducible to B ⊂ Y ,
and write A ≤m B, if there is a recursive functional f : Y ′ → Y s.t. x ∈ A iff f(x) ∈ B. Let Γ
be a lightface pointclass as above and assume that Y is an effective Polish space. We say that B
is Γ-hard if A ≤m B for every A ∈ Γ(NN). If B is Γ-hard and B ∈ Γ(Y ) then we say that B is
Γ-complete. Standard examples2 of Γ-complete sets are the following:

Q2 := {x ∈ 2N : (∀∞m)(x(m) = 0)} Σ0
2-complete,

N2 := {x ∈ 2N : (∃∞m)(x(m) = 0)} Π0
2-complete,

S3 := {x ∈ 2N×N : (∃k)(∃∞m)(x(k,m) = 0)} Σ0
3-complete,

P3 := {x ∈ 2N×N : (∀k)(∀∞m)(x(k,m) = 0)} Π0
3-complete,

where (∃∞m) and (∀∞m) mean respectively (∀n)(∃m ≥ n) and (∃n)(∀m ≥ n).
While often there is a natural choice for an effective basis, when working with represented spaces

we can exploit the representation map to induce a lightface structure in a canonical way.
Let us introduce the Sierpiński space S := {0, 1}. The space S is endowed with the topology

{∅, {1}, S}. This space is represented as follows: the only name for 0 is the string that is constantly
0, while every other string in NN is a name for 1.

We can notice that, if (X, δX) is a represented space and O(X) is the final topology onX induced
by δX , then the open sets U ∈ O(X) are exactly the subsets of X s.t. the characteristic function
χU : X → S is realizer-continuous (see also [39, Sec. 4]). In particular, we can represent an open
set U ∈ O(X) using a name for χU . This, in turn, allows us to represent a closed set (in the final
topology on X) via a name for its complement. Using the jumps of the Sierpiński space, we can
obtain an analogous characterization for the pointclasses

∼

Σ0
ξ(X) ([40, Sec. III and Prop. 30], see

also [14]).
In other words, using the Sierpiński space, we can define a representation map for the sets

∼

Σ0
k,

∼

Π0
k, ∼

∆0
k, for any represented space (X, δX). For separable metric spaces, the two representations

are equivalent (see [39, 5]).
The same ideas allow us to induce a lightface structure on any represented space. Indeed, for a

represented space (X, δX), we can define the effectively open sets as follows:

A ∈ Σ0
1(X) :⇐⇒ the characteristic function χA : X → S of A is computable.

The Sierpiński space is, thus, useful to obtain a notion of semi-decidability in represented spaces.
For a more detailed discussion the reader is referred to [12, 40, 38].

3 The hyperspaces of closed and compact sets

The hyperspaces of closed and compact sets will play a crucial role in this paper. The space
∼

Π0
1(X)

of closed subsets of a topological space X is usually endowed with a number of topologies we now
recall. For a more thorough presentation, the reader is referred to [2, 30].

Let us define

U :=
{
{F ∈

∼

Π0
1(X) : F ∩ C = ∅} : C ∈

∼

Π0
1(X)

}
,

L :=
{
{F ∈

∼

Π0
1(X) : F ∩ U 6= ∅} : U ∈

∼

Σ0
1(X)

}
.

2The standard proofs showing that the listed sets are
∼
Γ-complete for their respective class are, in fact, effective.

See [28, Sec. 23.A].
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The topology τUV having U as a prebase is called upper topology or upper Vietoris topology, while
the topology τL having L as a prebase is called lower topology or lower Vietoris topology ([30,
Def. 1.3.1 and def. 1.3.2]). The Vietoris topology τV is the topology having as a prebase the family
U ∪ L .

We also consider the collection UK defined as

UK :=
{
{F ∈

∼

Π0
1(X) : F ∩K = ∅} : K ∈ K(X)

}
,

where K(X) is the family of all compact subsets of X . The family UK is a prebase for the topology
τUF on

∼

Π0
1(X) called upper Fell topology. We define the Fell topology τF on

∼

Π0
1(X) as the topology

having as a prebase the set UK∪L . For this reason, the lower Vietoris topology is also called lower
Fell topology.

If we restrict our attention to compact subsets of X , we can define the topological space K(X) =
(K(X), τV |K(X)) obtained by endowing the family of compact subsets ofX with the topology induced

by the Vietoris topology on
∼

Π0
1(X). This choice is motivated by the following observation: if X is

a metric space with distance d, we can define the Hausdorff metric dH on K(X) as follows:

dH(K,L) :=





0 if K = L = ∅

1 if exactly one between K and L is ∅

max{δ(K,L), δ(L,K)} otherwise

where δ(K,L) := maxx∈K d(x, L)/(1 + d(x, L)). It is known that the Hausdorff metric dH is com-
patible with the Vietoris topology on K(X) ([28, Ex. 4.21]) and that if X is Polish then so is K(X)
([28, Thm. 4.22]).

We notice that (
∼

Π0
1(X), τV ) fails to be paracompact, and hence metrizable, if X is not compact

([29, Thm. 2]). The Fell topology is the preferred choice when working with closed sets, since if
X is Polish and locally compact then (

∼

Π0
1(X), τF ) is a Polish compact space and its Borel space

is exactly the Effros-Borel space ([28, Ex. 12.7]). If X is compact then the Fell and the Vietoris
topologies coincide, and the same holds for the upper Fell and the upper Vietoris topologies.

In the following, let (X, d, α) be a computable metric space. We already mentioned that the set

∼

Π0
1(X) can be seen as a represented space, where a name for a closed set is a list of basic open

balls that exhaust the complement. This representation map is often3 denoted ψ−, and ψ−-names
provide negative information on the set they represent. The represented space (

∼

Π0
1(X), ψ−) is often

denoted A(X) or A−(X) in the literature.
In contrast, the positive information representation ψ+ for closed sets is defined as

ψ+(p) = F :⇐⇒ (∀n ∈ N)(n+ 1 ∈ ran(p) ⇐⇒ F ∩Bn 6= ∅),

where (Bn)n∈N is the canonical enumeration of basic open balls of X . In other words, a ψ+-name
for F is a list of all the basic open sets that intersect F ([7, Def. 3.1], it is denoted δ< in [10, Def.
3.1(1)]). The elements of the represented space (

∼

Π0
1(X), ψ+) are called closed overt sets , and the

space is sometimes denoted V(X) in the literature, e.g. [15, Sec. 2].
We denote the join of both positive and negative information representations with ψ. Formally

ψ(〈p, q〉) = F :⇐⇒ ψ−(p) = ψ+(q) = F.

This is denoted ψ= in [7, Def. 3.1] and δ= in [10, Def. 3.1].
It is known that the representation maps ψ−, ψ+, and ψ are admissible respectively for the

upper Fell, lower Fell, and Fell topology on
∼

Π0
1(X) [7, Sec. 3].

We mention the following known facts.

3see [7, Def. 3.4], [8, Sec. 2]. In [10] it is introduced in Def. 3.5(1) and is denoted δunion.
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Theorem 3.1 ([7, Sec. 7]). Let X be a computable metric space. The following operations are
computable:

(1) ∪ : (
∼

Π0
1(X), δ)× (

∼

Π0
1(X), δ) → (

∼

Π0
1(X), δ) := (A,B) 7→ A ∪B, for δ ∈ {ψ−, ψ+, ψ}.

(2)
⋂
: (

∼

Π0
1(X), ψ−)

N
→ (

∼

Π0
1(X), ψ−) := (An)n∈N 7→

⋂
n∈NAn.

Notice however that ∩ : (
∼

Π0
1(X), ψ) × (

∼

Π0
1(X), ψ) → (

∼

Π0
1(X), ψ) is in general not computable,

and not even continuous (see e.g. [28, Ex. 4.29(viii)]). For a more precise analysis of the complexity
of the intersection operator see [7, Thm. 7.1].

Let us introduce the following notion:

Definition 3.2. A compact subsetK of a computable metric space (X, d, α) is called co-c.e. compact
if 


σ ∈ N<N : K ⊂

⋃

i<|σ|

Bσ(i)





is computably enumerable. We say that K is computably compact if it is co-c.e. compact and there
exists a computable dense sequence in K.

We say that a sequence (Kn)n∈I is uniformly co-c.e. compact if each Kn is co-c.e. compact in a
computable metric space Xn and the set



(n, σ) ∈ N× N<N : Kn ⊂

⋃

i<|σ|

Bnσ(i)





is computably enumerable, where Bnk is the k-th basic open ball in Xn. In other words, the sequence
{Kn}n∈I is uniformly co-c.e. compact if there is a single computable function witnessing that each
Kn is co-c.e. compact.

The notions of co-c.e. compact and computably compact are standard notions in computable
analysis (see e.g. [8, Def. 2.10]). Notice that being co-c.e. compact implies being Π0

1(X) and that
every Π0

1(X) subset of a co-c.e. compact space is co-c.e. compact. Clearly a computable metric space
is co-c.e. compact iff it is computably compact. Moreover, if K is co-c.e. compact (resp. computably
compact) and f : K → Y is computable and surjective, then Y is co-c.e. compact (resp. computably
compact) as well (see [39, Prop. 5.3]). Several equivalent conditions to being computably compact
are listed in [39, Prop. 5.2]. The notions of co-c.e. compact and computably compact can be extended
in a straightforward way to effective spaces.

We also mention the following simple lemma:

Lemma 3.3. If X is co-c.e. compact then so is XN.

Proof. The fact that the finite product of co-c.e. compact spaces is co-c.e. compact follows from
[39, Prop. 5.4]. To prove that XN is co-c.e. compact, recall that an open set in XN is of the type
B :=

∏
j∈N Bj , where each Bj is open in X and Bj 6= X only for finitely many indexes. Such an open

set is canonically represented via (a name for) a finite sequence (Bj)j<N with the understanding
that Bj = X for every j ≥ N .

Let (Bi)i<k be a finite sequence of open subsets of XN, where Bi is represented by (Bij)j<Ni
. This

sequence trivially induces a finite sequence (Ci)i<k of open subsets of XN , where N := maxi<kNi:
for every i and every j ∈ {Ni, . . . , N − 1}, let Bij := X and define Ci :=

∏
j<N B

i
j . The sequence

(Bi)i<k covers XN iff (Ci)i<k covers XN . The claim follows from the fact that the sets (Xn)n∈N are
uniformly co-c.e. compact.
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Since K(X) ⊂
∼

Π0
1(X), we can represent the compact subsets of X using the subspace repre-

sentation induced by the representation we put on
∼

Π0
1(X). At the same time, we mentioned that

K(X) is compatible with the Hausdorff metric. Letting β be an enumeration of the finite subsets
of ran(α), the space (K(X), dH, β) is a computable metric space (as the finite subsets of ran(α) are
a dense subset of K(X)). In particular, K(X) can be (canonically) endowed with the Cauchy rep-
resentation δH induced by dH and β. The Cauchy representation for the hyperspace of non-empty
compact subset of the Euclidean space was studied in [11] under the name δHaus, and then extended
to generic computable metric spaces in [10], where the symbol δHausdorff was used.

Two additional representations maps for K(X) that are used in the literature (see e.g. [6, Sec.
4]) are the maps κ− and κ: the former names a compact set K via a list of all finite covers of K with
basic open balls, while κ-names have the additional requirement that all basic balls in each cover
have to intersect K. The compact sets having computable κ−-names (resp. κ-names) are exactly
the co-c.e. compact (resp. computably compact) sets. The representation maps κ− and κ have been
studied in [10, 11] under the names δcover and δmin−cover respectively.

