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Abstract. We present an automated pipeline for the generation of synthetic datasets 

for six-dimension (6D) object pose estimation. Therefore, a completely automated 

generation process based on predefined settings is developed, which enables the user 

to create large datasets with a minimum of interaction and which is feasible for 

applications with a high object variance. The pipeline is based on the Unreal 4 (UE4) 

game engine and provides a high variation for domain randomization, such as object 

appearance, ambient lighting, camera-object transformation and distractor density. 

In addition to the object pose and bounding box, the metadata includes all 

randomization parameters, which enables further studies on randomization 

parameter tuning. The developed workflow is adaptable to other 3D objects and UE4 

environments. An exemplary dataset is provided including five objects of the Yale-

CMU-Berkeley (YCB) object set. The datasets consist of 6 million subsegments 

using 97 rendering locations in 12 different UE4 environments. Each dataset 

subsegment includes one RGB image, one depth image and one class segmentation 

image at pixel-level.  
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1. Introduction 

Computer vision based on deep neural networks (DNNs) enables robots to perceive their 
environment in a human like manner. Intelligent robots depend on robust perception 

strategies to perform their key tasks: autonomous navigation [1,2] and adaptive 

manipulation [3,4]. State-of-the-art approaches for 6D pose (object position and 

orientation) estimation [5–9] as well as object tracking [10–12] and novel grasping 
techniques [13–16], enable adaptive task execution and closed loop control of high 

precision manipulation tasks.  

One major factor closely related to the model performance is the quality and quantity 

of the training dataset [17]. Traditionally, the generation of a dataset for object detection 
is time-consuming and costly. It is a two-step task, which is divided into: data acquisition 

and data annotation, including manually executed operations [18]. The difficulty is 
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increased in case of 6D pose estimation datasets, caused by the need of object pose 
information in each dataset subsegment. 

In contrast to data sets obtained from the real world, the generation of synthetic data 

can be fully automated, making it suitable for computer vision tasks with high object 

variations. The major challenge using synthetic data is closing the gap between the 
simulated data and its real-world counterpart, i.e. the reality gap. For this reason, 

different techniques were developed, divided into two basic categories: domain 

adaptation and reality match. Domain adaptation describes the problem to generalize a 

trained model from its source space to an unknown target space [19]. Reality match 
approaches simulate the feature rich real-world data as realistic as possible. It was proved 

that a model, fully trained on synthetic data, can provide state-of-the-art performance for 

6D pose estimation [7]. This supports the hypothesis that synthetic data is an effective 

alternative when the acquisition and annotation of real-world data is not feasible. 
In this paper, we present a fully automated pipeline for the generation of a 6D object 

pose dataset. The result is a significant reduction in preparation time and a minimization 

of necessary human interaction. The pipeline can be easily adapted to different objects 

and environments. It provides multiple improvements to comparable approaches, such 
as various parameter settings and detailed metadata for each dataset subsegment. An 

exemplary dataset is generated including six million subsegments. Each subsegment 

consists of an RGB, depth and class segmentation image at pixel level. Two metadata 

files provide the 6D object pose and a corresponding 3D bounding box as well as the 
parameter settings for randomization. Based on the detailed metadata, the data set can be 

divided into smaller sub-datasets, allowing the study of different parameter combinations. 

2. Related Work 

Methods to generate synthetic data for training neural networks can be split into two 
general categories: superimposing and rendering.  

The main idea of superimposing is to project object images onto background images. 

In [20] a method is presented to generate synthesized data from existing real-world 

datasets. Object images are extracted by cropping the images according to the provided 
metadata. The object images are projected onto another set of background images, using 

support surfaces estimated by semantic segmentation and plane fitting. The dataset in 

[21] is generated using rendering models and real-world images. This method was 

improved in [22] by adding variations like random illumination, noise and blurring of 
the object images before superimposing. The implementation of superimposing is 

straightforward and easy to automate. However, the missing interaction between the 

environment and the object results in a reality gap due to the absence of important real-

world features, e.g. shadows. 
Rendering refers to the generation of an image from 2D or 3D models as well as 

complete environments [23]. Typical rendering software provide numerous setting 

options for e.g. the ambient lighting, the object appearance, the shape and the poses. Due 

to the numerous setting options, the generation of datasets in detail is a very time-
consuming process. Various methods were developed to provide synthetic data - as 

realistic as possible - based on rendering. Domain randomization techniques [4] increase 

the ability of generalizing the trained model to real-world data. An optical flow dataset 

[24] was presented derived from an animated short film by modifying the motion blur 
pipeline of the 3D creation suite Blender [25]. The resulting Sintel dataset has been 
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extended to depth and segmentation images. In [26] the Unity development platform [27] 
was used to create a virtual urban world, populated with cars, vans, pedestrians and 

cyclists. The resulting Synthia dataset was generated using a dynamic illumination 

engine and provides different scene appearances related to the four seasons. The 

approach proposed in [28] creates a unique virtual world for each dataset subsegment, 
instead of generating the whole dataset based on a single virtual world. The resulting 

