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Abstract A self-modeling network for some base network is a network extension 

that represents part of the base network structure by a self-model in terms of added 

network nodes and connections for them. By iterating this construction, multi-order 

network adaptation is easily obtained. A dedicated software environment for self-

modeling networks that has been developed supports the modeling and simulation 

processes. This will be illustrated for a number of adaptation principles from a 

number of application domains. 
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1. Introduction 

A self-modeling network is a network that represents part of its own network structure 
by a self-model in terms of dedicated network nodes and connections for them. A 

network structure can be described by network characteristics for connectivity for 

connections between nodes, aggregation for combining multiple incoming impacts on a 

node, and timing for the speed of node state dynamics; e.g., [1, 2, 3]. Any base network 
can be extended to a self-modeling network for it, by adding a self-model for part of the 

base network’s structure. In this case, the added self-model consists of a number of added 

nodes representing specific characteristics of the base network structure, such as 

connection weights and excitability thresholds, plus connections for these added self-
model nodes. For the approach considered here, in general nodes in a network are 

assumed to have activation levels that can change over time due to impact from other 

nodes from which they have incoming connections. If in particular the nodes from a self-

model representing some of the network characteristics of a base network are dynamic, 
these base network characteristics become adaptive, thus an adaptive base network is 

obtained, in the sense that adaptation of the base network is modeled by the dynamics 

within the self-modeling network extending the base network. 

Moreover, multi-order network adaptation can be obtained by iterating this self-
modeling construction. If multi-order self-models are included in a self-modeling 

network, any included self-model (of some order) can have its own (next-order) self-

model within the overall network where the latter self-model represents some of the 

network characteristics of the former self-model. For example, this allows to control the 
dynamics of self-models, so that self-controlled adaptive networks are obtained.  
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A dedicated software environment for self-modeling networks that has been 
developed supports these modeling and simulation processes; see [3], Ch. 9. In this paper, 

for a number of adaptation principles from different application domains, it will be 

illustrated how they can be modeled by proper pre-specified self-models that can be used 

as building blocks to extend any base network to make it adaptive.  
In the paper, first in Section 2 the modeling approach from [3] based on self-

modeling networks is briefly described. In Section 3 nine different adaptation principles 

from the Cognitive Neuroscience and Social Science literature are described. Next, in 

Section 4, for the adaptation principles described in Section 3 it is shown in more detail 
how they can be modeled by self-models. Section 5 is a discussion. 

2. Networks Using Self-Models: Self-Modeling Networks 

In this section, the network-oriented modelling approach used from [3] is introduced. 

Following [3, 4], a temporal-causal network model is characterized by (here X and Y 
denote nodes of the network, also called states): 

� Connectivity characteristics Connections from a state X to a state Y and their 

weights ��X,Y  
Aggregation characteristics For any state Y, some combination function cY(..) 
(usually with some parameters) defines the aggregation that is applied to the 

impacts �X,YX(t) on Y from its incoming connections from states X  

� Timing characteristics Each state Y has a speed factor �Y defining how fast it 

changes for given impact. 

The following difference (or differential) equations that are used for simulation 

purposes and also for analysis of temporal-causal networks incorporate these network 

characteristics �X,Y, cY(..), �Y in a standard numerical format:  
� � [ � � �  (1) 

for any state Y and where  to   are the states from which Y gets its incoming 

connections. Here the overall combination function cY(..) for state Y is the weighted 

average of available basic combination functions cj(..) by specified weights �j,Y (and 

parameters � , �  of cj(..)) for Y:  

cY(V1, …, Vk)  =   
� �

� �
   (2) 

Such Eq. (1) and (2) are hidden in the dedicated software environment; see [3], Ch 9. 

Within this software environment, currently around 40 useful basic combination 
functions are included in a combination function library; see Table 1 for some of them. 

The above concepts enable to design network models and their dynamics in a declarative 

manner, based on mathematically defined functions and relations.  

Table 1. Examples of basic combination functions from the library. 

