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Abstract. Hypergraph data appear and are hidden in many places in the modern
age. They are data structure that can be used to model many real data examples
since their structures contain information about higher order relations among data
points. One of the main contributions of our paper is to introduce a new topologi-
cal structure to hypergraph data which bears a resemblance to a usual metric space
structure. Using this new topological space structure of hypergraph data, we pro-
pose several approaches to study community detection problem, detecting persis-
tent features arising from homological structure of hypergraph data. Also based
on the topological space structure of hypergraph data introduced in our paper, we
introduce a modified nearest neighbors methods which is a generalization of the
classical nearest neighbors methods from machine learning. Our modified nearest
neighbors methods have an advantage of being very flexible and applicable even for
discrete structures as in hypergraphs. We then apply our modified nearest neighbors
methods to study sign prediction problem in hypegraph data constructed using our
method.
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1. Introduction

One of the challenges in the modern age is to classify data arising from many resources;
for example, following the rapid developments of several areas in mathematics, a large
number of publications in mathematics creates a tremendous amount of data, which sig-
nifies useful information such as relationships (or collaborations) among authors and
their publications, and their influences on development of mathematics. It is often the
case that analyzing such data is not straightforward, and very difficult task because of the
extremely fast growth of relations among data, and of data itself.
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In this paper, we propose several methods to analyze hypergraph data. Recall that
a hypergraph X is a pair (¥ (X),& (X)), where ¥ (X) is the set of data points (called
vertices of X), and & (X)) is a subset of the power set of ¥ (X) which represents relations
among data points. Each element in & (X) is called a hyperedge. Note that by abuse of
notation, we sometime use the same symbol for X and its set of vertices.

A standard example of a hypergraph is a collaboration network in which the set of
vertices consists of mathematicians, and a group of mathematicians (not necessarily only
two) forms a hyperedge if they have at least one joint publication. Many real data can be
modeled as a hypergraph. Applications of hypergraph data are diverse such as in protein
function prediction (see [1]), and other areas (for example, see [2], [3], [4], [5]).

The aim of this paper is to propose several approaches to studying community de-
tection, pattern recognition, and sign prediction problem. Our approaches use main tools
from metric geometry (see, for example, [6]), combined with techniques from geometric
and topological inference, to adapt classical techniques such as nearest neighbors meth-
ods into the hypergraph settings. More precise, for a given hypergraph data, we introduce
a class of metrics modulo certain equivalence relations (for a precise definition, see Sec-
tion 2) to equip such hypergraph with a metric space structure. Using these structures,
we propose several approaches to detect features from hypergraphs; for example, only
using distance matrix approach, we provide a way to approach to community detection
problem. Based on the metric space structure, we apply tools from algebraic topology to
propose a method for detecting persistent features arising from homological structures
hidden in a hypergraph. Such approach has an advantage of visualization of the space
structure of data which provides a visual insight into the topological structure of hype-
graph data. Also based on the metric space structure of hypergraph data, we introduce
a modified nearest neighbors method which is a generalization of the classical nearest
neighbors method from machine learning. Using our modified nearest neighbors meth-
ods, we apply to sign prediction problem on hypegraph data constructed by our method.

One of the novel and main features in our paper is that we propose a new type of
hypergraph data (which we coin the term “congruence hypergraph data”) which are very
easy to construct and implement, and very flexible for testing our theories.

The structure of our paper is as follows. In Section 2, we introduce several notions
and our main metric on hypergraphs that will be used throughout the paper. In Section
3, we introduce congruence hypergraph data, and several methods for analyzing hyper-
graph data including the distance matrix approach, homology-based learning, and modi-
fied nearest neighbors methods. Several examples will be performed on congruence hy-
pergraph data which we introduce in Subsection 3.2.

2. Basic notions
2.1. Metrics modulo equivalence relations
Let X be a set. An equivalence relation, denoted by =2, on X is a subset of X x X such

that the following conditions are true:

(1) (Reflexivity) (a,a) € = for every a € X.
(ii) (Symmetry) (a,b) € = if and only if (b,a) € =.
(iii) (Transitivity) if (a,b) € = and (b,c) € = then (a,c) € .
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When (a,b) € =, we say that a is =—equivalent to b. Throughout this paper, in order
to signify this relation, we write a 2 b whenever (a,b) € .

For a given high order network (which is another terminology for hypergraph data),
one of the problems that we address in this paper is concerned with distinguishing com-
munities in the network. It is clear that there are many examples of networks in which
several communities are viewed as identical communities with respect to certain prop-
erties that one wants to know about these networks. So if we view a given high order
network X as a hypergraph, in order to use a metric geometry approach to the community
detection problem, it is natural to introduce a metric (or distance) on X modulo a certain
equivalence relation which will be explicitly introduced depending on the structure of X.
Before making it clear what exactly we mean by this point of view, using an example
of high order collaboration network, we first introduce the notion of a metric modulo an
equivalence relation.

