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Abstract. Microscopic hyperspectral imaging has become an emerging technique
for various medical applications. However, high dimensionality of hyperspectral
image (HSI) makes image processing and extraction of important diagnostic infor-
mation challenging. In this paper, a novel dimensionality reduction method named
spatial-spectral density peaks based discriminant projection (SSDP) is proposed
by considering spatial-spectral density distribution characteristics of immune com-
plexes. The proposed SSDP coupled with support vector machine classifier (SVM)
yields high-precision automatic diagnosis of membranous nephropathy (MN). De-
tailed ex-vivo validation of the proposed method demonstrates the potential clin-
ical value of the system in identifying hepatitis B virus-associated membranous
nephropathy (HBV-MN) and primary membranous nephropathy (PMN).
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1. Introduction

Chronic kidney disease (CKD) is a global public health problem [1] with an incidence
rate of more than 10%. Early detection and treatment can often keep CKD from getting
worse. Among CKDs, one of the most common pathological types of adult nephrotic syn-
drome is membranous nephropathy (MN) [2] which can be divided into primary mem-
branous nephropathy (PMN) and secondary membranous nephropathy (SMN). Hepatitis
B virus-associated membranous nephropathy (HBV-MN) is a popular variety of SMN.
In clinical diagnosis, a clear distinction between HBV-MN and PMN is essential for MN
identification. The gold standard for MN diagnosis remains tissue biopsy with patho-
logical assessment made by pathologists using visual inspection of stained sections and
immunouorescence under the optical microscope, combined with electron microscopy
results. However, a certain probability of false positives is exist in the immunouores-
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cence and the accuracy of MN diagnosis is highly depended on the experience of the
pathologists. This technique is considered expensive and time-consuming.

With the rapid development of hyperspectral cameras and artificial intelligence, hy-
perspectral imaging system has become promising auxiliary diagnostic tool for intelli-
gent medicine. Differ from the bi-dimensionality image acquired by optical microscope
which only contains morphological information of samples, HSI possesses abundant
spatial-spectral information. Digital pathology, which utilizes the power of slide imaging
and computer-aided diagnosis, has proved promising to provide rapid, consistent, and
quantitative disease diagnosis from histopathology images [3]. Recently, local fisher dis-
criminant analysis-deep neural network [4] reveals that HBV-MN and PMN have differ-
ent immune complex components and show subtle spectral differences in hyperspectral
images. Previous work also shows that dimensionality reduction (DR) is advantageous
for acquiring an optimal reduced subspace with highly separability for features [4,5,6,7],
thereby improving the accuracy of computer-based MN automatic clinical diagnosis.

In this paper, we propose a novel DR method based on density peaks (DP) based
clustering algorithm [8] to make full use of the spatial-spectral density distribution char-
acteristics of immune complexes. At first, spectral density and spatial density are defined
for each pixel based on the density peaks based clustering algorithm. Then, a spatial
density scatter matrix is designed to preserve the neighborhood structure in spatial do-
main and two spectral density scatter matrices are constructed to describe the local dis-
criminant relationship in spectral domain. At last, a spatial-spectral density peaks based
discriminant projection (SSDP) method is proposed by compacting the spatial-spectral
intra-class scatter while separating the spectral interclass scatter. SSDP efficiently pre-
serves the local intra-class local structure in HSI and enhances the discrimination power
of low-dimensional embedding spatial-spectral features.

2. Proposed SSDP Method

The proposed SSDP method consists of three parts: construction of spatial density based
scatter matrix, construction of spectral density based scatter matrices and the proposed
spatial-spectral discriminant projection model. More details of these parts are described
as follows.

2.1. Spatial density based scatter matrix

Let (ai, bi) denotes the coordinate of hyperspectral pixel xi, the local spatial neighbor-
hood Ω (xi) centered at xi is defined as:

Ω (xi) =

{
x← (a, b)

∣∣∣∣a ∈ [ai − q, ai + q]
b ∈ [bi − q, bi + q]

}
(1)

where q = (T − 1)/2, and the odd number T is the size of spatial neighborhood. x ←
(a, b) indicates that the sample locate in corresponding coordinate.