 Notation  Formula Parameters 

Euclidean  eucln,�(V1, …, Vk) 
�

 
Order n>0 

Scaling factor �>0 

Advanced  

logistic sum 
alogistic	 ,
(V1, …,Vk) (1+e-στ) Steepness 		>0 

Excitability threshold 

 
Scaled  

maximum 
smax�(V1, …, Vk) max(V1, …, Vk)/�   Scaling factor �>0 

Scaled  

minimum 
smin�(V1, …, Vk) min(V1, …, Vk)/�   Scaling factor �>0 
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Note that there is a crucial distinction for network models between network 
characteristics and network states. Network states have values (their activation levels) 

and are explicit representations that may be accessible for network states by connections 

to and from them and can be handled or manipulated in that way. They can be considered 

to provide an informational view on the network; usually the states are assumed to have 
a certain informational content. In contrast, network characteristics (such as connection 

weights and excitability thresholds) have values (their strengths) and determine (e.g., 

cognitive) processes and behavior in an implicit, automatic manner. They can be 

considered to provide an embodiment view on the network. In principle, these 
characteristics by themselves are not directly accessible nor observable for network 

states; in principle you can make connections between states but you cannot make 

connections between network characteristics or between states and characteristics. 

As indicated above, ‘network characteristics’ and ‘network states’ are two distinct 
concepts for a network. Self-modeling is a way to relate these distinct concepts to each 

other in an interesting and useful way. A self-model is making the network characteristics 

(such as connection weights and excitability thresholds) explicit in the form of adding 

states (called self-model states) for these characteristics and also connections for these 
additional states. Thus, the network gets an internal self-model of part of its network 

structure: it explicitly represents information about its own network structure. In this way, 

by iteration different self-modeling levels can be created where network characteristics 

from one level relate to network states at a next level. Thus, an arbitrary number of self-
modeling levels can be modeled, covering second-order or higher-order effects.  

More specifically, adding a self-model for a temporal-causal base network is done in 

the way that for some of the states Y of the base network and some of the network 

structure characteristics for connectivity, aggregation and timing (i.e., some from ��X,Y, 

�j,Y, �i,j,Y, �Y), additional network states WX,Y, Cj,Y, Pi,j,Y, HY (self-model states or 

reification states) are introduced and connected to other states: 
 

a)  Connectivity self-model 
� Self-model states WX,Y are added representing connectivity characteristics, in 

particular connection weights �X,Y 

b)  Aggregation self-model 
� Self-model states Cj,Y are added representing aggregation characteristics, in 

particular combination function weights �j,Y 

� Self-model states Pi,j,Y are added representing aggregation characteristics, in 

particular combination function parameters �i,j,Y 

c)  Timing self-model 
� Self-model states HY are added representing timing characteristics, in 

particular speed factors �Y 
 

The notations WX,Y, Cj,Y, Pi,j,Y, HY for the self-model states indicate the referencing 

relation with respect to the characteristics �X,Y, �j,Y, �i,j,Y, �Y: here W refers to �, C refers 

to �, P refers to �, and H refers to �, respectively. For the processing, these self-model 

states define the dynamics of any state Y in a canonical manner according to Eq. (1) and 

(2) whereby the values of �X,Y, �j,Y, �i,j,Y, �Y are replaced by the state values of WX,Y, Cj,Y, 
Pi,j,Y, HY at time t, respectively. 

Note that concerning the terminology used, only the states that represent some 

network characteristics are called self-model states. The states to which these self-model 

states are connected still belong to the self-model (e.g., as depicted in Figure 1 and 

J. Treur / Modeling Multi-Order Adaptive Processes by Self-Modeling Networks208



further) but they can either be other self-model states or other states that are not self-
model states, such as the states X and Y. An example of an aggregation self-model state 

Pi,j,Y for a combination function parameter ��i,j,Y is for the excitability threshold 
Y of state 

Y, which is the second parameter of a logistic sum combination function; then Pi,j,Y is 

usually indicated by TY, where T refers to 
. The network constructed by the addition of 

a self-model to a base network is called a self-modeling network or a reified network for 

this base network. This constructed network is also a temporal-causal network model 

itself, as has been shown in [3], Ch. 10; for this reason, this construction can easily be 
applied iteratively to obtain multiple levels or orders of self-models, in which case the 

resulting network is called a multi-order or higher-order self-modeling network or reified 
network. 

3. Adaptation Principles from Different Domains 

In this section, a number of adaptation principles of different orders are described as can 

be found in the literature on Cognitive Neuroscience and Social Sciences. 

3.1. First-order Adaptation Principles 

First-order adaptation principles for some base network address adaptation of some of 
the base network’s characteristics concerning its connectivity, aggregation of multiple 

connections and timing of node state dynamics. Much research has focused in particular 

on learning of connectivity characteristics based on adaptive connections, but also other 

characteristics can be made adaptive, as will be discussed. 