Synscape dataset [29] is a photorealistic synthetic dataset for street scene parsing. The 

dataset SceneNet-RGBD [30] provides indoor scenes including household objects. It is 

an extension of the work presented in [31], using an automatic random scene generator 
based on 174683 potential 3D objects. In contrast to the previous mentioned approaches, 

the synthetic dataset Falling things (FAT) [32] is focusing the field of robotic 

manipulation. Therefore, it uses objects of the real-world Yale-CMU-Berkeley (YCB 

[33]) object set. In addition to RGB, depth and segmentation images, each dataset 
subsegment also includes metadata in form of 6D pose information. The SIDOD dataset 

[34] is closely related, since both datasets were generated using the Unreal Engine 4 

(UE4 [35]) and the open-source custom plugin NVIDIA DeepLearning Data Synthesizer 

(NDDS [36]), a tool to extract view data during rendering. 

3. Method 

Our approach differentiates from others by focusing a high automation level to enable a 

wide parameter range for randomization and less human interaction. The pipeline was 

developed based on the game engine UE4, providing functionalities to predefine 
parameter settings for environments and objects, including the manual chosen rendering 

locations, later referred to as training spots. The actual rendering process is highly 

automated, which simplifies the generation of large object-related datasets and the usage 

of synthetic data in real world applications. An exemplary dataset was generated using a 
RTX 2080 Ti, where each rendering process per dataset subsegment takes around 50ms. 

The UE4 project, including one open-source environment is available at: 

http://autosynpose.fh-aachen.de. 

3.1. Domain Randomization 

The presented pipeline simulates the following aspects with an user adjustable 

variability: environment, training spot, object appearance, camera-object transformation, 

ambient lighting, number and size of geometric primitive distractors, presence of 

complex object distractors, and multiple instances of the object of interest. 
The object appearance can be randomized by an adjustable percentage for the base 

color. In addition, the appearance parameters roughness, metallic and specular are 

configurable. The camera describes a motion alongside the surface of a sphere during the 

automated rendering processes (see Figure 1). The camera motion is reduced to a circular 
motion in case of training spots on flat surfaces, e.g. tables. The origin of the sphere 

coordinate system  is located at the manual selected training spot. The optical axes of 

the camera, which is represented by the z-axis of the camera coordinate system , points 

towards the origin of the coordinate system  during the rendering processes. 

The object of interest is randomly positioned in a 3D cube with adjustable 

dimensions. The so-called object cube describes a linear motion alongside the z-axis of 

the coordinate system  during the rendering processes. Therefore the location of the 
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object-cube origin can be described as a vector   in reference to the 

coordinate system , with 0.2 m ≤ zoc ≤ 1.5 m. The pivot point of the vector  is located 

at the origin of the coordinate system , during the motion of the camera and the object-

cube. This approach generates a large number of dataset subsegments with different 
perspectives. An additional 3D cube encloses the object-cube. Inside this distractor-cube, 

the distractors are positioned randomly around the object of interest, including geometric 

primitive and object distractors. The distractor-cube will be partly outside the field of 

view of the camera at close distances. Thus, not all distractors will be present in the 
corresponding image data. Therefore, we introduce the concept of distractor density, 

which depends on the size of the distractor-cube, the size of the distractors itself and the 

number of distractors present. 

 

Figure 1. Spherical camera motion around the object of interest. 

3.2. Metadata 

The presented pipeline provides two metadata files in JSON format for each dataset 

subsegment. The first one is generated by NDDS, including the 6D object pose and its 

bounding box in the coordinate system . The second file contains detailed information 

of the parameter configuration for domain randomization as shown in table 1. 

Table 1. Description of the metadata file for domain randomization. 

Category Name Description 

Generating Info 
EnvironmentNo Environment Number 

SpotNo Spot Number 

Appearance 

HueShiftPercent Shift in object hue in percent 

Roughness Object roughness value 

Metallic Object metallic value 

Distractors 

WithDistractors Presence of distractors 

DistractorSize Size of primitive distractors in 10 mm 

DistractorCount Number of distractors in scene  

WithObjectDistractors Presence of object distractors 

Configurations 

WithLightningVariations Presence of lightning variations 

MultipleInstances Presence of multiple object instances 

InstanceCount Number of object instances 

MultipleObjects Presence of additional objects 
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4. Dataset Analysis 

The proposed pipeline was used to generate the exemplary dataset AutoSynPose, which 

can be downloaded here: http://autosynpose.fh-aachen.de. The dataset includes six 

million subsegments rendered at 97 training spots spread over 12 environments. The 

environments vary from realistic indoor to game-like outdoor scenes (see Figure 2) in 
order to bypass the machine learning specific problem that the factors of variation cannot 

always be directly observed [37]. 

 

Figure 2. Environments of the AutoSynPose dataset. 