Proposition 3.4. Let X be a co-c.e. compact subspace of the Euclidean space (Rd, | · |, αQd), where
| · | is the Euclidean distance and αQd is an enumeration of Qd. Let ψ′

− := ψ−|ψ−1

−
(K(X)) be the

restriction of ψ− to names of compact subsets of X, and similarly let ψ′ := ψ|ψ−1(K(X)). The

following holds on K(X):

• κ− ≡ ψ′
−;

• κ ≡ ψ′ ≡ δH.

Proof. The equivalence κ− ≡ ψ′
− follows from [11, Thm. 4.6]. Precisely, the representation δ>

K

names a compact set K via a ψ′
−-name of K and the index of a ball B s.t. K ⊂ B ([11, Def. 4.1]).

If X is compact then the equivalence ψ′
− ≡ δ>

K
is straightforward.

The equivalence κ ≡ ψ′ follows from [11, Cor. 4.7] using the fact that ψ′ ≡ δ=
K

for a compact
X . Indeed, a δ=

K
-name of a compact set K is a ψ′-name of K and the index of a ball B s.t. K ⊂ B

([11, Def. 4.1]).
In [11, Thm. 4.10], the Cauchy representation δHaus (i.e. the restriction of δH to names of

non-empty compact sets) has been proven equivalent to the restriction δ=
K
|K

∗

of δ=
K

to names of
non-empty compact sets. We now explicitly show that δH ≡ ψ′ (i.e. the empty set is not problematic
if X is co-c.e. compact).

Recall that for every non-empty closed G, dH(G, ∅) = 1.

δH ≤ ψ′ : As mentioned after the definition of Cauchy representation, we can think of a δH-name
p for F as a list of (indexes for) basic open balls (Bn)n∈N w.r.t. the Hausdorff metric s.t. all
the balls contain F and the radius of Bn is 2−n. Since the empty set is isolated in K(X), it
is enough to consider n > 1. Indeed, without loss of generality we can assume that we can
computably tell whether Bn is centered on ∅ (e.g. we can assume that the empty set has a
unique index in the list of dense subsets of K(X)). If Bn is centered on ∅ then F = ∅ (as
Bn = {∅}). Otherwise F 6= ∅, and we can use δHaus ≤ δ=

K
|K

∗

and δ=
K

≤ ψ′.

ψ′ ≤ δH : Let 〈p, q〉 be a ψ′-name for F , where p is a negative information name and q is a positive
information name for F . If F = ∅ then p is a list of basic open balls that cover X . On the
other hand, if F 6= ∅ then q eventually lists some basic open ball (in X) that intersects F
(q is allowed not to produce any information at a given stage). In other words, we wait for
some sufficiently large n so that either

⋃
i<n Bp(i) covers X or q commits to some open ball

at stage n. This allows us to determine whether F is empty or not. If F = ∅ we can trivially
compute a sequence of basic open balls (in K(X)) centered on ∅ with rapidly decreasing radii.
Otherwise, as in the previous reduction, we can use ψ′ ≤ δ=

K
and δ=

K
|K

∗

≤ δHaus to produce
a δH-name for F .
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For the sake of readability, we adopt the following notation:

FU (X) = (
∼

Π0
1(X), τUF , ψ−) is the hyperspace of closed subsets of X , endowed with the upper Fell

topology and the negative representation ψ−;

F(X) = (
∼

Π0
1(X), τF , ψ) is the hyperspace of closed subsets of X , endowed with the Fell topology

and the full representation ψ;

KU (X) = (K(X), τUF |K(X) , ψ
′
−) is the hyperspace of compact subsets of X , endowed with the

upper Fell topology and the negative representation restricted to names of compact sets, i.e.
ψ′
− = ψ−|ψ−1

−
(K(X));

K(X) = (K(X), τV |K(X) , ψ
′) is the hyperspace of compact subsets of X , endowed with the Vietoris

topology and the full representation restricted to names of compact sets, i.e. ψ′ = ψ|ψ−1(K(X)).

The following lemma is the effective counterpart of [28, Thm. 4.26].

Lemma 3.5. If (X, d, α) is computably compact then so is K(X).

Proof. Recall that a basic open ball in K(X) is a set of the type B〈n,m〉 = {K ∈ K(X) :
dH(K,β(n)) < qm}, where β is the fixed enumeration of the finite subsets of ran(α) and (qi)i∈N is
the canonical enumeration of Q+. In particular, if β(n) = {b0, . . . , bk−1} then

B〈n,m〉 =

{
K ∈ K(X) : K ⊂

⋃

i<k

B (bi, qm) ∧ (∀i < k)(K ∩B (bi, qm) 6= ∅)

}
.

Let (Bi = B〈ni,mi〉)i<k be a finite sequence of basic open balls in K(X). We want to describe
a c.e. procedure to check whether (Bi)i<k covers K(X). For the sake of readability, let us define
r(i) := qmi

and Di :=
⋃
b∈β(ni)

B (b, r(i)) for every i < k. We first check if r(i) > 1 for some i < k

(any ball with radius > 1 covers K(X), and in this case we can give a positive answer) or if there is
j < k s.t. β(nj) = ∅ (recall that the empty set is isolated, and a ball with radius ≤ 1 covers ∅ iff it
is centered on it, hence if such a j is missing we give a negative answer). Since these two conditions
are computable, to prove the result it is enough to show that there is a c.e. procedure to determine
if a finite sequence (Bi)i<k with r(i) ≤ 1 and β(ni) 6= ∅ for all i < k covers K(X) \ {∅}.

We now define a c.e. subtree T of (N × ran(α))≤k (where k is the length of the fixed finite
sequence of basic open balls) where each string σ ∈ T is labeled with a compact subset Yσ of X . A
string σ = ((a0, b0), . . . , (ah−1, bh−1)) is in T iff

h ≤ k ∧ (∀i < h)(ai < k ∧ bi ∈ β(nai)) ∧ (∀i, j < h, i 6= j)(ai 6= aj) ∧ Yσ[h−1] ⊂ Dah−1
,

where σ[h − 1] denotes the prefix of σ of length h − 1. The string σ is labeled with Yσ := X \⋃
i<hB (bi, r(ai)).
Notice that, since X is computably compact, then so are all the sets Yσ. In fact, they are

uniformly computably compact: given a finite sequence (Bi)i<n of open balls, we can compute the
index of a computable functional witnessing that Y := X \

⋃
i<n Bi is computably compact. This

follows from
Y ⊂

⋃

j<|τ |

Bτ(j) ⇐⇒ X ⊂
⋃

i<n

Bi ∪
⋃

j<|τ |

Bτ(j) .

In particular, this shows that the condition Yσ[h−1] ⊂ Dah−1
(and hence σ ∈ T ) is computably

enumerable.
We claim that

(Bi)i<k covers K(X) \ {∅} ⇐⇒ for each leaf σ ∈ T, Yσ = ∅.
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This implies the computable compactness of K(X), as the condition on the right is computably
enumerable (Yσ = ∅ is equivalent to Yσ being covered by the empty set and the quantification on σ
is bounded because T is computably finitely branching).

For the right-to-left direction, assume that there is a non-empty K ∈ K(X) \
⋃
i<k Bi. We show

that there is a leaf σ s.t. Yσ 6= ∅. We proceed iteratively as follows, defining a list of sequences
σs s.t. K ⊂ Yσs

: let σ−1 := (). At stage s < k, we look for some unmarked (i.e. not selected in
any previous stage) as < k s.t. Yσs−1

⊂ Das . If such a choice is possible then, since K /∈ Bas and
K ⊂ Das , there is bs ∈ β(nas) s.t. K ∩ B (bs, r(as)) = ∅. In particular, K ⊂ Yσs−1

\ B (bs, r(as)),
hence letting σs := σs−1

a((as, bs)), we have K ⊂ Yσs
, which implies that Yσs

6= ∅. We then mark
as as visited and go to the next stage. If there is no as < k that satisfies the requirements then
σ := σs−1 is a leaf for T but Yσ 6= ∅ (as K ⊂ Yσ). Notice that looking for some unmarked as
guarantees that no choice of as is possible at stage k + 1.

Let us now prove the left-to-right implication. Assume that σ = ((a0, b0), . . . , (ah−1, bh−1)) is
a leaf for T . Notice that, for each j < h and each K ∈ K(X) \ {∅}, if K ∈ Baj then for every
b ∈ β(naj ), K ∩ B (b, r(aj)) 6= ∅, and hence K 6⊂ Yσ[j+1]. In particular, if Yσ 6= ∅ then, for every
j < h, Yσ /∈ Baj . Moreover, since σ is a leaf, there is no pair (a, b) s.t. Yσ ⊂ Da, which implies that
Yσ /∈

⋃
i<k Bi.

Proposition 3.6. F(Rd) is computably compact.

Proof. We show that there is a computable surjection f : K([0, 1]d) → F(Rd), and the claim will
follow using Lemma 3.5 and the remarks following Definition 3.2. Fix a computable homeomorphism
ϕ : (0, 1)d → Rd and define

f(K) := ϕ(K ∩ (0, 1)d) .

It is easy to see that, for K ∈ K([0, 1]d), f(K) is closed. Moreover, f is surjective: for every
F ∈

∼

Π0
1(R

d), ϕ−1(F ) is closed in the relative topology of (0, 1)d. If we denote with G its closure
w.r.t. the relative topology of [0, 1]d, we have that G \ ϕ−1(F ) ⊂ ∂([0, 1]d), hence, in particular,
f(G) = F .

Finally, we show that f is computable. Recall that both K([0, 1]d) and F(Rd) are admissibly
represented with the full information representation. Let 〈p, q〉 ∈ NN be a name for K ∈ K([0, 1]d).
To compute a negative information name for f(K) from p, notice that, since ϕ−1 is a computable
homeomorphism (and, in particular, it is a total computable surjection), as mentioned in the proof
of [6, Prop. 3.7] we have that the map FU (Y ) → FU (X) := A 7→ ϕ(A). Intuitively: for every basic
open B ⊂ [0, 1]d \K we can computably list a sequence of basic open balls of Rd exhausting ϕ(B).
On the other hand, notice that a basic open ball B of Rd intersects f(K) iff there is i ∈ N s.t.
Bq(i) ⊂ ϕ−1(B) (this follows from the fact that ϕ is a homeomorphism). In particular, to produce a

positive information name for f(K), we list Bn ⊂ Rd whenever we find some i s.t. Bq(i) ⊂ ϕ−1(Bn)
(which is a computable condition).

Recall that, if X is not compact, then the hyperspace (
∼

Π0
1(X), τV ) of closed subsets X endowed

with the Vietoris topology is not metrizable. We now show that it is not even admissibly represented.

Proposition 3.7. Let FUV (X) = (
∼

Π0
1(X), τUV ) denote the hyperspace of closed subsets of X

endowed with the upper Vietoris topology τUV . The space FUV (R) (and hence FUV (Rd)) does not
have a countable pseudobase. In particular, it is not second-countable and it is not admissibly
represented.

Proof. Fix a countable sequence {Pi}i∈N of subsets of FUV (R). To show that {Pi}i∈N is not a
pseudobase we build a closed set F and an open set U which contains F s.t. for every i, either
F /∈ Pi or Pi 6⊂ U . We define F := {xi : i ∈ N}, where (xi)i∈N is a strictly increasing sequence
iteratively defined as follows: for each i, let ni be the smallest integer greater than xj + 1 for every
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j < i (if i = 0 we let ni := 0). Choose an unbounded Pi ∈ Pi. If there is none we just define
xi := ni. Let yi ∈ Pi ∩ [ni,∞) and choose xi s.t. xi > yi + 1. In particular d(yi, {xj}j≤i) > 1.