3.1.1. The Hebbian Learning Adaptation Principle 

As a first example, for mental or neural networks, the Hebbian learning adaptation 

principle [5] can be formulated by: 

‘When an axon of cell A is near enough to excite B and repeatedly or persistently         (3) 
takes part in firing it, some growth process or metabolic change takes place in one  
or both cells such that A’s efficiency, as one of the cells firing B, is increased.’  
[5], p. 62 

This is sometimes simplified (neglecting the phrase ‘one of the cells firing B’) to: 
‘What fires together, wires together’ [6, 7] 

This can easily be modeled by using a connectivity self-model based on self-model states 

WX,Y representing connection weights �X,Y.  

3.1.2. The Bonding by Homophily Adaptation Principle 

An example of the use of a network’s self-model for the social domain is the bonding by 
homophily adaptation principle  

‘Birds of a feather flock together’      (4) 

This expresses how being ‘birds of a feather’ or ‘being alike’ strengthens the connection 

between two persons [8-13]. Similar to the Hebbian learning case, this can be modeled 
by a social network’s connectivity self-model based on self-model states WX,Y 

representing connection weights �X,Y.  
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3.1.3. The More Becomes More Adaptation Principle 

Another first-order adaptation principle for social networks is the ‘more becomes more’ 

principle expressing that more popular people attract more connections: 

‘Persons with more connections attract more connections’ [4], p. 311    (5) 

In a wider context this more becomes more principle relates to what sometimes is 
called ‘the rich get richer’ [14, 15], ‘cumulative advantage’ [16], ‘the Matthew effect’ 

[17] or ‘preferential attachment’ [18]. Similar to the Hebbian learning and bonding by 

homophily cases, this can be modeled by a social network’s connectivity self-model 
based on self-model states WX,Y representing connection weights ��X,Y. 

3.1.4. The Interaction Connects Adaptation Principle 

The idea behind the Interaction Connects adaptation principle from Social Science is that  

 ‘The more interaction you have with somebody, the stronger you will become connected’ (6) 

See, for example, [19-23]. Similar to the Hebbian learning and bonding by homophily 

cases, this can be modeled by a social network’s connectivity self-model based on self-

model states WX,Y representing connection weights �X,Y. 

3.1.5. The Enhanced Excitability Adaptation Principle 

Although connectivity adaptation has some popularity in the literature, also other 
characteristics can be made adaptive. Instead of a connectivity self-model to model 

adaptive connection weights, also an aggregation self-model can be used, for example, 

to model intrinsic neuronal excitability, as described in [24]:  

‘Long-lasting modifications in intrinsic excitability are manifested in changes   (7) 
in the neuron's response to a given extrinsic current (generated by synaptic  
activity or applied via the recording electrode).’ [24], p. 30 

This form of adaptation can be modeled by an aggregation self-model based on self-

model states TY for adaptive excitability thresholds. For example, this type of self-model 

has been used to model adaptation (desensitization) to spicy food; see [25]. 

3.2. Second-Order Adaptation Principles 

The examples of adaptation principles in Section 3.1 refer to forms of plasticity, which 

can be described by a first-order adaptive network that is modelled using a dynamic first-

order self-model for connectivity or aggregation characteristics of the base network, in 
particular for the connection weights and/or the excitability thresholds used in 

aggregation. Whether or not and to which extent such plasticity as described above 

actually takes place is controlled by a form of metaplasticity; e.g. [26-31].  

3.2.1. The Exposure Accelerates Adaptation Speed Adaptation Principle 

For example, in [29] the following compact quote is found indicating that due to stimulus 

exposure, the adaptation speed will increase: 

‘Adaptation accelerates with increasing stimulus exposure’ [29], p. 2.     (8) 

This indeed refers to a form of metaplasticity, which can be described by a second-order 
adaptive network that is modeled using a dynamic second-order timing self-model, for 

timing characteristics of a first-order self-model for the first-order adaptation, based on 

self-model states HWX,Y for adaptive learning speed. 
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3.2.2. The Exposure Modulates Persistence Adaptation Principle 

A similar perspective can be applied to obtain a principle for modulation of persistence.  

‘Stimulus exposure modulates persistence of adaptation’         (9) 
Depending on further context factors, this can be applied in different ways. Reduced 

persistence can be used in order to be able to get rid of earlier learnt connections that do 
not apply. However, enhanced persistence can be used to keep what has been learnt. This 

also refers to a form of metaplasticity, which can be described by a second-order adaptive 

network that is modeled using a dynamic second-order aggregation self-model, for 

persistence characteristics of a first-order self-model for the first-order adaptation, based 
on self-model states MWX,Y for an adaptive persistence factor.  