Based on the idea of density peaks based clustering algorithm, the spatial density of
pixel xi is defined as

ρspatiali =
∑

xj∈Ω(xi)

χ (l (xi)− l (xj)) (2)
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where χ (x) = 1 if x = 0 and χ (x) = 0 otherwise, and l (xi) is the label of xi. Basically,
ρi is equals to the number of points from Ω (xi) that have the same label with xi.

For training sample xi, the spatial density weight between xi and xj is defined as

Wspatial
ij =

{
ρspatial
i

×ρspatial
j

tspatial , if l (xi) = l (xj)
0, otherwise.

(3)

in which tspatial = max
i,j

(ρspatiali × ρspatialj ). The density weight makes the points with

lower spatial density not produce larger influence to the embedded space.
The intra-class spatial density based scatter matrix is defined as

Ssw =
1

2

n∑
i,j=1

Wspatial
ij (xi − xj) (xi − xj)

T (4)

2.2. Spectral density based scatter matrices

Based on the idea of density peaks based clustering algorithm, the spectral density of
pixel xi is defined as same as [8]. That is, ρspectrali =

∑
j

χ (dij − dc) where dij =

‖xi − xj‖22, χ (x) = 1 if x = 0 and χ (x) = 0 otherwise.
For training sample xi, the spectral density weight between xi and xj is defined as

Wspectral
ij =

ρspectrali × ρspectralj

tspectral
(5)

in which tspectral = max
i,j

(ρspectrali × ρspectralj ). The density weight makes the points

with lower spectral density not produce larger influence to the embedded space.
In spectral domain, the inter-class density scatter matrix S(lb) and the intra-class

density scatter matrix S(lw) are defined as

S(lb) =
1

2

n∑
i,j=1

Ŵ
(lb)
ij (xi − xj) (xi − xj)

T (6)

S(lw) =
1

2

n∑
i,j=1

Ŵ
(lw)
ij (xi − xj) (xi − xj)

T (7)

where Ŵ(lb) and Ŵ(lw) are n× n matrices defined by

Ŵ
(lb)
ij =

{
Wspectral

ij

/
(1/n− 1/nc), if l (xi) = l (xj) = c

1/n, otherwise.
(8)

Ŵ
(lw)
ij =

{
Wspectral

ij

/
nc, if l (xi) = l (xj) = c

0, otherwise.
(9)

Here c ∈ [1, C] ,C represents the total number of classes and nc denotes the number of
samples belong to class c.
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2.3. Spatial-Spectral Density Peaks Based Discriminant Projection

In this section, spatial-spectral density peaks based discriminant projection (SSDP) ap-
proach is proposed by minimizing the spatial-spectral intra-class compactness and maxi-
mizing spectral inter-class variance in embedded subspace. The intra-class spatial margin
, the intra-class spectral margin and the inter-class spectral margin in embedded space
can be described by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

n∑
i,j=1

∥∥PTxi −PTxj

∥∥2
2
Wspatial

ik = tr
(
PTSswP

)
1
2

n∑
i,j=1

∥∥PTxi −PTxj

∥∥2
2
Ŵ

(lw)
ij = tr

(
PTSlwP

)
1
2

n∑
i,j=1

∥∥PTxi −PTxj

∥∥2
2
Ŵ

(lb)
ij = tr

(
PTSlbP

)
(10)

The model of SSDP is defined as

max
P

tr
(
PTSlbP

)
tr {PT [αSsw + (1− α)Slw]P} (11)

where α ∈ [0, 1] is a tradeoff balancing the contribution of spatial and spectral informa-
tion in projection process. The solution of the optimizing problem can be translated to
solve the generalized eigenvalue problem

Slbpi = λi

[
αSsw + (1− α)Slw

]
pi (12)

where λi is an eigenvalue and pi represents the corresponding eigenvector. The projected
matrix P = [p1,p2, · · · ,pd] ∈ �D×d is constructed by the first d largest eigenvalues.

SSDP makes fully use of spatial-spectral density based properties in hyeprspec-
tral images to map the original data into a low-dimensional space, in which not only
strengthen the class separability but also preserve the spatial-spectral relationship be-
tween pixels as much as possible.