Notice that, for every i 6= j, d(xi, xj) > 1, hence the sequence (xi)i∈N does not have accumulation
points. In particular, the set F := {xi : i ∈ N} is closed and unbounded. Fix ε sufficiently small,
e.g. ε = 1/4, and define the open set Fε := {x ∈ R : d(x, F ) < ε} and U := {G ∈

∼

Π0
1(R) : G ⊂ Fε}.

The open set U and the closed set F witness the fact that {Pi}i∈N is not a pseudobase. Indeed,
for every i, either every P ∈ Pi is bounded (and hence F /∈ Pi), or the set Pi defined above witnesses
that Pi 6⊂ U (as by construction d(yi, F ) > 1).

This implies also that FUV (R) is not second-countable, as every base is a pseudobase. The fact
that it is not admissibly represented follows by Theorem 2.3. The claim generalizes to FUV (R

d) as
every pseudobase of FUV (Rd) induces a pseudobase on FUV (R) by projection.

Corollary 3.8. The space (
∼

Π0
1(R), τV ) (and hence (

∼

Π0
1(R

d), τV )) does not have a countable pseu-
dobase. In particular, it is not second-countable and it is not admissibly represented.

Proof. This follows from the proof of Proposition 3.7. Indeed, the above proof only uses a closed set
F ∈

∼

Π0
1(R) and an open set U ⊂ FUV (R) to show that no countable subfamily of

∼

Π0
1(R) is a pseu-

dobase. Since the upper Vietoris topology is coarser than the Vietoris topology, the same argument
applies to (

∼

Π0
1(R), τV ). The claim would not follow immediately if, in the proof of Proposition 3.7

we would have exploited a convergent sequence to F , as convergence is a weaker notion in the upper
Vietoris topology.

We conclude this section with the effective counterpart of [1, Lem. 1.3]:

Lemma 3.9. Let X,Y be computable metric spaces. If Y is co-c.e. compact then, for every F ∈
Π0

1(X × Y ), projX F ∈ Π0
1(X). If Y =

⋃
n∈N Yn where the sequence (Yn)n∈N is uniformly co-c.e.

compact, then for every F ∈ Σ0
2(X × Y ), projX F ∈ Σ0

2(X).

Proof. Let us first assume that Y is co-c.e. compact and let F ∈ Π0
1(X × Y ). Let p ∈ NN be a

computable map s.t. FC =
⋃
n∈NB

X
p(n)0

× BYp(n)1 . Notice that BXn ⊂ (projX F )
C iff the preimage

BXn × Y of BXn via the projection map projX is contained in the complement of F .
Let ϕp : N<N × N → N be a computable function s.t., for all σ ∈ N<N

⋂

i∈ran(σ)

BXp(i)0 =
⋃

k∈N

BXϕp(σ,k)
.

Such a map exists because X is a computable metric space (and hence effective second-countable).
To show that (projX F )

C is effectively open, notice that



n ∈ N : (∃σ ∈ N<N)


 ⋃

i∈ran(σ)

BYp(i)1 = Y and (∃k)(n = ϕp(σ, k))





 ∈ Σ0

1.

This follows from the fact that ϕp is computable and that
⋃
i∈ran(σ) B

Y
p(i)1

= Y is Σ0
1 because Y is

co-c.e. compact. This shows that we can computably enumerate a list of open sets exhausting the
complement of projX F , i.e. projX F ∈ Π0

1(X).
The same argument shows (still assuming Y co-c.e. compact) that if D ∈ Π0

1(N ×X × Y ) then
projN×X D ∈ Π0

1(N×X) (it is enough to replace X with N×X). If F ∈ Σ0
2(X × Y ) then it can be

written as F = projX×Y D, for some D ∈ Π0
1(N×X × Y ). In particular,

projX F = projX projN×X D ,

and therefore projX F ∈ Σ0
2(X).
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Finally, assume that F ∈ Σ0
2(X × Y ) and Y =

⋃
n∈N Yn where the (Yn)n∈N are uniformly co-

c.e. compact. Let D ∈ Π0
1(N × X × Y ) be s.t. F = projX×Y D (as above). Notice that, defining

Dn := {(k, x, y) ∈ D : y ∈ Yn }, the sequence (projN×X Dn)n∈N is uniformly Π0
1, as (Yn)n∈N is

uniformly co-c.e. compact. In other words,

E := {(n, k, x) : (∃y)((k, x, y) ∈ Dn)} ∈ Π0
1(N× N×X),

and therefore projX F = projX E ∈ Σ0
2(X) (using a canonical computable identification N2 →

N).

We cannot extend Lemma 3.9 to effective spaces because in that context Σ0
2 sets are not neces-

sarily computable unions of Π0
1 sets. However the above proof works if we deal only with subsets of

the product space that are computable unions of Π0
1 sets. We thus obtain the following Corollary.

Corollary 3.10. Let (X, (BXn )n∈N), (Y, (B
Y
n )n∈N) be effective second-countable spaces. If Y is co-

c.e. compact then, for every F ∈ Π0
1(X×Y ), projX F ∈ Π0

1(X). If Y =
⋃
n∈N Yn, where the sequence

(Yn)n∈N is uniformly co-c.e. compact, and F = projX×Y D for some D ∈ Π0
1(N × X × Y ), then

projX F ∈ Σ0
2(X).

4 Computable measure theory

If X is a separable metrizable space, we consider the space P(X) of Borel probability measures
on X , endowed with the weak topology generated by the maps µ 7→

∫
f dµ, with f ∈ Cb(X) (i.e.

f : X → R is continuous and bounded, see [28, Sec. 17.E]). A basis for the topology on P(X) is the
family of sets of the form

Uµ,ε,f0,...,fn :=

{
ν ∈ P(X) : (∀i ≤ n)

(∣∣∣∣
∫

X

fi dν−

∫

X

fi dµ

∣∣∣∣ < ε

)}
,

where µ ∈ P(X), ε > 0, and fi ∈ Cb(X) for every i. The space P(X) is separable metrizable iff so is
X [37, Ch. II, Thm. 6.2]. Moreover if X is compact metrizable (resp. Polish) then so is P(X) ([28,
Thm. 17.22 and Thm. 17.23]).

We now give a brief introduction on how computable measure theory can be developed in the
context of TTE. For a more thorough presentation we refer the reader to [13]. The theory can be
developed in the more general context of Borel measures on sequential topological spaces [44]. In
particular, since every represented space can be endowed with the final topology (which is sequen-
tial), the theory can be developed for every represented space X . For our purposes it is enough to
focus on probability measures on X , where X is (computably homeomorphic to) either [0, 1]d or Rd.

As mentioned, in this case P(X) is a Polish space. A canonical choice for a dense subset of P(X)
is the set D of probability measures concentrated on finitely many points of the dense subset of X ,
assigning rational mass to each of them (i.e. a weighted sum of Dirac deltas, where each weight is
rational). Moreover, the Prokhorov metric on P(X) can be explicitly defined as

ρ(µ, ν) := inf{ε > 0 : (∀A ∈
∼

B(X))(µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε)},

with Aε := {x ∈ X : d(x,A) < ε}. This metric induces the weak topology on P(X). The space
(P(X), ρ,D) is a computable metric space (see [25, Prop. 4.1.1]), and therefore it is represented
using the Cauchy representation.

From a computational point of view, it is often convenient to look at Borel (probability) measures
from a different point of view. A (probability) valuation is a map ν :

∼

Σ0
1(X) → [0, 1] s.t.

• ν(∅) = 0;
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• ν(X) = 1;

• ν(U) + ν(V ) = ν(U ∪ V )− ν(U ∩ V ).

Probability valuations can be defined in a slightly more general context as maps over a lattice ([44,
Sec. 2.2]). Every Borel measure µ naturally induces a valuation ν := µ|

∼

Σ0
1
(X). The induced valuation

is lower semicontinuous, i.e. if (Ai)i∈N are nested open sets then ν(
⋃
iAi) = supi ν(Ai). Since every

finite Borel measure is uniquely identified by its restriction to the open sets (as every such measure
on the Euclidean space is regular, and in particular outer regular, see e.g. [42, Thm. 2.18]), we can
identify P(X) with the family of lower semicontinuous valuations on

∼

Σ0
1(X).

The lower semicontinuity of the valuations can be naturally translated in the context of TTE as
follows. We use the represented space (R<, δR<

) of real numbers, where x ∈ R is represented by a
monotonically increasing sequence of rational numbers converging to x. Equivalently, we can think
of a δR<

-name for x as the list of all rational numbers smaller than x. This is the so-called left-cut
representation of the real numbers, and we say that a real is left-c.e. if it has a computable δR<

-
name (see [48, Sec. 4.1]). The final topology induced on R by δR<

is exactly the topology of lower
semicontinuity (i.e. the topology whose open sets are of the form (x,∞) for some x ∈ R, see [48, Lem.
4.1.4]). Similarly, we obtain the represented space (R>, δR>

) of the right-c.e. reals, where δR>
is

the right-cut representation map, naming a real as a monotonically decreasing sequence of rationals
converging to it. The final topology of δR>

is the topology of the upper-semicontinuity (again, see
[48, Lem. 4.1.4]). It is straightforward to see that given a δR<

-name for x we can computably find
a δR>

-name for −x (and vice versa). Notice that +: R< × R< → R< and sup: RN
< → R< are

computable, but − : R< × R< → R< is not.
With this in mind, we can define another representation on the space of Borel (probability) mea-

sures: the canonical representation δC for a (probability) measure names a measure µ using a name
for the (realizer-)continuous function µ|

∼

Σ0
1
(X) : ∼

Σ0
1(X) → [0, 1]< ([44, Sec. 3.1]). The final topology

on P(X) induced by δC coincides with the weak topology on P(X) ([44, Cor. 3.5]). Moreover, the
canonical representation is equivalent to the Cauchy representation on P(X) ([44, Prop. 3.7]). In
the development of the theory it is often more convenient to think of a (probability) measure as
being represented using the canonical representation, i.e. using a name for the induced valuation.
We can therefore think of a name for a (probability) measure µ on X as a list of δ<-names for the
measures of the basic open balls.

Theorem 4.1. Let (X, δX) and (Y, δY ) be represented spaces, endowed with the final topology in-
duced by their respective representation maps. Let also C(X,Y ) be the set of continuous functions
X → Y . The following maps are computable:

(1) P(X)×
∼

Σ0
1(X) → R< := (µ, U) 7→ µ(U);

(2) P(X)× FU (X) → R> := (µ, F ) 7→ µ(F );

(3) P(X)×
∼

∆0
1(X) → R := (µ,D) 7→ µ(D);

(4) P(X) × C(X,Y ) → P(Y ) := (µ, f) 7→ µf , where µf (E) := µ(f−1(E)) is the push-forward
measure;

(5)
∫
: C(X,R<)× P(X) → R< := (f, µ) 7→

∫
f dµ;

(6)
∫
: Cebd(X,R)×P(X) → R := (f, µ) 7→

∫
f dµ, where Cebd(X,R) denotes the space of effectively

bounded continuous functions, i.e. f ∈ C(X,R) and there are two computable reals a, b s.t. for
every x ∈ X, a < f(x) < b.