Definition 2.1 Let X be a set, and let = be an equivalence relation on X. A mapping
d: X xX — R is said to be a metric on X modulo the equivalence relation =2 if the
following conditions are satisfied:

(i) d(a,b) >0 forall a,b € X.

(ii) d(a,b) =0 if and only if a = b.

(iii) (Symmetry) d(a,b) =d(b,a) for all a,b € X.
(iv) (Triangle inequality) for any a,b,c € X,

d(a,b) <d(a,c)+d(c,b).

A set X equipped with a metric modulo an equivalence relation =2, say d : X x X — R
is called a metric space modulo 2 . In notation, we write (X,d) to indicate this metric
space modulo ==,

2.2. Hypergraphs equipped with intrinsic properties

Let X be a set. In order to create a hypergraph structure on X, we view the set of all
points in X as the set of vertices ¥ (X), and one needs to identify the relations among
points in X, which one can view as the set of hyperedges of X, denoted as & (X). A hy-
peredge having exactly ¢ vertices is called an ¢-hyperedge. The way which one identifies
hyperedges in X, signifies certain properties pertained to the set X that we want to study.
For example, let X be a set of mathematicians. In order to study how collaborative the
mathematicians in X are, we introduce a hypergraph structure on X as follows. The set of
vertices of X simply consists of all mathematicians in X. A group of mathematicians, say
my,...,my in X forms an ¢-hyperedge if they have at least one joint publication. In this
way, the set X becomes a hypergraph in which the construction of hyperedges signifies
the collaboration among mathematicians in X.

In many real data examples, one is not only interested in the hypergraph structure
of X, but also in knowing certain properties attached to such structure but hidden in the
hyperedge data. For example, in the collaboration network just described, in order to
study in which areas of mathematics the mathematicians in X have joint publications,
we can associate to each hyperedge the main area of mathematics in which the joint
publication of the hyperedge belongs. If an /-hyperedge ¢ is formed out of the joint paper,
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say P, of { mathematicians my, . ..,my, and the paper P is mainly concerned about number
theory, then one can define I'(¢) = number theory. Hence one obtains a mapping I" from
the set of hyperedges of X to the set of all areas in mathematics. Studying such a map
I" provides insight into the relationships between joint publications of mathematicians in
X and their contributions to certain fields in mathematics. Motivated by this example in
mind, we introduce a notion of hypergraphs equipped with certain properties.

Definition 2.2 Let X = (¥ (X),8 (X)) be a hypergraph, and let & be a nonempty set.
The hypergraph X is called a hypergraph equipped with properties & if there is a map
I': &(X) — & which associates each hyperedge in X to a unique element in .

In notation, we write {X, 2 }r to indicate X is a hypergraph equipped with proper-
ties P, where the subscript T is a map from & (X) to L.

In this subsection, for each hypergraph equipped with properties &2, say {X, Z}r,
we introduce a metric space structure on X, which provides a way to distinguishing
communities in X. We begin by defining a notion of neighborhood of a vertex which is
more suitable for defining a metric on the hypergraph X.

Definition 2.3 Ler X = (¥ (X),& (X)) be a hypergraph. Let a be a vertex in X. The
neighborhood of a, denoted by ¥ (a), is defined by

A (a)={atU{be ¥ (X)|Tee€ &X) such that {a,b} Ce }.
The next result is clear from the above definition.

Proposition 2.4 Let X be a hypergraph whose set of vertices consists of ay, ... ,a,. Then
X can be decomposed into n neighborhoods, say A (ay),..., N (ay) of the form

X =N (a) U UN (ay).

Remark 2.5 For the community detection problem, the proposition above plays a key
role. Indeed, by communities in X, we mean neighborhoods of each vertex. And thus in
order to point out differences among communities, we are interested in finding out the
exact differences among the populations of hyperegdes with specific properties in 2,
contained in these neighborhoods; more precisely, letting a property P range over the
set &P, the differences between the neighborhoods of a; and a; are reflected in terms of
the differences between the numbers of hyperedges contained in the neighborhoods of a;
and aj whose values under the map 1" is exactly P, i.e., they share the same property P.
Because of this observation and the proposition above, we want to study neighborhoods
of vertices in X instead of the vertices themselves, and thus one views X as a space whose
points are neighborhoods A (a;). So each neighborhood is in fact viewed as a single
point in the space X.

The metric geometry approach we use in this paper is that we want to construct a
metric d on such a space X which should incorporate information about the number of
hyperedges in X with specific properties P. And once such a metric is established for
the space X, two neighborhoods N (a;),. N (a;) (i.e., two points in X) are different if
and only if d(N (a;), N (a;)) is nonzero. And this is our first method for distinguishing
communities in hypergraphs.
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Let {X, Z}r be a hypergraph equipped with properties &2. Suppose that the set of
vertices in X consists of ay,...,a,, and the largest size of hyperedges in X is £. Let 1 <
i < n be an integer. For each property P € 2, let €}(a;) be the number of 1-hyperedges
in .4 (a;) whose value under the map I" is P. In a similar manner, let €3(a;) be the
number of 2-hyperedges in .4 (a;) whose value under the map I" is P. In general, for
any integer 1 <m </, let €}(a;) be the number of m-hyperedges in .4 (a;) whose value
under the map I" is P. Thus one obtains a unique double sequence ((€5(a;))1<m<t) pc 2
of non-negative real numbers for each neighborhood .4 (4;).

