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Abstract. Support vector regression is an important algorithm in machine learning,
and it is widely used in real life for its good performance, such as house price fore-
cast, disease prediction, weather forecast, and so on. However, it cannot efficiently
process large-scale data, because it has a high time complexity in the training pro-
cess. Data partition as an important solution to solve the large-scale learning prob-
lem mainly focuses on the classification task, it trains the classifiers over the divid-
ed subsets produced by data partition and obtain the final classifier by combining
those classifiers. Meanwhile, the most existing method rarely study the influence of
data partition on the regressor performance, so that it is difficult to keep its genera-
tion ability. To solve this problem, we obtain the estimation of the difference in ob-
jective function before and after the data partition. Mini-Batch K-Means clustering
is adopted to largely reduce this difference, and an improved algorithm is proposed.
This proposed algorithm includes training stage and prediction stage. In training
stag, it uses Mini-Batch K-Means clustering to divide the input space into some dis-
joint sub-regions of equal sample size, then it trains the regressor on each divided
sub-region using support vector regression algorithm. In the prediction stage, the
regressor merely offers the predicted label for the unlabeled instances that are in
the same sub-region. Experiment results on real datasets illustrate that the proposed
algorithm obtains the similar generation ability as the original algorithm, but it has
less execution time than other acceleration algorithms.

Keywords. Machine learning, Large-scale data, Data partition, Support vector
regression, Generation ability

1. Introduction

As the volume of data becomes increasingly large, it takes a revolutionary change for
training support vector regression (SVR) model for its time complexity and space com-
plexity. Lots of improved algorithms are proposed to accelerate the training process and
minimize losses on the generalization performance. The proposed algorithms are classi-
fied into reduction algorithms and decomposition algorithms [1]. The main style of re-
duction algorithms is that the training samples nearby the hyperplane have a large con-
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tribution to SVR model than others [2–6]. In this way, these proposed algorithms seeks
the critical samples to form a new subset instead of the training set, where the size of the
selected subset tends to be smaller than the original training set. Therefore, the regressor
trained over the selected subset has a high training efficiency. In fact, the reduction algo-
rithms want to find the support vectors to keep the prediction performance. However, the
support vectors are determined by the regressor, and it is difficult to obtain before train-
ing the model. Meanwhile, the reduction algorithms usually requires to read the entire
training data several times, so that they needs lots of time to get the final result [7–10].
Decomposition algorithms train the SVR model with all the training instances rather than
some of them. The existing decomposition algorithms focus on how to obtain the ap-
proximate performance as the original SVR using optimization strategy, while they still
deal with all the data once or more [11–13]. Therefore, these algorithms could not handle
the big data well.

2. Related Concept

Let T = {(x1,y1),(x2,y2), · · · ,(xN ,yN)} mark the training set, where each instance xi is
expressed with m attributes, yi ∈ R is its output, and N is the number of labeled instances.
The main task in training a SVR model over T is to solve the following quadratic opti-
mization problem:

min
θ ,ρ∈RN

ψ(θ ,ρ) s.t. 0≤ θ ,ρ ≤C,eT (θ −ρ) = 0 (1)

where the objective function ψ(θ ,ρ) = { 1
2 (θ − ρ)T

K(θ − ρ)+ εeT (θ + ρ)−Y T (θ −
ρ)}, θ = (θ1,θ2, · · · ,θN)

T ∈ RN and ρ = (ρ1,ρ2, · · · ,ρN)
T ∈ RN are the vectors of dual

variables; K is an N×N matrix with Ki j = K(xi,x j), and K(xi,x j) is the kernel function;
C is the balancing parameter between loss and regularization in the SVR primal problem;
eN is the vector of all ones, andε is the relaxation factor; Y = (y1,y2, · · · ,yN) is the output
vector of the training set. Let θ ∗ = (θ ∗1 ,θ ∗2 , · · · ,θ ∗N) and ρ∗ = (ρ∗1 ,ρ∗2 , · · · ,ρ∗N) denote the
optimal solution of the problem (1), the predicted value for a test data x can be computed

by the decision function g(x) =
N
∑

i=1
(θ ∗i − ρ∗i )K(x,xi) + b, where the bias term b = 0,

because any improvement in test accuracy is not observed by it in this paper.
The main idea behind accelerating the process of training SVR based on data par-

tition is to divide the training set into smaller disjoint subsets, and then each model can
be trained independently and efficiently over each subset. Suppose the training dataset T

can be decomposed into n sets Tl(l = 1,2, · · · ,n),
n⋃

l=1
= T and Tl

⋂
l �=k

Tk = /0, where n is

prefixed by the user. Then each subproblem over each divided subset Tl is that

min
θ(l),ρ(l)