Proof. Point (1) is straightforward from the definition of the canonical representation for P(X) (see
also [25, Prop. 4.2.1]) and point (2) is a corollary of point (1) (as µ(F ) = 1− µ(X \ F )). Point (3)
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follows trivially from the points (1) and (2) as a δR-name for x ∈ R can be computably obtained
from a δR<

-name and a δR>
-name of x. Point (4) is (essentially) a diagram-chasing exercise, see

also [13, Prop. 49]. Points (5) and (6) are presented in [13, Sec. 3, in particular point (5) is Prop.
7]. See also [44, Prop. 3.6] for a slightly more general version of point (5).

For our purposes, we will also need an effective analogue of the fact that if X is compact
metrizable then so is P(X) ([28, Thm. 17.22]). The proof of the following theorem was suggested
by Matthias Schröder.

Theorem 4.2. For every computable metric space (X, d, α), if X is computably compact then so is
P(X).

Proof. Since X is a computably compact computable metric space, there is a total representation
map δ : 2N → X for X which is (computably) equivalent to the Cauchy representation on X ([6,
Prop. 4.1]).

Every probability measure µ ∈ P(2N) can be identified with a function πµ ∈ [0, 1]N (identifying
N with 2<N) s.t.

πµ(()) = 1 ∧ (∀σ ∈ 2<N) (πµ(σ) = πµ(σ
a(0)) + πµ(σ

a(1))) , (⋆)

so that πµ(σ) = µ(σa2N).
The map Φ := µ 7→ πµ is a computable homeomorphism (i.e. a computable bijection with com-

putable inverse) between P(2N) and a Π0
1 subset of [0, 1]

N
. Indeed, it is computable by Theorem 4.1(3)

and its inverse Φ−1 is straightforwardly computable. Moreover, π ∈ ran(Φ) iff it satisfies (⋆), which
is a Π0

1 condition relative to π. This, in turn, implies that ran(Φ) is co-c.e. compact by Lemma 3.3

and the remarks preceding it, as [0, 1]
N
is computably compact. In particular, the fact that P(2N)

is computably homeomorphic to a co-c.e. compact space implies it is co-c.e. compact.
To conclude the proof, define ψ : P(2N) → P(X) as the push-forward operator ψ(µ) := µδ where

µδ(E) := µ(δ−1(E)). This map is computable (Theorem 4.1(4)) and surjective ([45, Thm. 14]), and
therefore P(X) is co-c.e. compact.

Corollary 4.3. For every computable metric space X that admits an admissible representation
δ :⊆ NN → X with co-c.e. compact domain, the space P(X) is co-c.e. compact.

Proof. Trivial from Theorem 4.2 since if X admits an admissible representation δ :⊆ NN → X with
co-c.e. compact domain then it is computably compact.

Corollary 4.4. For every d and every co-c.e. compact K ⊂ Rd, the space P(K) is co-c.e. compact,
and hence computably compact.

Proof. This follows from the fact that the interval [−1, 1] is admissibly represented by the signed-
digit representation

δS : 3
N → [−1, 1] := p 7→

∑

i∈N

(p(i)− 1)2−i−1 ,

see e.g. [48, Sec. 7.2]. This, in turn, implies that for each d, n ∈ N the cube [−n, n]d is admissibly
represented by a total 3N-representation map δd,n. Clearly, for every compact K ⊂ Rd there is n
s.t. K ⊂ [−n, n]d. The restriction of δd,n to δ−1

d,n(K) is an admissible representation with co-c.e.
compact domain, hence the claim follows by Corollary 4.3.
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5 The effective Kaufman theorem

In the introduction, we mentioned that one of the first explicit examples of Salem sets is the set
E(α) of α-well approximable numbers. More formally, for every α ≥ 0, we define

E(α) :=

{
x ∈ [0, 1] : (∃∞n)

(
min
m∈Z

|nx−m| ≤ n−1−α

)}
.

The set E(α) is Salem with dimension 2/(2 + α) (if α = 0 then, by Dirichlet’s theorem [18, Ex.
10.8], E(α) = [0, 1]). Notice that E(α) is a

∼

Π0
3 subset of [0, 1], as it can be written in the form

⋂

k∈N

⋃

n≥k

Dn,

where Dn := {x ∈ [0, 1] : minm∈Z |nx −m| ≤ n−1−α} is a finite union of non-degenerate closed
intervals, and hence is closed. In fact, for every α > 0, E(α) is not closed (as it is dense in [0, 1] but
dimH(E(α)) < 1).

In his original proof of the fact that E(α) is Salem, Kaufman [27] defines a measure supported
on a (compact) subset of E(α) witnessing that dimF(E(α)) ≥ p for every p ≤ 2/(2 + α). A similar
strategy is adopted in [49, Ch. 9], where the author defines a closed subset S(α) of E(α) with
dimF(S(α)) = 2/(2 + α). This set can be written as

S(α) =
⋂

k∈N

⋃

n∈P (α,k)

Dn ,

where P (α, k) ⊂ N is finite. There is some freedom in the precise choice of P (α, k), but in any case
the set S(α) is closed as the inner union is now finite.

We now prove an effective analogue of Kaufman theorem, i.e. we show that the map (α, k) 7→
P (α, k) can be chosen to be computable. This, in turn, implies that the map α 7→ S(α) is computable
as well. To this end, we follow the blueprint of the proof strategy presented in [49, Ch. 9], making
the estimates explicit so to obtain their (uniform) computability. We also change a few details to
fix a minor imprecision. The estimates we present are often not tight, and it is certainly possible to
have more precise bounds while retaining the (uniform) computability.

We start with a couple of technical lemmas. Let us mention that the name for a smooth function
f : R → R with compact support is a κ-name for spt(f) and a sequence of C0(R,R)-names for the
n-th derivative f (n) of f .

Let us denote with T the torus (i.e. the interval [0, 1] with endpoints identified). In particular,
1-periodic smooth functions with support in [0, 1] can be identified with smooth functions on T.

Lemma 5.1. If f is a smooth function on T then for every N and every x

|f̂(x)| ≤
ηf,N

(1 + |x|)N

where ηf,N is uniformly computable from N and f .

Proof. The existence of ηf,N follows from Paley-Wiener-Schwartz theorem (see [24, Thm. 7.3.1]).

To show that ηf,N is uniformly computable from N and f , notice that, since f̂ (n)(x) = (ix)nf̂(x),
for every exponent n we have

|f̂(x)||x|n = |f̂ (n)(x)| ≤
∥∥∥ f (n)

∥∥∥
L1
,

and the latter is computable from a C0
c (R,R)-name of f (n). Using the binomial theorem, we can

expand |f̂(x)|(1 + |x|)N into a finite sum, and then compute a bound for each of the terms.
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Lemma 5.2. Let ψ be a smooth function on T. For every N > 1 there are Bψ,N > 0 and M0 ∈ N
s.t. for every M ≥M0 ∑

m∈Z : |m|≥M

|ψ̂(m)| ≤
Bψ,N
MN−1

.

Moreover, the constants Bψ,N and M0 are uniformly computable from ψ and N .

Proof. Using Lemma 5.1 and the integral test for the convergence of series we can write

∑

m∈Z : |m|≥M

|ψ̂(m)| ≤ ηψ,N
∑

m∈Z : |m|≥M

1

(1 + |m|)N

≤ 2ηψ,N

(
1

(1 +M)N
+

∫ ∞

M

1

(1 + x)N
dx

)

≤ 2ηψ,N

(
1

(1 +M)N
+

1

N − 1

1

(1 +M)N−1

)
.

We can then compute M0 s.t. for every M ≥M0

1

(1 +M)N
≤

1

N − 1

1

(1 +M)N−1

In particular, for every M ≥M0

∑

m∈Z : |m|≥M

|ψ̂(m)| ≤ 2ηψ,N
2

N − 1

1

(1 +M)N−1
≤

Bψ,N
MN−1

,

where Bψ,N := 4ηψ,N .

From now on, we fix a computable non-negative smooth function φ with support in [0, 1] and∫
φ(x) dx = 1. For every ζ > 0 we define φζ(x) := ζ−1φ(x/ζ). Clearly the map R → C∞

c (R,R) :=
ζ 7→ φζ is computable. Let also Φζ(x) :=

∑
k∈Z φ

ζ(x − k) be the periodization of φζ and Φζp(x) :=

Φζ(px). Both Φζ and Φζp are uniformly computable in ζ and p.
For M > 2, let PM := {p ∈ N : p is prime and M/2 < p ≤M}. We define

F ζM (x) :=
1

|PM |

∑

p∈PM

Φζp(x).

The map F ζM is smooth, 1-periodic, and
∫ 1

0
F ζM (x) dx = 1. In particular, we see it as a function in

L1(T). Notice that the functions F ζM are uniformly computable in M , and ζ.

Lemma 5.3. For every ζ and M as above we have:

(1) F̂ ζM (0) = 1,

(2) if 0 < |k| ≤M/2 then F̂ ζM (k) = 0,

(3) for every N there is CN > 0, independent of M and ζ and uniformly computable in N , s.t.
for every k 6= 0,

|F̂ ζM (k)| ≤ CN
log(|k|)

M

(
1 + ζ

|k|

M

)−N

.
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Proof. Everything but the uniform computability of CN is proved in [49, Ch. 9, pp. 69–70]. In

particular, the points (1) and (2) follow from the fact that Φ̂ζp(k) is φ̂(ζk/p) if p|k, and 0 otherwise.
Notice that, by the decomposition in prime factors, |k| has at most log(|k|)/ log(M/2) divisors in
PM . In particular, there is a computable constant C independent of |k| and M s.t. |k| has at most
C log(|k|)/ log(M) divisors in PM .

By the prime number theorem (see [22, Sec. 22.19 and eq. (22.19.3)]), |PM | is asymptotically
distributed as M/(2 log(M)). In particular, there is a constant A > 0 s.t. |PM | ≤ AM/ log(M).
The argument in [49] shows that CN := A−1Cηφ,N satisfies the statement, where ηφ,N comes from
Lemma 5.1.

From now on, we let FM := FM
−1−α

M . This guarantees that spt(FM ) ⊂
⋃
p∈PM

Dp. Moreover,
choosing N = 1, the previous lemma states the existence of a constant C1 s.t. for every M > 2 and
k 6= 0

|F̂M (k)| ≤ C1M
1+α log(|k|)

|k|
.

The following two lemmas provide the main technical tools to prove the effectiveness of the map
α 7→ S(α), which will be proved in Theorem 5.6.

Lemma 5.4. Let ψ be a smooth non-negative function on T. There exists C > 0 and M̃ ∈ N,
uniformly computable in ψ and α, s.t. for every M ≥ M̃ we have

(1) for every k ∈ Z, |ψ̂FM (k)− ψ̂(k)| ≤ CM−1 log(M);

(2) for every k ∈ Z with |k| > 2M2+α, |ψ̂FM (k)− ψ̂(k)| ≤ CM−1 log(|k|)
(
1 + |k|

M2+α

)−2

.

Proof. For the sake of readability, let us define, for t ≥ 1, and M > 0,

fM (t) :=
log(t)

M

(
1 +

t

M2+α

)−2

=
log(t)

M

(
M2+α

M2+α + t

)2

.

Notice that fM is strictly decreasing when 2t log(t) ≥M2+α + t, hence in particular for t ≥M2+α.
Clearly, fM is uniformly computable in α and M . Moreover, given α, we can uniformly compute a
constant Tα s.t. for every M > 2 and t, fM (t) ≤ TαM

−1 log(M). Indeed, for s ≥M−2−α,

fM (sM2+α) =
(2 + α) log(M) + log(s)

M

(
1

1 + s

)2

=
log(M)

M

(
2 + α+

log(s)

log(M)

)(
1

1 + s

)2

≤
log(M)

M

(
2 + α+max

s>0

log(s)

(1 + s)2

)
.