3.2.3. The Plasticity Versus Stability adaptation principle 

In a similar direction [31] it is more generally discussed how it depends on the 
circumstances when the extent of plasticity is or should be high and when it is or should 

be low in favor of stability: 

 ‘The Plasticity Versus Stability Conundrum’ [31], p. 773.      (10) 

This principle relates to the previous two and can use these second-order self-models. 

3.2.4. The Stress Blocks Adaptation Principle 

Yet another principle that is indicated in the literature refers to the effect of high stress 

levels on the extent of plasticity: 

‘High stress levels slow down or block adaptation’          (11) 
See, for example, the following quote from [27], where such slowing down or blocking 

of adaptation is called negative metaplasticity: 
‘Numerous electrophysiological studies have shown that ‘negative’ metaplasticity develops 
in brain areas such as the hippocampus and its related structures (e.g., the lateral septum and 
the nucleus accumbens) following stress.’ [27], p. 631 
This can be described by a second-order adaptive network modeled using a dynamic 

second-order timing self-model, for timing characteristics of a first-order self-model for 

the first-order adaptation, based on self-model states HWX,Y for adaptive learning speed. 

The first- and second-order adaptation principles such as the one summarized in (3) 
to (11) above have been formalized in the form of self-models used in first- and second-

order adaptive network models that have been designed, as discussed in Section 4. 

4. Using Self-Models to Formalize Adaptation Principles 

In this section, it will be shown how the modeling approach for self-modeling network 
models described in Section 2 can be used to model the adaptation principles of different 

orders discussed in Section 3. In particular the connectivity and aggregation 

characteristics of the addressed self-models are discussed. Timing characteristics for 

these self-models are just values (speed factors for each of the states) that will usually be 
set depending on a specific application. When self-models are changing over time in a 

proper manner, this offers a useful method to model adaptive networks based on any 

adaptation principles. This does not only apply to first-order adaptive networks, but also 

to higher-order adaptive networks, by using higher-order self-models.  
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4.1. First-Order Self-Models for First-Order Adaptation Principles 

First the adaptation principle for Hebbian Learning will be addressed, as described in 

Section 3.1.1. To incorporate the ‘firing together’ part, for the self-model’s connectivity 
characteristics, upward causal connections to connectivity self-model state WX,Y from  

and are used to formulate a Hebbian learning adaptation principle; see Figure 1. The 

upward connections have weight 1 here. Also a connection from WX,Y to itself with 

weight 1 is used; in pictures they are usually left out.  

So, the connectivity characteristics of the self-model here consist of the three nodes 

WX,Y, X, and Y, together with the two incoming upward connections (the blue arrows) 
from X and Y to WX,Y, one outgoing connection from WX,Y to Y (the pink downward 

arrow), and the leveled connection (black arrow) from X to Y. Note that as mentioned in 

the last paragraph of Section 3.2, only the states that represent a network characteristic 

are called self-model states, in this case WX,Y. In connectivity pictures such as Figure 1 
and further, the self-model states are the states with an outgoing (pink) downward 

connection. Some other states to which they are connected such as in this case X and Y 

are still part of the self-model, but will not be called self-model states; they do not have 

an outgoing downward connection. The downward connection takes care that the value 
of WX,Y is actually used for the connection weight of the connection from X to Y. For the 

aggregation characteristics of the self-model, one of the options for a learning rule is 

defined by the combination function hebb��(V1, V2, W) from Table 2, where V1, V2 refer 

to the activation levels of the connected states X to Y, and W to the value of WX,Y 
representing the connection weight. For more options of Hebbian learning combination 

functions and further mathematical analysis of them, see, for example [3], Ch. 14.  

Table 2 Combination functions for self-models modeling the first- and second-order adaptation principles. The 

first five rows cover the first-order adaptation principles from Section 3.1 and the last four rows the second-

order adaptation principles from Section 3.2. 

Adaptation principle and 
self-model state 

Combination function  
options 

Variables and  
Parameters 

Hebbian Learning  

WX,Y 
3.1.1 

hebb�(V1, V2, W) =   

V1V2 (1-W) + � W 

V1,V2 activation levels of connected states 

W activation level of self-model state for 

connection weight 

� persistence factor  

Bonding by Homophily 

WX,Y 
3.1.2 slhomo�,
(V1, V2, W) = 

W + � W (1-W) (
- | V1 - V2|) 

V1,V2 activation levels of connected persons 

W connection weight 

� modulation factor  

 tipping point  

More Becomes More  

WX,Y 
3.1.3 eucln,�(W1, …, Wk ) 

alogistic	 ,
(W1, …, Wk ) 