We introduce an equivalence relation on the space X which allows to identify cer-
tain points in X. Note that if two points, say .4 (a;) and .4 (a;) have the same double
sequence ((€3(ai))1<m<t) pe » = ((CF(aj)1<m<t) pc 5 then it is natural to view both of
them as identical points in X since their hyperdege structures are exactly the same with
respect to the map I" and the properties 2. Hence it is natural to define a binary relation
on X as follows: two points A (a;) and A (a;) are equivalent, denoted by N (a;) =
N (aj) if their associated sequences ((Cp(ai))1<m<t)pesp ((C(a;))1<m<t)pesp are
identical, i.e., € (a;) = Cp(a;) forall 1 <m </{and all P € &. One obtains the follow-
ing.

o

Proposition 2.6 The binary relation “=” is an equivalence relation.

For the rest of this paper, whenever we use the symbol 2 on hypergraphs, we mean

the equivalence relation “22” in the proposition above.
Now we define a mapping 2 : X x X — R>¢ as follows. For 1 <1, j < n, define

l
D(N (ai), N (a))) =}, ) |€F(ai) — Cp(a))l-

PeZm=1
From the above definition, we obtain the following.

Theorem 2.7 The mapping 2 defined above is a metric on X modulo the equivalence
relation =.

The proof of the above theorem will be given in the appendix.

Remark 2.8 In [7, Definition 7, p.1060], Leontjeva et al. constructed a distance function
(or metric) between hypergraphs which uses the sizes of hyperedges in hypergraphs,
in contrast to our construction using the number of hyperedges of each size. Note that
in [7], Leontjeva et al. claimed their metric is the metric in the usual sense which is not
correct. It is in fact a metric modulo an equivalence relation.

3. Analysis for hypergraph data

In this section, we propose several methods for analyzing hypergraph data. Instead of
using real data examples as in most papers studying data structures in literature, we in-
troduce in this paper a new type of data which is inspired from elementary number the-
ory (or more precisely from the theory of congruences in number theory), and is ex-
tremely easy to construct. There are many advantages of using such data which can also
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be viewed as hypergraphs. For simplicity, we call such data congruence hypergraph data.
Firstly, these data are very easy to construct, simply using congruences in the ring of
integers Z. Secondly, congruence hypergraph data are very diverse and random, which
provide a reasonably fine data to immediately test theory without referring to other data
resources which in turn take a huge amount of time to build. The randomness of con-
gruence hypergraph data allows to justify with high probability that any theory used to
successfully test on such data can be also applied to real data examples. Lastly, for con-
gruence hypergraph data, we can easily control the size of data. On letting the data size
go to infinity, one can detect patterns hidden in the data which are often not available and
straightforward if the data size is only limited to be finite.

3.1. Congruence hypergraph data

We now describe congruence hypergraph data which relies on the theory of congruences
in the ring of integers Z.

Let n be a positive integer, and {m,...,m,} be a collection of positive integers.
Take n collections of integers, say {a; 1, ...,a;m } for each 1 <i < n such that

{ai71,...,ai,mi}ﬂ{ajﬁl,...,aj,mj} =0

for any i # j.

Consider n sets of integers, say V; = {a; 1,...,aim } for each 1 <i <n so that #V; =
m;. We want to introduce a hypergraph structure on each V;, and thus the set X =V U
Vo U---UYV, becomes a hypergraph which is a disjoint union of subhypergraphs V;.

Now take an integer 1 <i < n. Let s; be an integer such that 2 < s; < m;. We want to
introduce a hypergraph structure on V; such that the largest size of hyperedges in V; is s;.

Let {p2;,...,ps.i} be a sequence of integers such that the p i are > 2 and not
necessarily distinct. Correspondingly we choose a sequence of finite sets of integers
{82,i,...,8,i} foreach 1 <i<r.

Let k be an integer such that 2 < k <'s;. A k-tuple of integers { @y, ..., 04 } in V; forms
a k-hyperedge if the following conditions are satisfied:

(1) o, —a, =0 (mod py;) forany 1 <s,r <k.
(i) o, (mod py;) belongs in Sy ; forany 1 <s <*k.

So we have obtained a subhypergraph structure for each of the V;, and thus X =
U?_,V;is a hypergraph which splits into disjoint subhypergraphs. Note that X has exactly
mi +my + - - - +m,, vertices.