To prove the first part of the lemma, let us notice that, by the known properties of the Fourier
transform and by Lemma 5.3, we have

|ψ̂FM (k)− ψ̂(k)| =

∣∣∣∣∣
∑

m∈Z

ψ̂(m)F̂M (k −m)− ψ̂(k)

∣∣∣∣∣ ≤
∑

m∈Z : |k−m|>M/2

|ψ̂(m)||F̂M (k −m)|.

Using Lemma 5.1 and a simple argument on power series, it is easy to show that there is a constant
Aψ, uniformly computable from ψ, s.t.

∑
m∈Z |ψ̂(m)| ≤ Aψ . In particular,

|ψ̂FM (k)− ψ̂(k)| ≤ Aψ max
m∈Z : |k−m|>M/2

|F̂M (k −m)|

≤ AψC2 max
m∈Z : |k−m|>M/2

fM (|k −m|) ≤ C′M−1 log(M),
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where C2 is the constant provided by Lemma 5.3 and C′ := AψC2Tα. This proves the first part of
the claim.

Assume now that |k| > 2M2+α. We can write

|ψ̂FM (k)− ψ̂(k)| ≤
∑

m∈Z : 0<|k−m|≤|k|/2

|ψ̂(m)||F̂M (k −m)|+
∑

m∈Z : |k−m|>|k|/2

|ψ̂(m)||F̂M (k −m)|.

For the first sum, notice that |k − m| ≤ |k|/2 implies |m| ≥ |k|/2. Using Lemma 5.2, we can
compute M̃ and Bψ,3 s.t. for every |k| ≥ 2M̃

∑

m∈Z : |m|≥|k|/2

|ψ̂(m)| ≤
Bψ,3
|k|2

.

Using also the fact that F̂M (x) ≤ F̂M (0) = 1, we have

∑

m∈Z : 0<|k−m|≤|k|/2

|ψ̂(m)||F̂M (k −m)| ≤
Bψ,3
|k|2

≤ Bψ,3fM (|k|),

where the second inequality follows from the fact that, forM > 1 and |k| > 2M2+α, |k|−2 ≤ fM (|k|).
The second sum can be majorized as follows:

∑

m∈Z : |k−m|>|k|/2

|ψ̂(m)||F̂M (k −m)| ≤ Aψ max
m∈Z : |k−m|>|k|/2

C2fM (|k −m|)

≤ AψC2fM

(
|k|

2

)
≤ 4AψC2fM (|k|),

where the second inequality follows from the fact that fM is decreasing for |k−m| > |k|/2 > M2+α,
while the last inequality follows from fM (|k|/2) ≤ 4fM(|k|).

We can combine the two estimates to conclude that, for |k| > 2M2+α and M > M̃

|ψ̂FM (k)− ψ̂(k)| ≤ C′′fM (|k|),

with C′′ := 4AψC2 +Bψ,3.
To conclude the proof it is enough to define C := max{C′, C′′}.

Let us define, for x ≥ 0

g(x) :=

{
x−

1
2+α log(x) if x ≥ x0,

x
− 1

2+α

0 log(x0) otherwise,

where x0 := e2+α is the maximum point of g. Notice that g(x) is strictly decreasing for x > x0.

Lemma 5.5. Let ψ be a non-negative smooth function on T. For every ε > 0 and M0 ∈ N with
M0 > x0, there is a finite sequence M1 < . . . < MN , uniformly computable in α, ψ, ε, and M0, s.t.
M0 < M1 and, for every k,

|ψ̂G(k)− ψ̂(k)| ≤ εg(|k|)

where G := N−1
∑N

i=1 FMi
.

Proof. Let C, M̃ be the constants provided by Lemma 5.4. We choose N sufficiently large so that

C

N
<
ε

4
.
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We also choose M ′ sufficiently large so that M ′ ≥ max{M0, M̃} and, for every x ≥M ′,

C
log(x)

x
≤
ε

4
g(x).

The existence of such M ′ follows from the fact that x−1 log(x) = o(g(x)).

Let us define Ei(k) := |ψ̂FMi
(k)− ψ̂(k)|. We define the sequence M1 < . . . < MN iteratively so

that for every j < N

• Mj+1 > 2M2+α
j ,

• for every |k| > Mj+1,
1
N

∑j
i=1 Ei(k) ≤

ε
4g(|k|).

The second condition can always be satisfied as, by Lemma 5.4,

(1) for every k, Ei(k) ≤ CM−1
i log(Mi);

(2) for every k ∈ Z with |k| > 2M2+α
i , Ei(k) ≤ Cg(|k|).

In fact, it is straightforward to see that, uniformly computably in ψ, α, and ε, we can choose N ,
M ′ and (Mi)1≤i≤N so that they satisfy the above conditions.

To show that the claim is satisfied with this choice of N,M1, . . . ,MN we proceed as in [49, Ch.
9, pp. 71–72]. Let j ∈ {1, . . . , N} and let k s.t. Mj < |k| ≤ Mj+1 (the cases k ≤ M1 and k > MN

are analogous).

|ψ̂G(k)− ψ̂(k)| ≤
1

N

N∑

i=1

Ei(k)

=
1

N

j−1∑

i=1

Ei(k) +
1

N
Ej(k) +

1

N

N∑

i=j+1

Ei(k)

≤
ε

4
g(|k|) +

1

N

(
C
log(Mj)

Mj
+ Cg(|k|)

)
+

1

N

N∑

i=j+1

C
log(Mi)

Mi

≤
ε

4
g(|k|) +

ε

4
g(|k|) +

ε

4
g(|k|) +

N − j

N
C
log(Mj+1)

Mj+1
≤ εg(|k|).

We are finally ready to prove the effectiveness of the map α 7→ S(α).

Theorem 5.6. The following maps are computable:

R× N → 2<N := (α, k) 7→ P (α, k)

R× N → K([0, 1]) := (α, n) 7→ Dn(α)

R× N → K([0, 1]) := (α, k) 7→
⋃

n∈P (α,k)

Dn(α)

R → KU ([0, 1]) := α 7→ S(α)

Proof. Let us prove the computability of the first map. Lemma 5.5 states the existence of a com-
putable map Θ :⊆ R× C∞(T)× R× N → N<N that maps (α, ψ, ε,M0) to (M1, . . . ,MN).

We recursively define two sequences ((Mi,m)Nm

i=1)m≥1 of finite sequences of natural numbers and
(Gm)m∈N of smooth functions on T as follows. We start letting G0 be constantly equal to 1. We
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then define

(M1,m+1, . . . ,MNm+1,m+1) := Θ


α,

∏

i≤m

Gi, 2
−m−2, 10x0 +m




Gm+1 :=
1

Nm+1

Nm+1∑

i=1

FMi,m+1

where x0 is defined as above.
By [49, Ch. 9, p. 73], a measure µ witnessing that E(α) is Salem is the weak-* limit of the

sequence (µk)k∈N, where each µk is absolutely continuous w.r.t. the Lebesgue measure with density∏
m≤k Gm. In particular, spt(µ0) = [0, 1] and spt(µk+1) ⊂

⋃k+1
m=1 spt(Gm) =

⋃k+1
m=1

⋃Nm

i=1 spt(FMi,m
).

Since spt(FM ) ⊂
⋃
p∈PM

Dp, we can define P (α, 0) := {1} and

P (α, k + 1) :=
k+1⋃

m=1

Nm⋃

i=1

PMi,m
.

The computability of this map follows from the computability of Θ.

The computability of the other maps is then straightforward. A ψ-name (i.e. a full information
name) for Dn(α) can be uniformly computed from α and n as

Dn(α) = {x ∈ [0, 1] : min
m∈Z

|nx−m| ≤ n−1−α} =
⋃

m≤n

B
(m
n
, n−2−α

)
∩ [0, 1].

The computability of the third map follows from the computability of the first two, while the
computability of the last map follows from the fact that

⋂
: (KU ([0, 1]))

N → KU ([0, 1]) is computable
(see Theorem 3.1).

In particular, if α is computable then S(α) ∈ Π0
1(R). Notice however that, in the previous

proposition, we only get a ψ−-name (i.e. a negative representation name) for S(α). Indeed, the map⋂
: (K([0, 1]))

N → K([0, 1]) is not computable (it is not even continuous).

6 The effective complexity of closed Salem sets

In this section we characterize the effective complexity of the conditions dimH(A) > p, dimH(A) ≥ p,
dimF(A) > p, dimF(A) ≥ p and “A is Salem”, i.e. we state and prove the effective counterparts of
the results presented in [33].

We start by establishing the upper bounds for the complexity of the sets we are studying. Notice
that, since Σ0

k(KU (X)) ⊂ Σ0
k(K(X)) and Σ0

k(FU (X)) ⊂ Σ0
k(F(X)), proving the upper bounds using

KU (X) or FU (X) yield a stronger result.

Proposition 6.1. For every d and every compact K ⊂ Rd,

• {(A, p) ∈ KU (K)× [0, d] : dimH(A) > p} is Σ0,K
2 ;

• {(A, p) ∈ KU (K)× [0, d] : dimH(A) ≥ p} is Π0,K
3 .

Proof. For A ∈ KU (K) let us define

D(A) := {s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)}.
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Notice that, if a ∈ R< and b ∈ R (with the standard Cauchy representation) then the condition
a ≤ b is a Π0

1 predicate of a and b (as it is equivalent to (∀i)(pa(i) ≤ b), where pa ∈ δ−1
R<

(a)). Notice

also that the map (x, r) 7→ B (x, r) is computable. By Theorem 4.1(1), µ(B (x, r)) ≤ crs is Π0
1 as a

predicate of µ, x, r, c, and s.
Moreover, D(A) can be equivalently written as

{s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀q0 ∈ Qd)(∀q1 ∈ Q+)(µ(B (q0, q1)) ≤ cqs1)}.

Indeed, one inclusion is obvious, while the other follows from the fact that for every ε > 0 there are
q0 ∈ Qd and q1 ∈ Q s.t. B (x, r) ⊂ B (q0, q1) and q1 < r + ε. Hence

µ(B (x, r)) ≤ inf{µ(B (q0, q1)) : B (x, r) ⊂ B (q0, q1) and q1 < r + ε and ε > 0 }

≤ inf{cqs1 : B (x, r) ⊂ B (q0, q1) and q1 < r + ε and ε > 0 }

≤ inf{c(r + ε)s : ε > 0 } = crs.

Since the existential quantification on c can be trivially restricted to the rationals, we have

S := {(s, µ) ∈ [0, d]× P(A) : (∃c > 0)(∀x ∈ Rd)(∀r > 0)(µ(B (x, r)) ≤ crs)} ∈ Σ0,A
2 .

Observe that µ ∈ P(A) iff µ ∈ P(K) and µ(A) ≥ 1. In particular, since KU (K) is admissibly
represented with the negative information representation, by Theorem 4.1(2), given two names for
µ and A, we can computably obtain a right-cut representation for µ(A), hence the the condition
µ(A) ≥ 1 is a Π0

1 predicate of µ and A (as if x ∈ R> the condition x ≥ 1 is co-c.e.). Since P(K) is
computably compact (Corollary 4.4), using (the relativized version of) Lemma 3.9, we have

D(A) = proj[0,d]{(s, µ) ∈ [0, d]× P(K) : µ(A) ≥ 1 ∧ (s, µ) ∈ S} ∈ Σ0,A,K
2 .

To conclude the proof we notice that the conditions

dimH(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimH(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are Σ0,K
2 and Π0,K

3 respectively (as predicates of A and p).