W1, …, Wk  activation levels of self-model 

states for connection weights of persons 

connected to B 

Interaction Connects 

WX,Y 
3.1.4 eucln,�(V1, …, Vk) 

alogistic		 ,

(V1, …, Vk) 
V1, …, Vk  impacts from interaction states for 

the connected person 
Enhanced Excitability  

TY 
3.1.5 eucln,�(V1, …, Vk) 

alogistic		 ,

(V1, …, Vk ) 
 V1, …, Vk  impacts from base states 

Exposure Accelerates 

Adaptation Speed HWX,Y 
3.2.1 eucln,�(V1, …, Vk) 

alogistic		 ,

(V1, …, Vk ) 
V1, …, Vk  impacts from base states and first-

order self-model states 
Exposure Modulates  
Persistence MWX,Y 

3.2.2 eucln,�(V1, …, Vk) 
alogistic		 ,

(V1, …, Vk ) 

V1, …, Vk  impacts from base states and first-

order self-model states 
Plasticity Versus  

Stability HWX,Y, MWX,Y 
3.2.3 eucln,�(V1, …, Vk) 

alogistic		 ,

(V1, …, Vk ) 
V1, …, Vk  impacts from base states and first-

order self-model states 
Stress Blocks  

Adaptation HWX,Y  
3.2.4 eucln,�(V1, …, Vk) 

alogistic		 ,

(V1, …, Vk ) 
V1, …, Vk  impacts from base states for stress 

level and first-order self-model states 
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Next, the adaptation principle for Bonding by homophily will be addressed, as 
described in Section 3.1.2. It happens that for this connectivity self-model exactly the 

same connectivity characteristics apply as for Hebbian learning, as depicted in Figure 1. 

 

 

Figure 1.  Connectivity characteristics of the self-model for the Hebbian Learning adaptation principle for 

Mental Networks or the Bonding by Homophily adaptation principle for Social Networks 

For aggregation characteristics of this self-model, an option for an adaptation rule 

is defined by the combination function slhomo��,
(V1, V2, W) from Table 2, where V1, V2 

refer to the activation levels (for example, for some opinion) of the connected persons 

and W to the value of WX,Y  representing the connection weight. For more options and 

further mathematical analysis, see, for example [3], Ch. 13, or [13]. 

The More Becomes More adaptation principle as described in Section 3.1.3 has 
connectivity characteristics as shown in Figure 2. Here, the connectivity self-model 

states for different connections affect each other, as a connection of a person X3 to a given 

person Y depends on the existence and strengths of connections from other persons Xi to 

the same person Y; see the black leveled arrows in the upper plane.  
 

 
Figure 2. Connectivity characteristics of a self-model for the More Becomes More adaptation principle for 

person X3 with respect to person Y 

So, in this case the connectivity characteristics of the self-model are the nodes WX1,Y, 

WX2,Y, WX3,Y, and Y, together with leveled connections (black arrows) from each WXj,Y to 

WX3,Y and downward connections (pink arrows) from each WXj,Y to Y. Again, these (pink) 

downward connections takes care that the value of WXj,Y is actually used for the 

connection weight of the connection from Xj to Y. For the aggregation characteristics of 
this self-model, some form of aggregation of the weights of these other connections 
represented by the WXj,Y can be used, such as by using a Euclidean or logistic sum 

combination function; see Table 2. For example, in [32] a logistic sum function was used, 

and in [33] a scaled sum (with scaling factor the number of existing connections for Y 
resulting in an average weight), which is a first-order Euclidean combination function. 

For the Interaction Connects adaptation principle described in Section 3.1.4, the 
connectivity self-model states for the connection weights are affected by certain states 

   Y X 

Z 

WX,Y 

Y

     X3 

X1 

     X2 

WX3,Y 

WX1,Y 

WX2,Y 
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IXj,Y representing the strength of (actual) interaction. Therefore, the connectivity 
characteristics of a self-model for this adaptation principle are as shown in Figure 3, 
with (blue) upward connections from interaction states IXi,Y to the self-model states WXi,Y 

and (pink) downward connections from WXi,Y to Y. Note that there also multiple 

interaction states can be used for one connection, for example, for different interaction 
channels. The aggregation characteristics of the self-model states WXi,Y can be specified, 

for example, by a Euclidean or logistic sum function, as shown in Table 2. 
 

 
Figure 3. Connectivity characteristics of a self-model for the Interaction Connects adaptation principle for 

persons X3, X2 and X3 with respect to person Y. 