3.2. Main example

The hypergrah data we use to test our proposed methods in this paper is motivated from
the construction of congruence hypergraph data in Subsection 3.1. We now describe two
hypergraphs that we use throughout this work.
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3.2.1. First example

Let X = {1,...,1000}. We introduce a hypergraph structure on X as follows. A pair
{a,b} in X forms a 2-hyperedge if and only if either a,b =1 (mod 2) or a,b =0
(mod 2). In other words, a,b have the same parity. Now for each 3 < n <9, an n-tuple
{ai,...,a,} forms an n-hyperedge if and only if

0 ifn=0 (mod3)
ai (modn)=<1 ifn=1 (mod3)
2  ifn=2 (mod 3)

forevery 1 <i<n.

Since this data is about integers, we are interested in properties regarding integers
such as divisibility. For this reason, we study, for example, the divisibility by 11 of each
vertex in a hyperedge in X. So it is natural to define a map I : &(X) — {0, 1} by letting,
for each n-hyperedge {ai,...,a,} in &(X),

I'{ai,...,a,})=1
if

a; =0 (mod 11) D
for every 1 <i<n,and

F({al,...,an}) =0

if condition (1) is not satisfied.

The hypergraph X above has very large number of hyperedges. Up to our knowl-
edge, comparing with real data examples in literature, the hypergraph data X above con-
tains the largest number of hyperedges which is very suitable for testing theories. For
example, the number of hyperedges in the neighborhood (or community) of the vertex 1
is approximately 2.3685 x 10'!.

3.2.2. Second example

Let X be a set of integers obtained by randomly selecting 5000 positive integers. The
sizes of hyperedges range from 2 to 9. We randomly select 8 integers, say {o,..., 00},
such that any two of them have no common divisors. The set of vertices X are sorted in
increasing order. For each 2 < n <9, we divide X into n subsets. The first subset, say
X|, contains vertices a in X such that min(X) < a < py, where min(X) is the minimum
value of X and p; is the 1/n-th percentile of X. For each 2 < j < n, the j-th subset, say
X, contains vertices a in X such that p; < a < pj;1, where pj is the j/n-th percentile of
X. An n-tuple {ay,...,a,} forms an n-hyperedge if and only if

aj=1 (mod o) anda; €X;

forevery 1 < j<n.
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Then we randomly select an odd prime number 8 that does not divide any elements
in {0g,...,00}. The congruence classes modulo f3 are divided into two sets, the first
of which consists of {—( —1)/2,—(8 —1)/2+1,...,—1,0}, and the second of which
consists of {1,2,...,(B—1)/2}. Set

St ={-(B-1)/2,—~(B—1)/2+1,...,—1,0},

and

S5 =1{1.2,....(B—1)/2}.

The properties of hyperedges are defined as follows. For each n-hyperedge
{ai,...,a,} in &(X),

I'({ai,...,an}) =—1

if every a; modulo 3 belongs to SB, and

I'({ai,...,an}) =1
otherwise.
3.3. Using patterns from the distance matrices to recognize patterns in hypergraph data

In this subsection, we describe a simple but useful approach to detecting communities in
hypergraphs. Using this approach, one can identify which communities in a hypergraph
are the same with respect to the equivalence relation “=” and the metric Z in Subsection
2.2. On the other hand, one can also find patterns among vertices whose neighborhoods
(i.e., communities) are identified as the same.

Let {X, Z}r be a hypergraph equipped with properties &2. Assume that the set of
vertices in X consists of ay,...,a,. Hence there are exactly n neighborhoods (or com-
munities), say .4 (ay),...,-4# (a,) which as remarked in Remark 2.5 can be viewed as
points in the space X. Using the metric &, we equipped X with a metric space structure
in which each community .4 (g;) is a point of the metric space X. Since there are exactly
n points A (ay), ..., (a,) in the metric space, one obtains the distance matrix of the
finite metric space X, say .#x of dimensions n x n of the form

My = (‘@(‘/V(ai)vﬂ(aj))%gi,jgn7
where the (i, j)-entry in this matrix is the value Z( A (a;),. 4 (a;)).
In order to identify which communities are the same in the hypergraph X, we identify

all zero entries in .#Zx except the diagonal. More precisely, let 1 < i < n, and consider
the i-th column in .#x. Define

Zi={1<j<n|j#iand Z(AN (a;), N (aj)) =0}.
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Then the set Z; consists of all vertices j whose communities .4 (a;) are considered to
be the same as the community .4 (a;). It is often the case that one can find patterns to
describe Z;.

We use the hypergraph data in section 3.2.1. In this case X is a hypergraph whose
vertices are 1,2,...,1000. Thus the distance matrix .#x is of dimensions 1000 x 1000.
For example, considering the 1st column of .#Zx, we see that Z; contains exactly the
following vertices: 29, 43, 71, 85, 113, 155, 169, 211, 239, 253, 281, 295, 323, 365, 379,
421,449, 463, 491, 505, 533, 575, 589, 631, 659, 673,701, 715, 743, 785, 799, 841, 869,
883,911, 925, 953, 995. And thus the communities (or neighborhoods) of these vertices
are viewed as the same as that of the vertex 1.