As object of interest, the mustard bottle of the YCB dataset was chosen. In addition, 

the YCB objects: toy plane, meat can, power drill and hammer are in 17% of the dataset 

present. Each subsegment consist of one RGB image, one depth image and one 
segmentation image providing class instance information at pixel level. The subsegment 

does not include object instance information to reduce the size of the dataset. Figure 3 

shows one subsegment including the object of interest and geometric primitive as well 

as object distractors. 

 

Figure 3. Subsegment of the AutoSynPose dataset. 

Figure 4 shows the statistics of the dataset, across the different environments and 
manually selected training spots. Furthermore, Figure 4 shows the composition of the 

dataset regarding the presence of distractors, lightning variations, multiple instances of 

the object of interest and multiple objects. 

 

Figure 4. Dataset statistics. Left: Distribution of subsegments over environments and training spots. Right: 

Dataset composition. 
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Figure 5 shows a statistical analysis of the six million dataset subsegments. The edge 
length of the object-cube was set to 0.3m and the edge length of the distractor-cube was 

set to 0.75m. 

 

Figure 5. Statistical analysis of the dataset: Object appearance, object instance count, geometric primitive 

distractors, and camera-object transformation. 

 
The first column of Figure 5 shows the randomization of the object appearance, 

which is equally distributed around the selected parameter settings. The second column 

shows the distribution of the instance count and the geometric primitive distractors. The 

distractor density inside the distractor-cube varies from 0% up to 8%, with a peak in the 
range between 0% and 1%. The third column shows the distribution of the 3D object 

position in the camera coordinate system, which is almost uniformly distributed. The 

distributions of the Euler angles reflect the orientation of the object in the camera 

coordinate system. 
Table 2 shows our dataset in contrast to comparable state-of-the-art datasets. To our 

knowledge the AutoSynPose dataset is the only 6D object pose dataset providing detailed 

information about parameter settings used for domain randomization at subsegment level.  
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Table 2. Comparison of synthetic datasets (Masks* IS – instance segmentation, CS – class segmentation; FD* 

– Flying Distractors. DI* – Domain Randomization Information). 

Dataset #Segments Scenes Masks* Poses B-Box FD* DI* 
Sintel (2015) [24] 1.6 k movie IS 3D ✗ ✗ ✗ 
Synthia (2016) [26] 200 k urban CS ✗ ✗ ✗ ✗ 
SN-RGBD (2016) [31] 5 M household IS CS 3D ✗ ✗ ✗ 
Synscape (2018) [29] 25 k urban IS CS 3D 2D ✗ ✗ 
FAT (2018) [32] 60 k household IS CS 6D 3D ✗ ✗ 
SIDOD (2019) [34] 115 k household IS CS 6D 3D ✓ ✗ 
Ours (2020) 6 M various CS 6D 3D ✓ ✓ 

The SIDOD and the FAT dataset are closely related to our dataset. Table 3 shows a 
detailed comparison of the three datasets. 

Table 3. Detailed comparison with the synthetic datasets FAT and SIDOD. 

Parameter FAT (2018) [32] SIDOD (2019) [34] Ours (2020) 
No. of objects 21 21 5 

No. of environments 3 3 12 

No. of training spots 15 18 97 

Object appearance variations ✗ ✗ ✓ 

Lightning variations ✓ ✓ ✓ 

Object position distribution normal normal uniform 

Object orientation distribution mixed mixed mixed 

 

We were able to significantly increase the number of environments and training 

spots, because of the high automation level of the proposed pipeline. In addition to the 

lightning domain, our pipeline also provides configurable settings for the object 
appearance domain. Another improvement is the uniform distribution of the object 

position in the camera coordinate system. The compared datasets provide a normal 

distribution for x and y, whereby the mean is located at the optical axis of the camera. 

The same applies for the camera-object distance, whereby the mean is located at the mid 
of the intended range. A uniform distribution represents a larger number of different 

perspective viewpoints and reduces overfitting problems at test time. The focus of our 

dataset is to enable studies on the impact of different parameter settings for domain 

randomization. Therefore, the AutoSynPose dataset only includes five different objects, 
whereby the mustard bottle of the YCB object set is prioritized. 

5. Conclusion 

We developed an automated synthetic dataset generating pipeline, based on the game 

engine UE4 and the open-source plugin NDDS. Adjustable parameters for domain 
randomization and the rendering process allow a simple change between different objects 

of interests and environments. The required knowledge about game and rendering 

engines is reduced. The pipeline generates a uniform distribution of the 3D object 

position in reference to the camera coordinate system. In addition, the presented camera-
object motion concept covers different perspective viewpoints per training spot. To our 

knowledge, it is the first approach providing detailed information about the parameter 

settings used for domain randomization at subsegment level. In addition, we introduced 

the concept of distractor density as a metric for distractors. We hope that the proposed 
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pipeline makes it easier for other researchers to generate synthetic data from 3D models 
and environments. 

The presented pipeline can be used to synthesize a variety of different datasets. 

However, the identification of the important factors of variation, which cannot directly 

be observed, has the potential to decrease the reality gap of future synthetic dataset 
generation. Therefore, the exemplary generated dataset AutoSynPose aims to study the 

effect of randomization parameters in detail.  
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