3. Experimental Results and Analysis

In this section, real microscopic hyperspectral dataset is used to evaluate the effectiveness
of the proposed approach for MN identification tasks. The dataset consists of 30 HBV-
MN images and 24 PMN images, involving 10 HBV-MN patients and 9 PMN patients
respectively. The performance of DR can be evaluated with classification applied to the
data resulting from DR, and we use SVM due to its popularity. Three objective quality
indexes (i.e., each accuracy (EA), overall accuracy (OA), average accuracy (AA))are
used to evaluate the performance of hyperspectral image classification. Throughout, we
report results for a variety of state-of-the-art DR methods, comparing SSDP to LFDA
[9], EFDC [10], NWFE [11], BCGDA [12] as well as CDME [13].

The identification of HBV-MN and PMN is performed in fully-independent patients,
divided across 90 terms. Each term consist of one HBV-MN patient and one PMN pa-
tient for training, while testing and validation is performed on remaining patients. Figure
1 shows the average OA of 90 tests. SSDP is the best performing image dimensionality
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Figure 1. Average over all accuracy of MN identification.

reduction modality with accuracy of 86.15%, which meets the requirement of clinical
diagnostic accuracy higher than 85%. Take one term data (one HBV-MN (ID:17472) pa-
tient and one PMN (ID:15684) patient are used as training data) as an example, we use
visualization techniques to illustrate the effectiveness of SSDP for acquiring a subspace
with better separability. Figure 2 shows the distribution of testing sample features before
and after different DR methods process, the results confirm the potentiality of SSDP for
seeking optimal subspace with high separability for features. In addition, local mani-
fold based DR methods achieve much better performance than reconstruction based DR
methods. This indicates that the potential local distribution characteristics of the immune
complexes of MN are crucial for improving the discrimination of different diseases.

To further investigate the classification efficiency of the proposed algorithm as com-
pared to other DR approaches, Table 1 and Table 2 tabulate the EA, OA and AA obtained
by 1-dimensional data and 10-dimensional data respectively. In order to facilitate iden-
tification, the highest accuracy is signed on the bold. Obviously, the improvement effect
of SSDP on classification accuracy is significantly better than all other DR methods. Es-
pecially, the superiority is also obvious as depicted Table 1, the proposed method still
has over 6.4% increase in classification accuracy with limited data dimensionality. In
summary, it proves that SSDP has the ability to extract important diagnostic information
of medical hyperspectral image of MN, and can compress important diagnostic informa-
tion in very limit low-dimension data.Our work provides a novel technique for the char-
acterization and distinction of HBV-MN from IMN, especially for cases where the dis-
crimination is not always easy with the optical microscopy, and verifies its nonnegligible
potential for further application in medical field.

4. CONCLUSIONS

In this paper, a novel discriminant spatial-spectral dimensionality reduction method was
proposed for medical hyperspectral image analysis. By considering the density distribu-
tion characteristics of the data, spectral density and spatial density are defined for each
pixel based on the density peaks based clustering algorithm. SSDP has been confirmed
to be powerful in finding the discriminative embedding space by considering spatial-
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Figure 2. The distribution of (a) source data and low-dimension samples obtained by (b) NWFE, (c) EFDC,
(d) LFDA, (e) BCGDA, (f) CDME and (g) SSDP respectively.
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Table 1. Classification Accuracy with 1-Dimensional Data

Methods HBV-MN(%) PMN(%) OA(%) AA(%)

ORG 74.13 85.8 80.43 79.97
LFDA 49.31 44.72 46.83 47.01
EFDC 92.16 92.04 92.09 92.10
BCGDA 65.96 92.02 80.01 77.99
CDME 69.17 81.81 75.99 75.49
SSDP 99.32 97.52 98.49 98.42

Table 2. Classification Accuracy with 10-Dimensional Data

Methods HBV-MN(%) PMN(%) OA(%) AA(%)

ORG 74.13 85.8 80.43 79.97
LFDA 90.15 97.19 93.95 93.67
EFDC 92.20 95.58 94.02 93.89
BCGDA 71.40 89.95 81.41 80.68
CDME 92.55 95.47 94.13 94.01
SSDP 99.36 97.85 98.66 98.61

spectral intra-class structure and spectral inter-class structure simultaneously. The rela-
tive merits of our approach against other existing DR methods are also demonstrated in
this paper, highlighting the strengths of our proposed framework in terms of MN identi-
fication.
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