From the list of vertices in Z;, one can recognize the patterns shared by the vertices
in Z;. Indeed all vertices j in Z; satisfy the following four conditions: (i) j Z0 (mod 3);
(i) j #Z2 (mod 5); (iii) j = £1 (mod 4); and (iv) j=1 (mod 7).

From the distance matrix .#y, one also can identify the set of all distinct communi-
ties in X consisting of the neighborhoods of 1, 2, 3,4, 5, 6, 7, 8, 12, 15, 22, 27,36, 57,
127, and 162 such that every community in X is equal to exactly one of these neighbor-
hoods.

3.4. Homology-based learning using the metric 9

In this subsection, we use the persistent homology of filtrations of simplicial complexes
arising from a finite metric space modulo an equivalence relation 2 X to study the com-
munity detection problem. For simplicity, in this subsection, we simply call X a metric
space instead of a metric space modulo 2. Let ¥ = {ay,...,a, } be a finite set. A simpli-
cal complex X with vertex set ¥ is a set of finite subsets of ¥ satisfying the following
conditions:

(i) every element in ¥ belongs to X;
(i) ifre X and o0 C 7, then 0 € X.

The elements of X are called the simplices of X. If a simplex ¢ has exactly k+ 1
elements, the dimension of ¢ is k, and we call ¢ a k-simplex.

To each simplicial complex X one can associate a unique sequence of homology
groups (Hy(X))k>0 which contains information about topological and geometric proper-
ties of X. (See, for example, [8] or [9] for a notion of homology groups and their proper-
ties.)

Now we describe how to use homology groups to identify distinct communities in
hypergraphs. Let {X, & }r be a hypergraph equipped with properties &2, and suppose
that the set of vertices of X consists of the vertices ay,...,a,. We equip X with the metric
2 in Subsection 2.2.

We introduce a method to attach to the finite metric space X a collection of simplexes
which one in turn can obtain the corresponding persistent homology sequences and their
barcodes (see [10], [11], [12], [13], [14] for persistent homology and barcodes.) We first
recall a notion of Vietoris—Rips complex.

Definition 3.1 Ler € > 0, and let X be a finite metric space with metric 9. The Vietoris—
Rip complex, denoted by V% (X ,€) is defined by the following condition: a k + 1-tuple
{x0,...,x¢} forms a k-simplex in ¥ (X ,€) if and only if 7(x;,xj) < € forall i, j.
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Let & be a sufficiently large positive integer, and let 1 <n; <ny <---<np=nbea
collection of positive integers. For each 1 < k < h, define

Xk = {al,...,ank}.

Note that X C X for all 1 < k < h, and thus each X}, is a metric space with the same
metric Z. We have a filtration of metric spaces

XiCcXC---CX,=X.

For each finite metric space Xj, one obtains a filtration of Vietoris—Rip complexes
¥V %(X;) from which one obtains the barcode containing the topological and geometric
information about X;. The key observation using homology-based learning is that when
k ranges from 1 to h, the barcodes of dimension 0 will stabilize to have exactly m bars,
which signifies that there are exactly m distinct communities in the hypergraph X. Fur-
thermore when considering the barcodes of dimension 1, they will stabilize to have very
similar forms when k approaches to A.

We illustrate the above method by testing this theory on sub-hypergraph datasets
of the congruence hypergraphs defined in the first and second examples in Subsections
3.2.1 and 3.2.2. Note that for computing barcodes, we use the package TDAstats in R
(see [15]). For the first example, let h = 3, and for each 0 < k < A, set

Xe = {1,...,(2k+1)100},

and X3 = {1,...,700}. One obtains exactly 4 barcodes, each of which corresponds to
exactly one Xj.

In the barcode of X (see Fig. 1a), we observe that the barcodes of dimension O (the
blue barcodes) have exactly 13 bars; so there are 13 distinct communities in Xy. For the
barcodes of X;, X5, X3 (see Fig. 1b, 1c, 1d), we note that all barcodes of dimension O
have exactly 15 bars (which is stabilized), and thus since X3 is the last finite metric space
in the filtration

Xo CX) CXy CXs,

we deduce that there are exactly 15 distinct communities. This result agrees with the one
in Subsection 3.3.

On the other hand, note that in the barcode of dimension O of Xj, there are 13 bars,
and in the barcode of dimension 0 of Xj, there are 15 bars. Since Xy = {1,...,100}, and
X; ={1,...,300}, we conclude that out of 15 distinct communities in X3, 13 of them are
communities of vertices in Xy, and 2 of them belong to the communities in X;.

Note that one can also study barcodes of dimension 1 of the metric spaces Xj, and
observe that the barcodes of dimension 1 of X, X> and X3 have exactly 5 important bars,
and the remaining bars are noises. All these 5 bars have similar patterns although the
number of vertices in X; changes when k varies from 0 to 3. Using persistent homology,
one can also realize geometric properties of each Xj, for example, how connected these
spaces are.