For the Enhanced Excitability adaptation principle described in Section 3.1.5, an 

aggregation self-model with connectivity characteristics depicted in Figure 4 can be used.  
 

 
Figure 4. Connectivity characteristics of a self-model for the Enhanced Excitability adaptation principle for 

persons X3, X2 and X3 with respect to person Y. 

In this case state Y is assumed to use a logistic sum combination function, which has 

an excitability threshold parameter 
 (or any other function with such a parameter). Here 

this excitability threshold is represented by aggregation self-model state TY which is 

affected by exposure from activation of the involved states. Note that to enhance 
excitability, the value of self-model state TY representing the excitability threshold has 

to decrease. Therefore, these upward connections need to get negative connection 

weights, whereas a positive connection weight from TY itself can be used. In this case, 

the (pink) downward connection from TY to Y takes care that the value of TY is actually 
used for the threshold value of the logistic sum function of Y. Also a connection from a 

related connectivity self-model state WX,Y to TY with positive connection weight might 

be added in this self-model to obtain some balancing effect. For the aggregation 
characteristics, for example, a Euclidean (with odd order n to keep the negative impacts 
negative) or logistic sum function can be used for TY, as shown in Table 2. 

Y

     X3 

X1 

     X2      IX2,Y 

     IX1,Y 

Y     IX3,Y 

WX3,Y 

WX1,Y 

WX2,Y 

Y X 

TY 
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4.2. Second-Order Self-Models for Second-Order Adaptation Principles 

The first second-order adaptation principle discussed is the Exposure Accelerates 

Adaptation Speed principle described in Section 3.2.1. This is modeled by a second-order 

timing self-model. As it is a second-order adaptation principle for some first-order 

adaptation principle, for the sake of clarity it is described here with respect to the first-
order adaptation principle for Hebbian Learning; although it might be applied to other 

first-order adaptation principle as well, but then it will have a similar structure to what is 

shown here. The connectivity characteristics of this timing self-model are shown in 
Figure 5; they consist of the states HWX,Y, WX,Y, X, and Y, together with the (positive, 

blue) upward connections from the two base states X and Y to the self-model state HWX,Y 

expressing the part of the principle referring to ‘exposure’, the (negative, blue) upward 
connection from WX,Y to the self-model state HWX,Y, and the downward (pink) connection 

from HWX,Y to WX,Y that takes care that the value of HWX,Y  is actually used as speed factor 

for WX,Y. By the upward connections, stronger activation of the base states X and Y will 
lead to an increased value of HWX,Y, as indicated by the part of the principle referring to 

‘accelerates’. The (negative) upward connection from the considered state WX,Y to HWX,Y 

can be used for (counter)balancing. For the aggregation characteristics, for example a 
Euclidean (with odd order n to keep the negative impacts negative) or logistic sum 

function can be used for HWX,Y, as shown in Table 2. 

 

 

Figure 5. Connectivity of a second-order self-model for the Exposure Accelerates Adaptation Speed adaptation 

principle with a first-order self-model for Hebbian learning. 

Next, the second-order Exposure Modulates Persistence adaptation principle (for the 

first-order Hebbian Learning principle) described in Section 3.2.2 is addressed, based on 

second-order aggregation self-model state MWX,Y representing persistence of the first-

order adaptation. For the connectivity characteristics of this self-model, see Figure 6.  

 

 

   Y X 

Z 

WX,Y 

HWX,Y

   Y X 

Z 

WX,Y 

MWX,Y 

Figure. 6. Connectivity of a second-order self-model for the Exposure Modulates Persistence adaptation 

principle with a first-order self-model for Hebbian learning 
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The upward connections from base states X and Y to MWX,Y may suppress the 

persistence (when they are negative). This paves the road to get rid of the learnt effects 

from the past in case they are no longer applicable. The positive upward connection from 

first-order state WX,Y to HWX,Y can be used for counterbalancing. However, the upward 

connections from base states X and Y to MWX,Y can also be made positive in which case 

they increase persistence during a learning process to keep the learnt effect well. This 

also illustrates the Plasticity Versus Stability Conundrum adaptation principle described 
in Section 3.2.3. The (pink) downward connection from MWX,Y to WX,Y takes care that 

the value of WX,Y is actually used for the connection weight of the connection from X to 

Y. For the aggregation characteristics, for example a Euclidean (with odd order n) or 
logistic sum function can be used for MWX,Y, as shown in Table 2. 