ψl(θ(l),ρ(l)) s.t. 0≤ θ(l),ρ(l) ≤C,eT
(l)(θ(l)−ρ(l)) = 0 (2)
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where ψl(θ(l),ρ(l)) = { 1
2 (θ(l) − ρ(l))

T
Kl×l(θ(l) − ρ(l)) + εeT (θ(l) + ρ(l))−Y T

(l)(θ(l) −
ρ(l))}, θ(l),ρ(l) denote the subvector {θi|(xi,yi) ∈ Tl} and the subvector {ρi|(xi,yi) ∈ Tl}
respectively, Kl×l is the submatrix of K with row and column indexes Tl , and Y(l) is the
output vector of the instances over the subset Tl , 0 ≤ θ(l),ρ(l) ≤ C,eT (θ(l)− ρ(l)) = 0.
I In this way, the optimal problem (1) is approximately divided into n subproblem-
s. Then the optimal solutions of all the subproblems are combined to initialize a co-
ordinate descent solver for the original problem. Let θ̂(l), ρ̂(l) are the optimal solution
of the subproblem min

θ(l),ρ(l)∈RN
fl(θ(l),ρ(l)). Then we could concatenate all the subprob-

lem solutions to form an approximate solution θ̂ and ρ̂ for the whole problem, where
θ̂ = [θ̂(1), θ̂(2), θ̂(3), · · · , θ̂(n)] and ρ̂ = [ρ̂(1), ρ̂(2), ρ̂(3), · · · , ρ̂(n)].

3. MK-SVR algorithm

In this section, we discuss the relationship between the raw problem (1) and the divided
subproblems (2). A kernel function K̂(xi,x j) = Iι(xi),v(x j)K(xi,x j) is defined, K̂(xi,x j) =

Iι(xi),v(x j)K(xi,x j), where ι(xi) is the the divided subset that the instance xi belongs to;
Iι(xi),ι(x j) = 1 iff ι(xi) = ι(x j), otherwise Iι(xi),v(x j) = 0.

Lemma 1. The vector pair [θ̂ , ρ̂] could be the solution of the optimization problem
(1) with kernel function K(., .) replaced by K̂(., .), where the objective function of this
optimization problem is ψ̂(θ ,ρ) = { 1

2 (θ −ρ)T
K̂(θ −ρ)+εeT (θ +ρ)−Y T (θ −ρ)}, K̂

is a n×n kernel matrix with each element K̂i j = K̂(xi,x j).

Proof. According to its definition of K̂(x., .), K̂(xi,x j) = 0 if ι(xi) �= ι(x j), and
K̂(xi,x j) = K(xi,x j) if ι(xi) = ι(x j). Then the function f̂ (θ ,ρ) can be decomposed into
the sum of several functions.

ψ̂(θ ,ρ) = 1
2 (θ −ρ)T

K̂(θ −ρ)+ εeT (θ +ρ)−Y T (θ −ρ)
= 1

2 ∑
ι(xi)=ι(x j)

(θi−ρi)K̂(xi,x j)(θ j−ρ j)+
1
2 ∑

ι(xi)�=ι(x j)
(θi−ρi)K̂(xi,x j)(θ j−ρ j)

+
N
∑

i=1
{ε(θi +ρi)− yi(θi−ρi)}

= 1
2 ∑

ι(xi)=ι(x j)
(θi−ρi)K̂(xi,x j)(θ j−ρ j)+

N
∑

i=1
{ε(θi +ρi)− yi(θi−ρi)}

=
n
∑

l=1
{ 1

2 (θ(l)−ρ(l))
T
Kl×l(θ(l)−ρ(l))+ εeT (θ(l) +ρ(l))−Y T

(l)(θ(l)−ρ(l))}

=
n
∑

l=1
f̂l(θl ,ρl).

(3)
From Eq. (3), the problem min

θ ,ρ∈RN
f̂ (θ ,ρ) is divided into n subproblems (2) and

these subproblems are independent. As the subvector pair [θ̂(l), ρ̂(l)] could be the solution
of the optimal subproblem (l = 1,2, · · · ,n), the vector pair [θ̂ , ρ̂] must be the solution

of the original problem min
θ ,ρ

f̂ (θ ,ρ). Furthermore, eT (θ̂ − ρ̂) =
n
∑

l=1
eT
(l)(θ̂(l)− ρ̂(l)) = 0,
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each element h of the vector θ̂(l) satisfies the condition 0 ≤ h ≤C, and each element of
the vector ρ̂(l) also satisfies this condition. Therefore, the vector pair [θ̂ , ρ̂] satisfies the
restrictions of the problem (1).

From the Lemma 1, we can find that the accelerating SVR algorithm using the
divide-and-conquer strategy is equivalent to solve the problem min

θ ,ρ∈RN
f̂ (θ ,ρ). Now we

discuss the difference between f (θ̂ , ρ̂) and f (θ ∗,ρ∗), so as to study the effect of data
partition to the generation ability of this algorithm.