Proposition 6.2. For every d and every compact K ⊂ Rd,

• {(A, p) ∈ KU (K)× [0, d] : dimF(A) > p} is Σ0,K
2 ;

• {(A, p) ∈ KU (K)× [0, d] : dimF(A) ≥ p} is Π0,K
3 .

Proof. Consider the set

D(A) := {s ∈ [0, d] : (∃µ ∈ P(A))(∃c > 0)(∀x ∈ Rd)(|µ̂(x)| ≤ c|x|−s/2)}.

Recall that, by definition,

µ̂(x) =

∫
e−ix·t dµ(t) =

∫
cos(x · t) dµ(t)− i

∫
sin(x · t) dµ(t) .

Since cos and sin are effectively bounded, by Theorem 4.1.6 the map

P(Rd)× R → R := (µ, x) 7→ |µ̂(x)|

is computable. By the continuity of the Fourier transform, the universal quantification on x ∈ Rd

can be restricted to Qd. Since the quantification on c can be trivially restricted to the rationals, we
obtain that D(A) = proj[0,d]Q, with

Q := {(µ, s) ∈ P(K)× [0, d] : (∃c ∈ Q+)(∀q ∈ Qd)(µ ∈ P(A) ∧ |µ̂(q)| ≤ c|q|−s/2)}.
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The claim follows as in the proof of Proposition 6.1: since the condition µ ∈ P(A) is a Π0,K
1 predicate

of µ and A and P(K) is computably compact, we have that Q ∈ Σ0,A,K
2 . Using (the relativized

version of) Lemma 3.9 we conclude that D(A) ∈ Σ0,A,K
2 , and finally

dimF(A) > p ⇐⇒ (∃s ∈ Q)(s > p ∧ s ∈ D(A)),

dimF(A) ≥ p ⇐⇒ (∀s ∈ Q)(s < p→ s ∈ D(A))

are, respectively, a Σ0,K
2 and a Π0,K

3 predicate of A and p.

Corollary 6.3. For every compact K ⊂ Rd, the set {A ∈ KU (K) : A ∈ S ([0, d])} is Π0,K
3 .

Proof. As in the proof of [33, Thm. 3.4], recall that dimF(A) ≤ dimH(A) for every Borel A, hence
dimH(A) = dimF(A) iff

(∀r ∈ Q)(dimH(A) > r → dimF(A) > r),

which is a Π0,K
3 condition by Proposition 6.1 and Proposition 6.2.

We now show that, if we take d = 1 and K = [0, 1] then the above conditions are lightface
complete for their respective classes. To do so, we use Theorem 5.6 to prove an effective analogue
of [33, Lem. 3.6]. We split the result in two lemmas.

Recall that, for α ≥ 0, E(α) is the set of α-well approximable numbers, and S(α) is a closed
Salem subset of E(α) with dim(E(α)) = dim(S(α)) = 2/(2 + α) (see Section 5).

Lemma 6.4. For every rational α ≥ 0 there is a superset T (α) of S(α) with

T (α) =
⋂

k∈N

T (k)(α) =
⋂

k∈N

⋃

j<Nk

Jj(α, k),

where the Jj(α, k) are pairwise disjoint (possibly degenerate) closed intervals, s.t.:

• T (α) is a closed Salem subset of [0, 1] with dim(T (α)) = dim(S(α)) = 2/(2 + α),

• the levels T (k)(α) of the construction are s.t.

(1) for every k, T (k)(α) =
⋃
j<Nk

Jj(α, k) and T
(k+1)(α) ⊂ T (k)(α);

(2) for every k and every i < Nk there exists j < Nk+1 s.t. Jj(α, k + 1) ⊂ Ji(α, k),

• the map Q× N → K([0, 1]) := (α, k) 7→ T (k)(α) is computable.

Proof. We let S(k)(α) :=
⋃
n∈P (α,k)Dn(α), so that S(α) =

⋂
k∈N S

(k)(α). The set S(k)(α) can be
rewritten as

S(k)(α) =
⋃

i<Mk

Ii(α, k)

where, for each k, the intervals Ii(α, k) are closed, non-degenerate, and pairwise disjoint.
We define T (k)(α) recursively on k as follows: at stage 0 we let T (0)(α) := S(0)(α). At stage

k + 1, let (J̃j(α, k))j<Ñk+1
be a finite sequence of closed mutually disjoint intervals s.t.

⋃

j<Ñk+1

J̃j(α, k) = T (k)(α) ∩ S(k+1)(α). (⋆)

For the sake of readability, let T̃ (k+1)(α) :=
⋃
j<Ñk+1

J̃j(α, k). Let alsoWk := {i < Nk : T̃ (k+1)(α)∩

Ji(α, k) = ∅}. We define

T (k+1)(α) := T̃ (k+1)(α) ∪
⋃

i∈Wk

{ai},
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where ai is the left endpoint of Ji(α, k). We then have Nk+1 = Ñk+1 + |Wk|.
Clearly each T (k)(α) is a finite union of closed intervals, hence T (α) is closed. Moreover, for

every stage k, T (k)(α) \ S(k)(α) is finite, and therefore T (α) \ S(α) is countable. This implies that
dimH(T (α)) = dimF(T (α)) = dim(S(α)) = 2/(2 + α). It is straightforward to see that the levels
T (k)(α) of the construction of T (α) satisfy the conditions (1) and (2) in the statement of the lemma.

Let us now prove the computability of the map (α, k) 7→ T (k)(α). We define

E := {s+ rn/m ∈ [0, 1] : s, r ∈ Q and n,m ∈ N with m 6= 0}.

The set E can be naturally represented via the map δE :⊆ NN → E := p 7→ qp(0) + (qp(1))
p(2)/p(3),

where (qi)i∈N is the canonical enumeration of Q+.
We notice that ≤ (and hence =) are decidable when restricted to E × E . This follows from

the decidability of the theory of real closed fields [47]: notice that E is definable in the first-order
language Lrcf = (+, ·,≤, 0, 1) of real closed fields. Indeed, the rational number a/b can be defined
as the unique y that satisfies (1+ . . .+1) · y = 1+ . . .+1, where the first sum involves b 1s, and the
second one involves a 1s. Moreover, for every s, r ∈ Q and n,m ∈ N, the formula x = s+ rn/m can
be written as (x− s)m = rn, and therefore it is expressible in Lrcf . In particular, this shows that ≤
and = are decidable for elements of E .

Since, by definition,

Dn(α) =
⋃

m≤n

B
(m
n
, n−2−α

)
∩ [0, 1],

the endpoints of the intervals Ii(α, k) are of the form s + r2+α, for some s, r ∈ Q. In particular, if
α ∈ Q then the endpoints of the k-th level intervals of S(α) are in E . The uniform computability of
the finite set P (α, k) in the definition of S(k)(α) (Theorem 5.6) implies that, for each k, we can think
of S(k)(α) as being represented via the sequence ((ai,k, bi,k))i<Mk

in E×E , where Ii(α, k) = [ai,k, bi,k].
We now show that, for each k, the endpoints of the k-th level intervals of T (α) are in E , and

that T (k)(α) can be uniformly represented as the sequence in E ×E of the endpoints of the intervals
(Jj(α, k))j<Nk

. We proceed by induction on k. At stage 0 the statement is trivial. Assume the
claim holds for T (k)(α). The decidability of ≤|E×E implies that given two finite sequences (Un)n and
(Vm)m of intervals with endpoints in E (where each interval is represented via a pair of δE -names
for its endpoints), we can uniformly compute a finite sequence (Wℓ)ℓ of mutually disjoint intervals
with endpoints in E s.t. ⋃

ℓ

Wℓ =
⋃

n

Un ∩
⋃

m

Vm.

In particular, this implies that a sequence (J̃j(α, k))j<Ñk+1
that satisfies (⋆) can be uniformly com-

puted from α and k.
Similarly, for every i < Nk and every j < Ñk+1, we can uniformly (in α and k) decide whether

J̃j(α, k + 1) ∩ Ji(α, k) = ∅. In other words, the set Wk is uniformly computable, and hence so is
|Wk|.

It is now straightforward to see that, given α and k, we can uniformly compute a finite sequence
((cj,k, di,k))j<Nk+1

in E × E s.t. the k-th level intervals of T (α) are Jj(α, k) = [cj,k, dj,k]. This, in

turn, implies the computability of the map (α, k) 7→ T (k)(α).

Lemma 6.5. There is a computable function f : [0, 1]< × 2N → K([0, 1]) s.t. for every p, x, f(p, x)
is Salem and

dim(f(p, x)) =

{
p if x ∈ Q2

0 if x /∈ Q2

Proof. The proof of the lemma follows a similar strategy as the proof of [33, Lem. 3.6]. Let T (α)
and T (k)(α) be as in Lemma 6.4. For every interval I = [a, b] and every k let T (k)(α, I) be the set
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obtained by scaling T (k)(α) to the interval I. Notice that the mapping x 7→ a+(b−a)x computably
sends [0, 1] onto I, it is affine and it is invertible if I is non-degenerate. In particular, the partial
map

N×Q×K([0, 1]) → K([0, 1]) := (k, α, I) 7→ T (k)(α, I)

is computable.
We first define a map g :⊆ Q × 2N → K([0, 1]) s.t. for every q ∈ [0, 1) and x ∈ 2N, g(q, x) is

Salem and dim(g(q, x)) = q if x ∈ Q2 and 0 otherwise. If q = 0 we just take g(q, x) := ∅. Assume

q ∈ (0, 1) ∩Q and let α = 2(1− q)/q so that 2/(2 + α) = q. We define F
(k)
x recursively as

Stage k = 0 : F
(0)
x := [0, 1];

Stage k + 1 : Let J
(k)
0 , . . . , J

(k)
Mk

be the disjoint closed intervals s.t. F
(k)
x =

⋃
i≤Mk

J
(k)
i .

If x(k + 1) = 1 then let ρ ∈ Q be such that (2ρ)2
−k

(Mk + 1) ≤ 2−k. For each i ≤ Mk let

J
(k)
i = [ai, bi] and define

H
(k)
i := B

(
ai + bi

2
,min

{
bi − ai

2
, ρ

})
.

The choice of ρ implies that ∑

i≤Mk

diam(H
(k)
i )2

−k

≤ 2−k.

Define then F
(k+1)
x :=

⋃
i≤Mk

H
(k)
i .

If x(k + 1) = 0 then let s ≤ k be largest s.t. x(s) = 1 (or s = 0 if there is none). For each

i ≤ Ms, apply the (k + 1 − s)-th step of the construction of T (α, J
(s)
i ). Define F

(k+1)
x :=⋃

i≤Ms
T (k+1−s)(α, J

(s)
i ).

We then define g(q, x) := Fx :=
⋂
k∈N F

(k)
x . Clearly Fx is closed, as intersection of closed sets.

Let us show that it is Salem with the prescribed dimension. Assume first that x ∈ Q2 (i.e. x is
eventually 0) and let s be the largest index s.t. x(s) = 1 (or s = 0 if there is none). By construction

Fx =
⋃
i≤Ms

T (α, J
(s)
i ). Since dim(T (α, J

(s)
i )) = q and each T (α, J

(s)
i ) is closed, we have that

dim(Fx) = max{dim(T (α, J
(s)
i )) : i ≤ Ms} = q. On the other hand, if x /∈ Q2 then we show that

for each s > 0 and each ε > 0 there is a cover (An)n∈N of Fx s.t.
∑

n∈N diam(An)
s ≤ ε, which implies

that Hs(Fx) = 0. For every s and ε we can pick k a sufficiently large k so that 2−k ≤ min{s, ε} and

x(k + 1) = 1. The intervals (H
(k)
i )i≤Mk

defined in the construction of Fx form a cover of Fx s.t.