Finally, a second-order self-model for the Stress Blocks Adaptation principle 

described in Section 3.2.4 can be obtained in a similar way as the one for Exposure 

Accelerates Adaptation Speed principle (see connectivity in Figure 5) but this time with 
connectivity characteristics based on a negative upward connection from a base state 

representing the stress level, which brings the timing characteristic self-model state 

HWX,Y, to low values or even 0. For the aggregation characteristics, again for example a 

Euclidean or logistic sum function can be used for HWX,Y; see Table 2. 

5. Discussion 

In this paper the use of self-modeling networks to model adaptive biological, mental and 
social processes of any order of adaptation was addressed. Following the network-

oriented modeling approach described in [3], it was shown how self-models for networks 

provide useful pre-specified building blocks to design complex multi-order adaptive 

network models in the form of self-modeling networks. This was illustrated for a number 
of adaptation principles from different application domains. A dedicated software 

environment for self-modeling networks that has been developed supports the modeling 

and simulation: https://www.researchgate.net/project/Network-Oriented-Modeling-Software. 

As an illustration, in [3], Ch. 4, four of the adaptation principles known from the 
literature and specified in Section 4 were applied to obtain a network model involving 

both plasticity and metaplasticity. In particular, two first-order adaptation principles (for 

Hebbian Learning and for Enhanced Excitability) and two second-order adaptation 

principles (for Exposure Accelerates Adaptation Speed and for Exposure Modulates 
Persistence) are covered in this network model.  

References  

[1] Treur J. Multilevel network reification: representing higher order adaptivity in a network. In: Aiello L, 

Cherifi C, Cherifi H, Lambiotte R, Lió P, Rocha L. editors. Proc. of the 7th Int. Conf. on Complex 

Networks and their Applications, ComplexNetworks'18, vol. 1. Studies in Computational Intelligence, 

vol. 812, Springer Nature, 2018, p. 635-51. 

[2] Treur J. Modeling higher-order adaptivity of a network by multilevel network reification. Network 

Science 2020;8: S110-44. 

[3] Treur J. Network-oriented modeling for adaptive networks: designing higher-order adaptive biological, 

mental, and social network models. Cham, Switzerland: Springer Nature Publishing; 2020. 412 p. 

J. Treur / Modeling Multi-Order Adaptive Processes by Self-Modeling Networks216

https://www.researchgate.net/project/Network-Oriented-Modeling-Software


[4] Treur J. Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social 

Interactions. Cham, Switzerland: Springer Publishers; 2016. 499 p. 

[5] Hebb DO. The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons; 

1949. 335 p. 

[6] Shatz CJ. The developing brain. Sci. Am. 1992; 267:60–67. (10.1038/scientificamerican0992-60) 

[7] Keysers C, Gazzola V. Hebbian learning and predictive mirror neurons for actions, sensations and 

emotions. Philos Trans R Soc Lond B Biol Sci 2014;369: 20130175. 

[8] Pearson M, Steglich C, Snijders T. Homophily and assimilation among sport-active adolescent substance 

users. Connections 2006;27(1):47–63. 

[9] McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: homophily in social networks. Annu. Rev. 

Sociol. 2001; 27:415–44. 

[10] Levy DA, Nail PR. Contagion: A theoretical and empirical review and reconceptualization.  Genetic, 

social, and general psychology monographs 1993;119(2):233-284. 

[11] Holme P, Newman MEJ. Nonequilibrium phase transition in the coevolution of networks and opinions 

Phys. Rev. E 2006;74(5):056108. 

[12] Sharpanskykh A, Treur J. Modelling and analysis of social contagion in dynamic networks. 

Neurocomputing 2014; 146:140–50.  

[13] Treur J. Mathematical analysis of the emergence of communities based on coevolution of social 

contagion and bonding by homophily. Applied Network Science 2019;4: article 1. 

[14] Simon HA. On a class of skew distribution functions Biometrika 1955; 42: 425–40. 

[15] Bornholdt S, Ebel H. World wide webscaling exponent from Simon’s 1955 model Phys. Rev. E 2001;64: 

article 035104. 

[16] Price DJ. de S. A general theory of bibliometric and other cumulative advantage processes J. Amer. Soc. 

Inform. Sci. 1976; 27: 292–306 

[17] Merton RK. The Matthew effect in science. Science 1968;159: 56–63. 

[18] Barabási AL, Albert R. Emergence of scaling in random networks. Science 1999; 286: 509-512. 

[19] Hove MJ, Risen JL. It’s all in the timing: interpersonal synchrony increases affiliation. Soc. Cognit. 