Theorem 1.

0≤ ψ(θ̂ , ρ̂)−ψ(θ ∗,β ∗)≤ (1/2)C2D(v)

where D(τ) = ∑
i, j:ι(xi)�=ι(x j)

|K(xi,x j)|.

Proof. Based on the mathematical notation, we can get

ψ̂(θ ∗,β ∗) = 1
2 (θ

∗ −β ∗)T
K̂(θ ∗ −β ∗)+ εeT (θ ∗+β ∗)−Y T (θ ∗ −β ∗)

= 1
2 ∑

i, j:ι(xi)=ι(x j)
(α∗i −β ∗i )K(xi,x j)(α∗j −β ∗j )+ εeT (α∗+β ∗)−Y T (α∗ −β ∗)

= ψ(α∗,β ∗)− 1
2 ∑

i, j:ι(xi)�=ι(x j)
(α∗i −β ∗i )K(xi,x j)(α∗j −β ∗j )

(4)

ψ̂(θ̂ , ρ̂) = ψ(θ̂ , ρ̂)− 1
2 ∑

i, j:ι(xi)�=ι(x j)

(θ̂i− ρ̂i)K(xi,x j)(θ̂ j− ρ̂ j) (5)

Furthermore, ψ̂(θ̂ , ρ̂)≤ ψ̂(θ ∗,ρ∗), because the vector pair [θ̂ , ρ̂ ] is the optimal so-
lution of the problem (2). Combining with Eqs.(4) and (5), and 0≤ θ ∗i ,ρ∗i , θ̂i, ρ̂i ≤C for
all i, then

ψ(θ̂ , ρ̂) = ψ̂(θ̂ , ρ̂)+ 1
2 ∑

i, j:ι(xi)�=ι(x j)
(θ̂i− ρ̂i)K(xi,x j)(θ̂ j− ρ̂ j)

≤ ψ̂(θ ∗,ρ∗)+ 1
2 ∑

i, j:ι(xi)�=ι(x j)
(θ̂i− ρ̂i)K(xi,x j)(θ̂ j− ρ̂ j)

= ψ(θ ∗,ρ∗)+ 1
2 ∑

i, j:ι(xi)�=ι(x j)
[(θ̂i− ρ̂i)− (θ ∗i −ρ∗i )]K(xi,x j)[(θ̂ j− ρ̂ j)− (θ ∗j −ρ∗j )]

≤ ψ(θ ∗,ρ∗)+ 1
2C2D(ι).

(6)

In order to minimize the difference between ψ(θ̂ , ρ̂) and ψ(θ ∗,ρ∗), we need a data
partition algorithm with small D(v). This kernel function is one kind of similarity mea-
sure according to its definition. When the kernel function is the radical basis function
, the value of K(xi,x j) is proportional to the Euclidean distance of the instances xi and
x j. In this way, D(ι) = ∑

i, j:ι(xi)�=ι(x j)
K(xi,x j), and it is the sum of the similarity between
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instances in different divided subsets. Min-Batch K-Means clustering algorithm that is
one is one kind of improved algorithm can obtain small D(v) using Euclidean distance.
It produces the subset subsets of approximately equal size for large-scale data, because
it inherits the uniformity effect of K-Means clustering algorithm.

As the dataset T can be decomposed into n disjoint divided sets Ti(
n⋃

l=1
= T,Ti

⋂
i�= j

Tj =

/0) using Min-Batch K-Means clustering algorithm, and the input space χ is also divided
into n disjoint region χl , where l = 1,2, · · · ,n. The SVR regressor ĝl(x) trained over the
divided subset Tl only uses the information of the divided region χl , so it could effectively
predict the instances within the the divided region χl rather than the instances not in other
regions. In this way, the final regressor ĝ(x) is that

ĝ(x) =
l

∑
i=1

Ix,χl ĝl(x) (7)

where Ix,χl = 1 if and only if x ∈ χl and Ix,χl = 0 otherwise, and the region which the
instance x belongs to can be computed by finding the nearest cluster center. Therefore, the
predicting process firstly searches the nearest cluster which the given unlabeled instance
x0 belongs to, and uses the regressor obtained by data within that cluster to compute its
predicted value.

3.1. Time complexion analysis

The time complexion is very important for the algorithms for large-scale data. The pro-
posed algorithm includes the data partition and training the regressors on the divided
subsets. The first process has a time complexion of O(N), and the time complexion of
the second process is O(s3), where n and s are the training instances number and the size
of the maximum divided subsets. Then the time complexion of our proposed algorithm is
O(N + s3). So the size of divided subsets is inversely proportional to the time complex-
ion. On the other hand, the difference D(τ) could be small as the large size of divided
subsets, the proposed algorithm with the largely divided subsets has a better generation
ability than one with the small divided subsets.