∑

i≤Mk

diam(H
(k)
i )s ≤

∑

i≤Mk

diam(H
(k)
i )2

−k

≤ 2−k ≤ ε.

We now show that g is computable, i.e. that a full information name for Fx can be uniformly
computed from q and x. Notice that, since the map (k, α, I) 7→ T (k)(α, I) is computable, then so is

the map (k, p, x) 7→ F
(k)
x (where the codomain is represented with the full information representa-

tion). Hence, a ψ−-name for Fx can be computed from a sequence (rk)k∈N where rk is a ψ−-name

for F
(k)
x (Theorem 3.1). To compute a ψ+-name for Fx (i.e. a positive information name), we use

the fact that no interval is ever entirely removed and that no interval is entirely contained in Fx (as
dim(Fx) < 1). In particular, a ψ+-name for Fx is obtained by listing all the basic open balls U s.t.

there are k and i ≤ Mk s.t. U contains a k-th level interval J
(k)
i . Notice that, since no interval is

entirely removed, J
(k)
i ⊂ U implies U ∩ Fx 6= ∅. Moreover, if V ∩ Fx 6= ∅ for some basic open ball

V , then for some k and i ≤Mk, V contains the k-th level interval J
(k)
i .
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We now define a map f that satisfies the statement of the lemma. Let (In)n∈N be the sequence
of disjoint intervals In := [2−2n−1, 2−2n] and (τn)n∈N a uniformly computable sequence of similarity
transformations τn : [0, 1] → In. Any p ∈ [0, 1]< is given as a sequence (qn)n∈N of rationals in [0, 1]
which is monotonically increasing and converges to p. We define

f(p, x) := {0} ∪
⋃

n∈N

τng(qn, x).

The fact that f(p, x) is Salem and has the prescribed dimension follows from the properties of g and
the countable stability for closed sets of dimH and dimF. Notice that a δK([0,1])-name for f(p, x) can
be obtained by carefully merging the δK([0,1])-names of the sets τng(qn, x). We can briefly sketch
the argument as follows: a basic open set intersects f(p, x) iff it intersects τng(qn, x) for some n.
On the other hand, to list the basic open balls contained in the complement of f(p, x) it suffices to
list all the basic open balls contained in the relative topology of In \ τng(qn, x) together with the
open intervals (2−2n−2, 2−2n−1). The claim follows from the fact that the intervals In are uniformly
co-c.e. closed.

The following results are the effective counterparts of [33, Prop. 3.7, Thm. 3.8 and Thm. 3.9].

Theorem 6.6. For every p < 1 the sets

{A ∈ K([0, 1]) : dimH(A) > p},

{A ∈ K([0, 1]) : dimF(A) > p}

are Σ0
2-complete.

Proof. The upper bounds have been shown in Proposition 6.1 and Proposition 6.2. The hardness is
a corollary of Lemma 6.5.

Recall that P3 is the Π0
3-complete subset of 2N×N defined as

P3 := {x ∈ 2N×N : (∀m)(∀∞n)(x(m,n) = 0) }.

The proof of the following theorem is similar to the proof of [33, Thm. 3.8], using Proposition 6.1,
Proposition 6.2 and Lemma 6.5 in place of, respectively, [33, Prop. 3.2, Prop. 3.3 and Lem. 3.6].

Theorem 6.7. There exists a computable map F : (0, 1]< × 2N×N → K([0, 1]) s.t. for every p and
x, F (p, x) is a Salem set and dim(F (p, x)) ≥ p iff x ∈ P3. For every computable q ∈ (0, 1], letting

X1 := {A ∈ K([0, 1]) : dimH(A) ≥ q},

X2 := {A ∈ K([0, 1]) : dimF(A) ≥ q}

we have that every set X s.t. X2 ⊂ X ⊂ X1 is Π0
3-hard. In particular, X1 and X2 are Π0

3-complete.

Proof. After showing the existence of a computable F as claimed, the other statements follow. In
particular, the completeness of X1 and X2 follows from Proposition 6.1 and Proposition 6.2.

For the first part, consider the computable map Φ: 2N×N → 2N×N defined as Φ(x)(m,n) :=
maxi≤m x(i, n) and notice that x ∈ P3 iff Φ(x) ∈ P3. Intuitively, Φ(x) is a computable modification
of x s.t. the set of rows with finitely many 1’s is an initial segment of N (it is N iff x ∈ P3).

For everym, let Im := [2−2m−1, 2−2m] and qm := p(1−2−m−1). Fix also a similarity transforma-
tion τm : [0, 1] → Im and define gm : 2N → K(Im) as gm := τm ◦ f(qm, ·), where f is the computable
map provided by Lemma 6.5. In particular,

dim(gm(y)) =

{
qm if y ∈ Q2,

0 if y /∈ Q2.
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We define
F (p, x) := {0} ∪

⋃

m∈N

gm(Φ(x)m),

where Φ(x)m denotes the m-th row of Φ(x). The accumulation point 0 is added to ensure that
F (p, x) is a closed set.

The computability of F follows from the computability of Φ and g. Using the stability properties
of the Hausdorff and Fourier dimensions, we have that F (p, x) is Salem and

dim(F (p, x)) = sup
m∈N

dimH(gm(Φ(x)m)) = sup
m∈N

dimF(gm(Φ(x)m)).

In particular, if x ∈ P3 then Φ(x) ∈ P3 and, for every m, Φ(x)m ∈ Q2, hence

dim(F (p, x)) = sup
m∈N

dim(gm(Φ(x)m)) = sup
m∈N

qm = p.

On the other hand, if x /∈ P3 then there is a k > 0 s.t. for every m ≥ k, Φ(x)m /∈ Q2 and hence
dim(gm(Φ(x)m)) = 0. This implies that

dim(F (p, x)) ≤ qk < p,

and this completes the proof.

Theorem 6.8. The set {A ∈ K([0, 1]) : A ∈ S ([0, 1])} is Π0
3-complete.

Proof. The upper bound was proved in Corollary 6.3. To prove the hardness, fix a computable p > 0
and let K ∈ K([0, 1]) be a computable set s.t. dimH(K) = p and dimF(K) = 0 (e.g. we can choose
K to be the Cantor middle-third set). Let also F be the map provided by Theorem 6.7 and define
the map h : 2N×N → K([0, 1]) as

h(x) := F (p, x) ∪K.

The computability of h follows from the computability of p and F , and the fact that the union map
∪ : K([0, 1])×K([0, 1]) → K([0, 1]) is computable (see Theorem 3.1). Moreover

dimH(h(x)) = max{dim(F (p, x)), p},

dimF(h(x)) = dim(F (p, x)).

In particular, h(x) is Salem iff dim(F (p, x)) ≥ p iff x ∈ P3.

We now turn our attention to the closed Salem subsets of X , where X is [0, 1]d or Rd. We first
notice the following result, which follows from the proofs of Proposition 6.1 and Proposition 6.2.

Lemma 6.9.

• {(K, p) ∈ K(Rd)× [0, d] : dimH(K) > p} is Σ0
2;

• {(K, p) ∈ K(Rd)× [0, d] : dimH(K) ≥ p} is Π0
3;

• {(K, p) ∈ K(Rd)× [0, d] : dimF(K) > p} is Σ0
2;

• {(K, p) ∈ K(Rd)× [0, d] : dimF(K) ≥ p} is Π0
3.
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Proof. We only prove the statement for dimH(K) > p, the proof of the complexity of the other sets
is analogous. Let

Xn := {(K, p) ∈ K([−n, n]d)× [0, d] : dimH(K) > p}.

Since K([−n, n]d) computably embeds into K(Rd), we can see Xn as a subset of K(Rd)× [0, d]. In
particular, for every (K, p) ∈ K(Rd)× [0, d],

dimH(K) > p ⇐⇒ (∃n)((K, p) ∈ Xn).

Hence, it is enough to show that the sets (Xn)n∈N are uniformly Σ0
2, i.e. that

{(n,K, p) : (K, p) ∈ Xn } ∈ Σ0
2(N×K(Rd)× [0, d]).

Notice that, since the sets ([−n, n]d)n∈N are uniformly computably compact, then so are the sets
(K([−n, n]d))n∈N (the argument of Lemma 3.5 can be run uniformly in n). This, in turn, implies
that the set

{(n,K, p) : (K, p) ∈ Xn}

is Σ0
2, as the argument in the proof of Proposition 6.1 can be run uniformly in n.

This result can be used to obtain the upper bounds in the non-compact case, i.e. the effective
counterpart of the upper bounds obtained in [33, Thm. 5.4 and Thm. 5.5].

Proposition 6.10.

• {(A, p) ∈ F(Rd)× [0, d] : dimH(A) > p} is Σ0
2;

• {(A, p) ∈ F(Rd)× [0, d] : dimH(A) ≥ p} is Π0
3;

• {(A, p) ∈ F(Rd)× [0, d] : dimF(A) > p} is Σ0
2;

• {(A, p) ∈ F(Rd)× [0, d] : dimF(A) ≥ p} is Π0
3;

• {A ∈ F(Rd) : A ∈ S ([0, d])} is Π0
3.

Proof. We only prove the statement for the Hausdorff dimension, the proof of the complexity of the
Fourier dimension is analogous (as both are stable under countable union of closed sets), and the
result on the complexity of the Salem sets can be obtained as in Corollary 6.3.

Notice that, since A is closed,

dimH(A) > p ⇐⇒ (∃K ∈ F(Rd))(K ⊂ A ∧K ∈ K(Rd) ∧ dimH(K) > p) .

Notice that, if F , G are two closed sets represented with the full information representation, the
predicate F ⊂ G is Π0

1 as a predicate of F and G. In fact we can prove something slightly stronger:
if pF is a ψ+-name (positive information name) for F and qG is a ψ−-name (negative information
name) for G then the condition F ⊂ G is Π0

1 in pF and qG. Indeed,

F ⊂ G ⇐⇒ GC ∩ F = ∅ ⇐⇒ (∀i)(∀j)(qG(i) 6= pF (j)).

This shows that K ⊂ A and K ∈ K(Rd) are respectively Π0
1 (as a predicate of K and A) and

an effective union of Π0
1 sets (as a predicate of K, as it is equivalent to (∃n)(K ⊂ [−n, n]d)).

Moreover, since the inclusion map F(X)|K(X) →֒ K(X) is computable, using Lemma 6.9 we have

that {(K, p) ∈ F(Rd)× [0, d] : K ∈ K(Rd) ∧ dimH(K) > p} is an effective union of Π0
1 sets. Thus

also
{(K,A, p) ∈ F(Rd)× F(Rd)× [0, d] : K ⊂ A ∧K ∈ K(Rd) ∧ dimH(K) > p}
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is an effective union of Π0
1 sets. Since F(Rd) is computably compact (Proposition 3.6) we can apply

Corollary 3.10 and conclude that

{(A, p) ∈ F(Rd)× [0, d] : dimH(A) > p} is Σ0
2 .

Since dimH(A) ≥ p iff (∀r ∈ Q)(r < p → dimH(A) > r), this also shows that dimH(A) ≥ p is a Π0
3

predicate of A and p.

We now turn our attention to the lower bounds for the complexity of the above conditions. In
[33, Sec. 4], we exploited a recent construction of a higher dimensional analogue of E(α) (introduced
in [19]) to show that, for a closed A ⊂ [0, 1]d, the conditions dimH(A) > p and dimF(A) > p are

∼

Σ0
2-

complete (when p < d) and the conditions dimH(A) ≥ q and dimF(A) ≥ q are
∼

Π0
3-complete (when

q > 0). However, we are not aware of any proof of the effectiveness of the arguments presented in
[19], which would be needed to prove a higher-dimensional analogue of Lemma 6.5.