For the second example, we choose the 8 integers op,...,09 to be 3,4, 5,7, 11,
13, 17, 19, respectively, and the prime number 3 = 23. We randomly select 700 integers
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from {1,...,1000} and sorted in increasing order, denoted as Y3. Let h = 3, for each
0 <k < h, set ¥, to be the first (2k + 1)100 integers in ¥3. Thus we have a filtration of
metric spaces

YoCYiCY,CYs.

Fig. 2 presents the 4 barcodes, each of which corresponds to one Y;. Note that the
barcodes of Yy to Y3 have similar patterns in both of dimension 0 and dimension 1. As
the number of vertices increases, the barcodes become stabilized.

An important remark is that when comparing the barcodes of the X and Y, for exam-
ple, in dimension 0, the barcodes of the Y is very connected, which indicates that com-
munities in Y are closely related to each other. This can be seen by observing that each
integer can fall into congruence classes of different moduli 3, 4, 5, 7, 11, 13, 17, 19. In
contrast, in order to define hyperedges of X in the first example, the conditions depend
on certain congruence classes modulo 3, and thus the communities of X are decomposed
into distinct connected components which are related to congruence classes modulo 3 in
some way.

3.5. Hypergraph-based learning using the metric 9 and nearest neighborhoods

In hypergraph-based learning, for a given hypergraph, the aim is to find the correct labels
for the unlabeled vertices of the test set in the hypergraph under the assumption that one
knows the correct labels for the training set. In this subsection, we introduce a modifi-
cation of the nearest neighbors methods to learn the objective function for a hypergraph.
(for the classical nearest neighbors methods, see, for example, in [16].)

Let {X, &} be a hypergraph equipped with properties &2. We equipped X with the
metric Z in Subsection 2.2 so that X becomes a finite metric space under the metric Z.
Suppose that the set of vertices in X consists of ay,...,a,. Let f: ¥ (X) — {—1,1} be
the objective function of labels to be learned such that it sends each vertex to exactly
one of the values —1 or 1. The values of f are also called signs of vertices. Let T =
{(04,B:) | 1 <i < m} for some positive integer 1 < m < n. Here the @; are vertices in X,
and B; € {—1,1} are the correct label of o, i.e., B; = f(oy) for each 1 <i < m. Our aim
is to find all values of ¥ (X)\ {ai,..., &, } under the objective function f, based on the
training set 7. The set ¥/ (X)\ {ou,..., 04} is called the test ser. For this purpose, we
use the modified nearest neighbors to find a predictive model fnn for f. Fix a positive
integer k > 1. For each vertex a in X, we define the following two sets attached to %,
denoted as kNN (a) and kNN (a) as follows.

(i) kNN (a) is the set of k-th nearest neighbors of a in the training set T according
to the metric &. Note that if there are more than one vertex, say x,y in T such that
PD(a,x) = P(a,y) and x,y are k-th nearest neighbors, then one picks up randomly
exactly one such vertex to include in kNN (a).

(ii) kNNyy(a) is the set of k-th nearest neighbors of a in the training set T according
to the metric 2. Note that in this set, one includes all vertices x in T such that x is
a k-th nearest neighbor of a.

Using the above two sets kNN (+) and kNNyy (), we propose two predictive models

for f, denoted as finn, and finn,, > respectively. We define
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Figure 1. Barcodes of the first example.

(i) finn, (@) = sign (Leernn, (@) f(a)) for each a in the test set.
(i) finng (@) = sign (Laeinny (@) S (@) for each a in the test set.

Here the sign function is defined by

sign(a) = {11

We illustrate our method by testing on the hypergraph datasets defined in Subsec-
tions 3.2.1 and 3.2.2. Here we define the objective function f: ¥ (X) — {—1,1} as fol-
lows: f(a)=1ifa=0,1 (mod 3), and f(a) = —1ifa=—1 (mod 3).

Table 1 contains the results of KNN using the congruence hypergraph defined in the
first example, and we set X000 = {1,...,2000}. The value of k for kNN are set to be 1
to 5. In each time, we randomly select 70% vertices from X to be the training set, and
we repeat the computation 10 times for each k. Each element in the table presents an

ifa>0
ifa<0
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Figure 2. Barcodes of the second example.

error rate which is computed by the percentage of incorrect predictions. According to
the average error rates in Table 1, we obtain the smallest average error rate 0.2841 at
k = 3 when using kNN, method and 0.2641 at k = 2 when using kNN; method. Figure
3 presents the curve comparison for the predicted and true signs for the method kNN,y.
In this figure, the error rates of finn,, are from the ninth row in Table 1. According to
the figure, most of vertices with label 1 are predicted correctly. One of the reasons that
cause this result is that the number of vertices with positive sign are much larger then
the number of vertices with negative sign according to the way we define the objective
function.

