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Abstract. The Enterprise Level Security (ELS) model focuses on designing secure, 
distributed web-based systems starting from basic principles. One area of ELS that 

poses significant design challenges is protection of web server private keys in a 

public cloud. Web server private keys are of critical importance because they 
control who can act as the server to represent the enterprise. This includes 

responding to requests as well as making requests within the enterprise and to its 
partners. The cloud provider is not part of this trusted network of servers, so the 

cloud provider should not have access to server private keys. However, current 

cloud systems are designed to allow cloud providers free access to server private 
keys. This paper proposes design solutions to securely manage private keys in a 

public cloud. An examination of commonly used approaches demonstrates the ease 

with which cloud providers can currently control server private keys. Two designs 
are proposed to prevent cloud provider access to keys, and their implementation 

issues are discussed. 
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1. Introduction 

Web security has become more important as more aspects of business, government, 

and everyday life are put online. A challenge that occurs at the design level is securely 

managing the private key of a web server while utilizing the public cloud.  The goal is 

a server key management design in which keys cannot be duplicated, keys can only be 

used by authorized individuals, and key operations are timely. At the time of this 

writing, no known solution has been implemented to provide all of these. This presents 

a problem that affects all public cloud hosted web servers.  

This paper presents a review of common existing solutions’ security shortcomings, 

an analysis of improvements to these solutions, and two proposals for a secure design. 

2. ELS in a Private Cloud 

The approach to security in this paper is based on Enterprise Level Security.  Many 

security solutions patch together components that were developed independently, 

which leaves legacy and insecure protocols and interfaces as easy attack points [1].  

Others use third parties to provide security as part of another non-security service [2], 

 
1 Corresponding Author  email: kfoltz@ida.org 

Machine Learning and Artificial Intelligence
A.J. Tallón-Ballesteros and C. Chen (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200789

248



which puts security in the hands of non-professionals and leads to easy security flaws.  

Still others use third parties that assume privileged positions in the architecture to 

perform security-specific functions [3].  The Zero Trust Architecture is a new approach, 

and ELS is an architecture that is consistent with ZTA ideas and has moved toward 

implementation.  As such, it holds promise for enterprise security. 

ELS enumerates a number of tenets and concepts that guide its requirements and 

implementation details [4]. One important idea in ELS is that all communication and 

sharing is done with end-to-end integrity and encryption between two endpoints. No 

other entities are allowed to view or modify such communication.  Also, when two 

entities communicate, they have strong assurance that they are communicating with 

each other. This relies on strong end-to-end authentication of both entities [5] and 

hardware for storing and using private keys for high security applications.  

The ELS private cloud hosting approach is shown in Fig. 1, where a normal 

request flows from a browser on an enterprise machine to a server hosted in the private 

cloud on a virtual machine. The browser uses the smart card certificate and private key 

to authenticate through TLS to the server. The smart card private key is accessed 

through a universal serial bus (USB) smart card reader, and the smart card is protected 

by a personal identification number (PIN). The server uses its certificate and HSM key 

to authenticate to the browser. The connection from the server to the HSM is secured 

through a separate TLS connection. This HSM connection may be local and long-lived. 

Session keys are used for the encryption, decryption, and validation of TLS transmitted 

data. 

 

Figure 1. Normal web request flow. 

3. The Public Cloud Challenge 

The simplest method to move to the public cloud is to directly apply the private cloud 

model to the public cloud.  For higher security, an administrator from the enterprise can 

visit the cloud provider and generate hardware key pairs on a validated HSM.  A 

further security measure is to create only direct connections between cloud servers and 

the HSM and eliminate the use of virtual HSM interfaces.  A final security measure is 

for an administrator to create all of these direct server-to-HSM connections while 

visiting the cloud provider.   

Using all of these security measures, an administrator can create long-lived TLS 

connections between the servers and the HSM. Special tokens or keys that are used to 

create HSM connections are held by the enterprise and not shared with the cloud 
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provider. This prevents the cloud provider from creating additional connections. The 

server private keys are in hardware, and the only connections to the HSM are from the 

associated servers.  

 

Figure 2. Web request flows in an untrusted cloud – direct TLS state manipulation to allow additional HSM 

connections. 

However, the cryptographic keys for the secure HSM connection, along with any 

other necessary information including sequence numbers and other internal states, are 

stored in software on the server as part of the TLS connection state. This sensitive 

information can be extracted by an untrusted cloud provider by either copying the 

virtual machine on which the server is running or probing it through hypervisor 

interfaces. With access to the memory of the machine, methods exist to directly extract 

TLS keys from an executing application [6]. With these keys and the appropriate state 

information, the cloud provider can inject new private key usage requests to the HSM 

by creating the proper messages and updating the internal state of the server TLS 

connection, such as sequence numbers, initialization vector values, and other 

encryption state. This is shown in Fig. 2. 

It requires specialized skills to probe a virtual machine image and manipulate TLS 

session keys, but the cloud provider has the required level of access to perform these 

actions. Even with dedicated effort to hide the TLS state in the virtual machine, the 

protection is only obfuscation, and such an approach fails to satisfy ELS security 

principles.   

4. Proposed Secure Solutions 

The main problems discussed in this paper have stemmed from the separation of the 

server and HSM and the challenge of establishing a secure connection between them.  