4. Experiment

4.1. Data Information and Related Setup

Nine representative real datasets are chosen for their characteristic from the LIBSVM
datasets [14] and UCI datasets [15]. The information of the selected datasets is shown in
Table 1, where the size of each dataset is larger than 10000.
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Table 1 Information of nine datasets
Datasets Size Features
ailerons 13750 40
cada 20640 8
california 20640 8
house 22784 16
mv 40768 10
pole 14998 26
Aggregates 200000 4
sgemm 241600 10
YearMSD 515345 90

Two typical algorithms for accelerating SVR algorithm are chosen in this paper:
LIBSVM and SVR based on random data partition (RP-SVR). Mean square error (MSE),
coefficient of determination (R2), and execution time (ET ) in seconds are chosen for
evaluating their performance, and the first two indicators evaluate the prediction ability
[16]. All the measurement results is computed using 10-fold cross-validation method,
and n = N0.3 [17].

4.2. Prediction Ability

Table 2 shows the prediction ability evaluated by MSE and R2 of three algorithms.

Table 2 Prediction performance on nine datasets

Datasets MK-SVR RP-SVR LIBSVM
MSE R2 MSE R2 MSE R2

ailerons 0.735 0.003 0.685 0.004 0.821 0.002
cadata 0.664 0.02 0.609 0.023 0.663 0.02
california 0.367 8.81E+09 -0.066 1.48E+10 -0.064 1.48E+10
house 0.07 2.83E+09 -0.105 3.36E+09 -0.105 3.36E+09
mv 0.977 2.362 0.774 23.417 0.989 1.112
pole 0.415 1.05E+03 -0.478 2.66E+03 -0.343 2.41E+03
Aggregates 0.767 1.68E+04 0.437 40514.548 0.778 1.60E+04
sgemm 0.182 1.10E+05 0.022 1.31E+05 0.364 8.55E+04
YearMSD 0.214 114.417 0.1826 105.56 0.22 117.625
Mean 0.488 1.29E+09 0.229 2.02E+09 0.369 2.02E+09
Median 0.415 1.05E+03 0.1826 2.66E+03 0.364 2.41E+03

On the whole, the average values of MSE for three algorithms are 1.29E+09,
2.02E+09 and 2.02E+09, as well as the medians of MSE are 1.05E+03, 2.66E+03 and
2.41E+03 from Table 2. So it indicts that the MK-SVR algorithm obtains a similar pre-
diction accuracy as LIBSVM algorithm, but better than the RP-SVR algorithm. This sig-
nificant result is shown on datasets california, house and pole. For another prediction
performance measurement R2, the average values of R2 for three algorithms are 0.488,
0.229, 0.369, as well as the medians of R2 are 0.415, 0.183, and 0.364. In conclusion,
MK-SVR algorithm has a better prediction performance than the RP-SVR algorithm,
similar to LIBSVM algorithm.
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4.3. The execution time

Table 3 lists the execution time (in seconds) of these three algorithms. ET of MK-SVR
is much smaller than that of the other two algorithms on most of the datasets .

Table 3 ET of three algorithms on nine datasets

Dataset MK-SVR RP-SVR LIBSVM

ailerons 0.086 0.123 0.416
cadata 0.39 0.563 4.827
california 0.888 1.306 13.232
house 1.446 2.149 20
mv 1.495 4.852 40.556
pole 1.053 1.663 38.122
Aggregates 30.869 84.437 2365.737
sgemm 57.184 146.269 4396.376
YearMSD 138.547 156.325 48714.719

Mean 231.958 397.687 55594.167
Median 1.446 2.149 38.122

The average values of ET for three algorithms are 231.958, 397.687 and 55594.167,
as well as the medians of ET are 1.446, 2.149, 38.122. Then MK-SVR has less training
time both than RP-SVR algorithm and LIBSVM algorithm. Meanwhile, the training time
of MK-SVR algorithm is also less than other algorithms on each dataset from Table

3. Compared with other algorithms, MK-SVR algorithm is very efficient in processing
large-scale data. The reason for this issue is that they have different training process and
data partition strategy.

5. Conclusion

This paper analyzes the influence of data partition on the performance of SVR model,
and finds that Mini-Batch K-Means clustering could largely reduce this effect. Therefore,
we have given an improved SVR algorithm using the Mini-Batch K-Means clustering.
In the training process, the input space spanned by the training instances is divided into
several disjoint regions, and each SVR model is trained using the instances within each
divided region independently. In the prediction process, the SVR model over the divided
region gives the predicted outputs of the unlabeled instances within that region. Analysis
and experiment results show that our algorithm can obtain a good performance as the o-
riginal SVR algorithm, but better than another representative algorithm. In the future, we
will consider how to adaptively determinate the number of divided subsets for different
datasets.
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