Table 2 contains the results of KNN using the congruence hypergraph defined in the
second example. We randomly select 5000 vertices from {1,...,8000}, the values of
{0,...,00} and B are the same as described in section 3.4. Using the kNN method,
the smallest average error rate is 0.3463 at k = 5. Using the kNN method, the smallest
average error rate is 0.3419 at k = 2. According to the results in Table 1 and 2, the kNN,

method performs slightly better then kNN .
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Table 1. Error rates of KNN using the first example

Error rate of finn,, Error rate of finn,
Error rate K=1 K=2 K=3 K=4 K=5 K=1 K=2 K=3 K=4 K=5
1 0.3263 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.4762 | 0.2700 | 0.4012 | 0.2800 | 0.3775
2 0.3187 | 0.4613 | 0.1887 | 0.3925 | 0.4463 | 0.4712 | 0.2837 | 0.4712 | 0.2700 | 0.4225
3 0.2800 | 0.3163 | 0.2987 | 0.3888 | 0.3050 | 0.5100 | 0.2913 | 0.4975 | 0.3337 | 0.4525
4 0.3762 | 0.3225 | 0.3313 | 0.1850 | 0.1775 | 0.4087 | 0.2213 | 0.2813 | 0.1900 | 0.3075
5 0.3013 | 0.2925 | 0.2925 | 0.2925 | 0.3850 | 0.4225 | 0.2650 | 0.3812 | 0.2450 | 0.3800
6 0.4400 | 0.2538 | 0.3938 | 0.3775 | 0.4150 | 0.4437 | 0.2163 | 0.3888 | 0.2875 | 0.3938
7 0.1562 | 0.2675 | 0.2675 | 0.4225 | 0.3063 | 0.4587 | 0.2562 | 0.3975 | 0.2850 | 0.3800
8 0.3137 | 0.2762 | 0.2712 | 0.2712 | 0.2850 | 0.4625 | 0.2450 | 0.4050 | 0.2750 | 0.3938
9 0.4250 | 0.2638 | 0.1125 | 0.2438 | 0.2825 | 0.4675 | 0.2312 | 0.4663 | 0.2937 | 0.4287
10 0.4350 | 0.3900 | 0.3650 | 0.3275 | 0.3550 | 0.5075 | 0.2688 | 0.4525 | 0.3363 | 0.4300
Average 0.3372 | 0.3164 | 0.2841 | 0.3221 | 0.3278 | 0.4626 | 0.2641 | 0.4098 | 0.2866 | 0.3946

Table 2. Error rates of KNN using the second example

Error rate of finn,, Error rate of finn,
Error rate K=1 K=2 K=3 K=4 K=5 K=1 K=2 K=3 K=4 K=5
1 0.3527 | 0.3447 | 0.3447 | 0.3440 | 0.3433 | 0.3713 | 0.3347 | 0.3687 | 0.3260 | 0.3500
2 0.3567 | 0.3413 | 0.3487 | 0.3347 | 0.3360 | 0.3493 | 0.3367 | 0.3660 | 0.3453 | 0.3527
3 0.3793 | 0.3693 | 0.3633 | 0.3433 | 0.3480 | 0.3913 | 0.3473 | 0.3933 | 0.3413 | 0.3540
4 0.3733 | 0.3580 | 0.3540 | 0.3500 | 0.3460 | 0.3707 | 0.3487 | 0.3813 | 0.3433 | 0.3580
5 0.4000 | 0.3660 | 0.3607 | 0.3627 | 0.3593 | 0.3960 | 0.3540 | 0.3807 | 0.3573 | 0.3780
6 0.3853 | 0.3580 | 0.3653 | 0.3453 | 0.3460 | 0.3873 | 0.3380 | 0.3893 | 0.3447 | 0.3680
7 0.3520 | 0.3347 | 0.3373 | 0.3493 | 0.3453 | 0.3680 | 0.3333 | 0.3720 | 0.3420 | 0.3520
8 0.3773 | 0.3587 | 0.3687 | 0.3547 | 0.3540 | 0.3627 | 0.3513 | 0.3847 | 0.3500 | 0.3567
9 0.3707 | 0.3500 | 0.3653 | 0.3453 | 0.3467 | 0.3807 | 0.3527 | 0.3800 | 0.3493 | 0.3640
10 0.3633 | 0.3427 | 0.3473 | 0.3360 | 0.3380 | 0.3707 | 0.3227 | 0.3613 | 0.3333 | 0.3540
Average 0.3715 | 0.3523 | 0.3555 | 0.3465 | 0.3463 | 0.3748 | 0.3419 | 0.3777 | 0.3460 | 0.3587

4. Conclusions

Our main contributions in this paper can be summarized as follows:

(i) Introducing a natural metric space structure modulo certain equivalence relations
on a general hypergraph data which bears a resemblance to a usual metric space
structure;

(i1) Using the metric space modulo certain equivalence relation structure intro-
duced, we emphasize that this topological space structure on hypegraphs is very
natural and suitable for studying several problems in machine learning;

(iii) Proposing a distance matrix approach using the metric space structure intro-
duced in this paper to study community detection problem in hypegraphs;
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Figure 3. Predicted and true signs of test data for KNNy.