2009; 27: 949–60. (doi:10.1521/soco. 2009.27.6.949) 

[20] Pearce E, Launay J, Dunbar RIM. (). The Ice-breaker Effect: singing together mediates fast social 

bonding. Royal Society Open Science 2015;2: article 150221 http://dx.doi.org/10.1098/ rsos.150221.  

[21] Weinstein D, Launay J, Pearce, E, Dunbar RIM, Stewart L. Singing and social bonding: Changes in 

connectivity and pain threshold as a function of group size. Evolution & Human Behaviour 

2016;37(2):152-58. doi: 10.1016/j.evolhumbehav.2015.10.002 

[22] Gilbert E, Karahalios K. Predicting tie strength with social media. Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems CHI’09, 2009, p. 211-20. 

[23] Morris MR, Teevan J, Panovich K. What do people ask their social networks, and why? a survey study 

of status message Q&A behavior. CHI 2010. 2010. 

[24] Chandra N, Barkai E. A non-synaptic mechanism of complex learning: modulation of intrinsic neuronal 

excitability. Neurobiology of Learning and Memory 2018; 154: 30-36. 

[25] Choy M, El Fassi S, Treur J. An adaptive network model for pain and pleasure through spicy food and 

its desensitization. Cognitive Systems Research 2020: in press 

[26] Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience 

1996;19(4):126-130. 

[27] Garcia R. Stress, metaplasticity, and antidepressants. Current Molecular Medicine 2002; 2: 629-38.  

[28] Magerl W, Hansen N, Treede RD, Klein T. The human pain system exhibits higher-order plasticity 

(metaplasticity). Neurobiology of Learning and Memory 2018; 154:112-20. 

[29] Robinson BL, Harper NS, McAlpine D. Meta-adaptation in the auditory midbrain under cortical 

influence. Nat. Commun. 2016; 7: article 13442. 

[30] Sehgal M, Song C, Ehlers VL, Moyer Jr JR. Learning to learn – intrinsic plasticity as a metaplasticity 

mechanism for memory formation. Neurobiology of Learning and Memory 2013; 105: 186-99. 

[31] Sjöström PJ, Rancz EA, Roth A, Hausser M. Dendritic excitability and synaptic plasticity. Physiol Rev 

2008; 88: 769–840.  

[32] Beukel S van den, Goos SH, Treur J. An adaptive temporal-causal network model for social networks 

based on the homophily and more-becomes-more principle. Neurocomputing 2019; 338: 361-71 

[33] Blankendaal R, Parinussa S, Treur J. A temporal-causal modelling approach to integrated contagion and 

network change in social networks. Proceedings of the Twenty-second European Conference on 

Artificial Intelligence, ECAI'16, 2016, p. 1388–96 

J. Treur / Modeling Multi-Order Adaptive Processes by Self-Modeling Networks 217

https://research.vu.nl/en/persons/jan-treur/publications/?page=1
https://www.researchgate.net/profile/Sven_Beukel?_sg%5B0%5D=fXDWV4psV3OK3BN56nshXaVyykJzADgdLg1EEGLJIoiU0Poxn27eIo1URQEf4DmxZx6vYNU.2lwjyAMulPtmnYkaoGbCzVsm_66x3gSIa5WNti1GMDCKoUQDV7cAomqPkhdMidyNqthqA0Itvie9sCtScfBy8w&_sg%5B1%5D=PLkQqFrCR9IfeI7Y6ad9QENc9CgAyg7G8jhngTkmtlA_BCiMDUelXWaLHds1ygxuaNugNxk.FjZG7RVVURcosE5Q6mRYeOeTMLV9U7dstjdkB1xqfRwVWAAIvfdaW_BaRbYXZ3F48LXwZJ7lmvSqOuHjAUzaFA
https://www.researchgate.net/profile/Jan_Treur?_sg%5B0%5D=fXDWV4psV3OK3BN56nshXaVyykJzADgdLg1EEGLJIoiU0Poxn27eIo1URQEf4DmxZx6vYNU.2lwjyAMulPtmnYkaoGbCzVsm_66x3gSIa5WNti1GMDCKoUQDV7cAomqPkhdMidyNqthqA0Itvie9sCtScfBy8w&_sg%5B1%5D=PLkQqFrCR9IfeI7Y6ad9QENc9CgAyg7G8jhngTkmtlA_BCiMDUelXWaLHds1ygxuaNugNxk.FjZG7RVVURcosE5Q6mRYeOeTMLV9U7dstjdkB1xqfRwVWAAIvfdaW_BaRbYXZ3F48LXwZJ7lmvSqOuHjAUzaFA