However, we use a classical theorem of Gatesoupe to obtain a (slightly weaker) result, namely
the completeness of the above conditions when p and q are sufficiently large.

Theorem 6.11. Let X be [0, 1]d or Rd. For every p ∈ [d− 1, d) the sets

{A ∈ F(X) : dimH(A) > p},

{A ∈ F(X) : dimF(A) > p}

are Σ0
2-complete. For every computable q ∈ (d− 1, d], the sets

{A ∈ F(X) : dimH(A) ≥ q},

{A ∈ F(X) : dimF(A) ≥ q},

{A ∈ F(X) : A ∈ S (X)}

are Π0
3-complete.

Proof. By Proposition 6.10, it is enough to show that the above sets are hard for their respective
class.

Recall that, by a theorem of Gatesoupe [20], if A ⊂ [0, 1] has at least a point different from 0
and is Salem with dimension α then the set Ã := {x ∈ [0, 1]d : |x| ∈ A} is Salem with dimension
d− 1 + α. It is easy to see that the map r : K([0, 1]) → K([0, 1]d) := A 7→ Ã is computable.

To show that the first two sets are Σ0
2-hard, let f be the map provided by Lemma 6.5. For

x ∈ 2N and p ∈ [d− 1, d), we have

x ∈ Q2 ⇐⇒ dimH(r(f(1, x))) > p ⇐⇒ dimF(r(f(1, x))) > p.

Fix now a computable q ∈ (d−1, d]. To show that the conditions dimH(A) ≥ q and dimF(A) ≥ q
are Π0

3-hard, consider a sequence (Cn)n∈N of mutually disjoint closed cubes s.t.

• Cn ⊂ [0, 1]d,

•

⋃
n∈NCn = {0} ∪

⋃
n∈N Cn, where 0 is the origin of the d-dimensional Euclidean space,

• the sets have uniformly computable ψ-names, i.e. there is a computable map that, given n,
produces a ψ-name for Cn.

It is easy to provide examples of sequences of closed sets that satisfy the above conditions. In par-
ticular, the last point guarantees that the similarity transformations τn : [0, 1]

d → Cn are uniformly
computable. The claim follows by a straightforward adaptation of the proof of Theorem 6.7.

Finally, to show that the family of closed Salem sets is Π0
3-hard, we adapt the proof of Theorem 6.8,

where the compact set K is replaced with a fixed computable compact set Y ⊂ C0 with null Fourier
dimension and Hausdorff dimension d.
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7 The Weihrauch degree of Hausdorff and Fourier dimension

In this section, we briefly show how the results obtained in the previous sections can be used to
characterize the uniform strength of the maps computing the Hausdorff and Fourier dimension of a
closed subset of Rd, for some fixed d.

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be partial multi-valued functions between represented
spaces. We say that f is Weihrauch reducible to g (f ≤W g) iff there are two computable maps
Φ,Ψ :⊆ NN → NN s.t., for every realizer G of g, the map p 7→ Ψ(〈p,GΦ(p)〉) is a realizer for f . A
thorough presentation on Weihrauch reducibility is out of the scope of this paper, and the reader is
referred to [8].

We define the compositional product as

f ∗ g := max
≤W

{f0 ◦ g0 : f0 ≤W f and g0 ≤W g}.

This operator captures the idea of using g and f in series, possibly using a computable procedure
to map a name for an output of g to a name for an input of f . While, formally, f ∗ g is a Weihrauch
degree (and not a specific multi-valued function), with a small abuse of notation, we write h ≤W f ∗g
with the obvious meaning. We also write f [n] to denote the n-fold compositional product of f with
itself, where f [0] := id and f [1] := f .

Let
∼

Γ be a Borel pointclass. We say that f :⊆ X → Y is
∼

Γ-measurable if, for every open
U ⊂ Y , f−1(U) ∈

∼

Γ(dom(f)), i.e. there exists V ∈
∼

Γ(X) s.t. f−1(U) = V ∩ dom(f). If X and Y
are represented spaces, we say that f is effectively

∼

Γ-measurable or
∼

Γ-computable if the map

∼

Γ−1(f) :
∼

Σ0
1(Y ) ⇒

∼

Γ(X) := U 7→ {V ⊂ X : f−1(U) = V ∩ dom(f)}

is computable. In particular, if f is total then
∼

Γ−1(f) is single-valued. This notion can be generalized
in a straightforward way to multi-valued functions (see [5, Def. 3.5]).

Let lim :⊆ (NN)
N
→ NN be the function mapping a convergent sequence in the Baire space to its

limit. In the proof of Theorem 7.2 we will use the following result:

Theorem 7.1 ([8, Thm. 6.5]). f is
∼

Σ0
k+1-computable iff f is Weihrauch reducible to lim

[k].

This is a generalization of [5, Thm. 9.1], and draws an important connection between the
Weihrauch degrees and the effective Borel hierarchy.

We identify two maps corresponding to the Hausdorff dimension and two maps corresponding
to the Fourier dimension, according to the way closed sets are represented:

dimH, dimF : FU (Rd) → R,

dimF

H, dim
F

F : F(Rd) → R.

Theorem 7.2. lim
[2] ≡W dimF

H ≡W dimH ≡W dimF

F ≡W dimF .

Proof. It is immediate to see that dimF

H ≤W dimH and dimF

F ≤W dimF. To prove the reductions

dimH ≤W lim
[2] and dimF ≤W lim

[2], by Theorem 7.1 it suffices to show that the maps dimH and
dimF are

∼

Σ0
3-computable. This follows by Proposition 6.10 as

dim−1
H ((a, b)) = {F ∈ F(Rd) : dimH(F ) > a ∧ dimH(F ) < b}.

In fact, given a, b ∈ [0, d] we can uniformly compute a (a⊕b)-computable δ
∼

Σ
0
3
-name for dim−1

H ((a, b)).

Finally, to prove that lim[2] ≤W dimF

H and lim
[2] ≤W dimF

F we show that, given a sequence (xi)i∈N

in 2N, we can uniformly build a closed Salem subset A of [0, 1]d s.t. dim(A) uniformly computes
whether xi ∈ Q2, where Q2 is the fixed Σ0

2-complete set (see Section 2.3). This suffices because

lim
[2] is Weihrauch equivalent to answering countably many Σ0

2 questions in parallel.
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Let f be the computable map provided by Lemma 6.5. Let also

r : K([0, 1]) → K([−1, 1]d) := F 7→ {z ∈ Rd : |z| ∈ F ∨ |z| = 1}

and define g := r ◦ f . Recall that, by the classic theorem of Gatesoupe [20] (to apply it we added
the condition |z| = 1 in the definition of r), if F is Salem with dimension α then r(F ) is Salem with
dimension d − 1 + α. For every non-constantly 0 string σ ∈ 2<N, let Iσ := {i < |σ| : σ(i) = 1}
and let pσ := 1

15 +
∑

i∈Iσ
2−2i−1. The term 1/15 is added for technical reasons, which will become

apparent at the end of the proof. Define yσ ∈ 2N as yσ(n) := maxi∈Iσ xi(n). Clearly

(∀i ∈ Iσ)(xi ∈ Q2) ⇐⇒ yσ ∈ Q2

⇐⇒ dim(f(pσ, yσ)) = pσ ⇐⇒ dim(g(pσ, yσ)) = d− 1 + pσ .

On the other hand, (∃i ∈ Iσ)(xi /∈ Q2) ⇐⇒ dim(g(pσ, yσ)) = d− 1.
As in the proof of Theorem 6.11, let (Cn)n∈N be a sequence of mutually disjoint closed cubes s.t.

• Cn ⊂ [0, 1]d,

•

⋃
n∈NCn = {0} ∪

⋃
n∈N Cn, where 0 is the origin of the d-dimensional Euclidean space,

• the sets have uniformly computable ψ-names.

For every σ as above, we can uniformly translate and scale the set g(pσ, yσ) to a subset Gσ of
C〈σ〉. Consider now the closed set A := {0} ∪

⋃
σGσ. It is routine to show that A is Salem and

dim(A) = d − 1 + 1
15 +

∑
i∈N 2−2i−1χQ2

(xi). It is then straightforward to notice that, for every i,
the value of χQ2

(xi) is the (2i)-th digit in the binary expansion of dim(A).
Notice that, in general, the map sending a Cauchy representation of a real to its binary expansion

is not computable (reals with two binary representations can be used to diagonalize against any
possible computation). To ensure computability, we defined pσ so that dim(A) is guaranteed to
have a unique binary expansion (and hence its binary representation is computable from its Cauchy
name). In fact the binary expansion of dim(A) has value χQ2

(xi) in the (2i)-th position, 0 in the
positions congruent to 1 mod 4, and 1 in the positions congruent to 3 mod 4 (to attain the latter
conditions we added 1/15, which in binary is 0.0001).

The Weihrauch equivalence between lim
[2] and the map computing the Hausdorff dimension of

a closed subset of [0, 1] (and, more generally, of a compact subset of R) was already proved in [41,
Thm. 48]. Our approach extends that result and, at the same time, characterizes the degree of the
map computing the Fourier dimension.
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[45] Schröder, Matthias and Simpson, Alex, Representing probability measures using probabilistic
processes, Journal of Complexity 22 (2006), no. 6, 768–782, doi:10.1016/j.jco.2006.05.003, Com-
putability and Complexity in Analysis.

[46] Stein, Elias M. and Weiss, Guido, Introduction to Fourier analysis on Euclidean spaces, 1 ed.,
Princeton University Press, Princeton, N.J., 1971, doi:10.1515/9781400883899.

[47] Tarski, Alfred, A Decision Method for Elementary Algebra and Geometry, Texts
and Monographs in Symbolic Computation, pp. 24–84, Springer, Vienna, 1998,
doi:10.1007/978-3-7091-9459-1 3.

[48] Weihrauch, Klaus, Computable Analysis: An Introduction, 1 ed., Springer-Verlag, Berlin,
November 2000.

[49] Wolff, Thomas H., Lectures on harmonic analysis, 1 ed., American Mathematical Society,
September 2003, doi:10.1090/ulect/029.

Alberto Marcone, Department of Mathematics, Computer Science and Physics

University of Udine

Udine, UD 33100, IT

E-mail address: alberto.marcone@uniud.it

Manlio Valenti, Department of Mathematics, Computer Science and Physics

University of Udine

Udine, UD 33100, IT

E-mail address: manliovalenti@gmail.com

36

https://doi.org/10.1016/C2013-0-08107-8
https://arxiv.org/pdf/1408.5329v1
https://doi.org/10.3233/COM-150049
https://doi.org/10.1109/LICS.2015.48
https://doi.org/10.4115/jla.2017.9.c3
https://doi.org/10.1016/S0304-3975(01)00109-8
https://doi.org/10.1002/malq.200710010
https://doi.org/10.1016/j.jco.2006.05.003
https://doi.org/10.1515/9781400883899
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1090/ulect/029
alberto.marcone@uniud.it
manliovalenti@gmail.com

	1 Introduction
	2 Background
	2.1 Hausdorff and Fourier dimension
	2.2 Computability on represented spaces
	2.3 Representations on (hyper)spaces

	3 The hyperspaces of closed and compact sets
	4 Computable measure theory
	5 The effective Kaufman theorem
	6 The effective complexity of closed Salem sets
	7 The Weihrauch degree of Hausdorff and Fourier dimension