(iv) Proposing a modified homology-based learning to study topological structures
of hypergraphs which in turn can be used to detect persistent homological features;
this method can also be used to study community detection problem;

(v) Proposing modified nearest neighbors methods for studying sign prediction
problem on general hypergraph data; such methods have advantages that they can
be applied even to hypergraphs which do not contain an embedding into a Eu-
clidean space, or do not carry a Euclidean space structure.

(vi) One of our main contributions is to propose a new way to construct hypergraph
data which are very easy to implement and test theories from machine learning
which we coin the term “congruence hypergraph data”.

(vii) Experimental analysis are performed on congruence hypergraph data which
are simulated by our methods.

5. Acknowledgements

Lizhen Lin would like to acknowledge the support of NSF grant DMS CAREER
1654579.

6. Appendix

In this Appendix, we give a proof of Theorem 2.7
For the sake of simplicity, let o; = .4 (a;) for each 1 <i <n.
Suppose that Z(a;, OCj) =0 for some 1 < i, j < n. By definition, we know that
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4
(0, 05) =), Y, 1€ (a;) — €¢(a))| =0,

PeZ m=1
which implies that
€ (ar) — €aj) =0
forall m > 1 and P € &. Thus €} (a;) = Cp(a;) for all m > 1 and P € &2, and hence
o =N (a;) = oy = AN (aj).
It is obvious that (o, o) = Z(, o) for all 1 < i, j < n, which proves that Z is

symmetric.
We now show that & satisfies the triangle inequality. Indeed, we see that

¢
Do, 05) =Y, Y 1€ (ai) —€h(a))]

PeZ m=1

4
= ) ) (P (ar) — € (ar)) + (€5 (ar) — €G(a))]

PeZ m=1
4 4
<Y Y I (@) —eRa)|+ ), Y €k (ax) — CF(a))]
Pe P m=1 Pe m=1

= (0, 00) + 204, o))

forany 1 <i, j,k <n. Thus & satisfies the triangle inequality, and therefore Z is a metric
on X modulo the equivalent relation 2.

References

[1] Tian Z, Hwang T, Kuang R. A hypergraph-based learning algorithm for classifying gene expression and
arrayCGH data with prior knowledge. Bioinformatics. 2009 Nov 1;25(21):2831-8.

[2] Levene M, Poulovassilis A. An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering. 1991 May 1;6(3):205-24.

[3] Goertzel B. Patterns, hypergraphs and embodied general intelligence. In: The 2006 IEEE international
joint conference on neural network proceedings; 2006 Jul 16; pp. 451-458.

[4] Klamt S, Haus UU, Theis F. Hypergraphs and cellular networks. PLoS Comput Biol. 2009 May
29;5(5):¢1000385.

[5] Kok S, Domingos P. Learning Markov logic network structure via hypergraph lifting. In: Proceedings of
the 26th annual international conference on machine learning; 2009 Jun 14; p. 505-512.

[6] Burago D, Burago Y, Ivanov S. A course in metric geometry. American Mathematical Soc.; 2001.

[7] Leontjeva A, Konstantin T, Vilo J, Tamkivi T. Fraud Detection: Methods of Analysis for Hypergraph
Data. In: The 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining; August 2012; pp. 1060-1064.

[8] Edelsbrunner H, Harer J. Computational topology: an introduction. American Mathematical Soc.; 2010.

[9] Zhu X. Persistent homology: An introduction and a new text representation for natural language pro-
cessing. In: IICAI; 2013 Aug 3; p. 1953-1959.

[10] Boissonnat JD, Chazal F, Yvinec M. Geometric and topological inference. Cambridge University Press;
2018 Sep 27.
[11] Carlsson G. Topology and data. Bulletin of the American Mathematical Society. 2009;46(2):255-308.



D.Q.N. Nguyen et al. / Community Detection, Pattern Recognition, and Hypergraph-Based Learning 473

[12] Carlsson G, Zomorodian A, Collins A, Guibas LJ. Persistence barcodes for shapes. International Journal
of Shape Modeling. 2005 Dec;11(02):149-87.

[13] Collins A, Zomorodian A, Carlsson G, Guibas LJ. A barcode shape descriptor for curve point cloud
data. Computers & Graphics. 2004 Dec 1;28(6):881-94.

[14] Zomorodian A, Carlsson G. Computing persistent homology. Discrete & Computational Geometry. 2005
Feb 1;33(2):249-74.

[15] Wadhwa RR, Williamson DF, Dhawan A, Scott JG. TDAstats: R pipeline for computing persistent ho-
mology in topological data analysis. Journal of open source software. 2018 Aug 8;3(28):860.

[16] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York: Springer series in
statistics; 2001.