The approaches that follow attempt to combine the server and key. 

4.1. Server in HSM 

One way to combine server and keys is by implementing the entire server and its keys 

inside the HSM. The HSM server connects with the browser through a TLS connection, 

as shown in Fig. 3. The application is pre-loaded onto the HSM, associated with the 

proper private keys, and then shipped to the cloud provider. The private key access 

occurs completely within the HSM, which protects it from the cloud provider.  
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Figure 3. Proposed solution with server in HSM. 

The main hurdle for this approach is that HSMs are expensive, special purpose 

devices designed specifically for key generation, storage, and use. They are not 

designed to run arbitrary software, and they typically do not have the storage or 

computation power required to support a full server. These are problems, but they are 

implementation issues within a fundamentally secure design. 

4.2. Homomorphic Encryption 

A second way to combine server and key is through the use of homomorphic 

encryption.  Homomorphic encryption allows data to be processed while remaining 

encrypted [7]. The programs that normally operate on the unencrypted data are 

transformed to operate on the encrypted data. 

In a homomorphic encryption solution, the requester encrypts its requests using 

homomorphic encryption. These requests are not decrypted at the transformed server. 

They are used as encrypted inputs to a program that operates on encrypted data. Part of 

the server processing involves authentication using an HSM. The HSM is also 

transformed to operate on encrypted data. The server sends encrypted key operation 

requests to the HSM and uses the encrypted response to authenticate to the requester. 

Similarly, the server can authenticate as a requester to other servers that accept 

encrypted requests. The design for the client to server communication is shown in Fig. 

4. 

 

Figure 4. Proposed solution using homomorphic encryption. 

The primary issue with the full homomorphic encryption (FHE) approach is 

performance. Current implementations of FHE are extremely slow [8]. FHE has seen 

significant performance improvements, but it is still far from practical.   
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5. Operational Considerations 

The previous section discusses designs for server private key security in the public 

cloud. This section examines implementation issues for the secure designs. 

5.1. Cloud Vendor Support 

The cloud vendor controls the HSM and server and is centrally positioned to provide 

server private key security. Current cloud providers offer cloud-based key management 

services backed by HSM key storage, but they offer virtual HSM interfaces, and 

controls on key access are set at this virtual interface [9]. The cloud provider allows the 

enterprise administrator to set permissions on key use, but these permissions apply only 

to other enterprise users, not to the cloud provider itself. The cloud provider maintains 

direct control of the HSMs. 

One promising approach for server integrity is a method to establish software root 

of trust unconditionally on hardware [10]. This provides assurance that no malware is 

present on a machine when it boots. The cloud provider performs this procedure to 

ensure that no malicious code is hidden on the hardware during the boot process. 

However, this still relies on the cloud provider to perform the procedure properly. 

Server private key security must come from outside the cloud provider. 

5.2. HSM Vendor Support 

An HSM can provide the property that a key cannot be duplicated. Major HSM vendors 

also provide some accommodations to facilitate the move to the cloud [11]. Thales, for 

example, provides a method to create a key on a local HSM and securely copy it to an 

HSM in the cloud [12]. However, this feature does not protect the cloud HSM from the 

attacks on the server-to-HSM connection. It also explicitly creates a copy of the private 

key, which is against ELS principles.  

To improve security, the HSM vendor must provide a way to authenticate the 

server connections. However, the HSM is the key holder for server authentication, so 

this becomes a bootstrapping problem. Thus, the HSM vendor cannot solve this issue 

using advanced key management. 

5.3. Leveraging Mobile Device Management (MDM) Technologies for Cloud Assets 

Mobile device vendors embed hardware security features to enable secure 

communication with their devices. For example, the vendor can embed their own PKI 

root certificate authority (CA) public key in the hardware to enable trusted software 

updates [13].  The MDM services integrate with these hardware protections. The 

operating system, securely loaded by the hardware after signature validation, provides a 

set of APIs that can be used to remotely control the operation of the device.  

The hardware protections of a mobile device make the device much like an HSM. 

The ability to remotely manage the phone, and in particular the ability to restrict user 

functions, makes such a device desirable for cloud hosting environments. In this 

scenario, the cloud provider acts as the mobile user, and the cloud client acts as the 

MDM administrator. The client hosts their server on a cloud-provided mobile device 

and manages it in the potentially hostile cloud environment through the MDM 
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interfaces. This allows the remote client to limit the activities of the hands-on cloud 

provider instead of the cloud provider limiting the client’s activities.  

6. Conclusions 

The public cloud offers many desirable benefits in cost, efficiency, and even security, 

but taking advantage of these while maintaining secure server private key management 

is a challenge. Problems in the public cloud and hybrid cloud stem from the separation 

of the server from its authentication key in the HSM. An untrusted cloud provider can 

exploit this separation to use the private key of the server.  

The proposed solutions for secure design have the common theme of encapsulating 

the server and HSM within a single logical entity. This eliminates the difficult problem 

of authenticating the server and HSM to each other. Using an HSM as the single logical 

entity provides a hardware encapsulation that hides the communications between the 

server and key management within the HSM itself. Using homomorphic encryption 

creates this single logical entity in software by encrypting the requests and responses 

and allowing the cloud provider to access and process only this encrypted data.  

Current technology appears poised to be able to implement these approaches. The 

performance of FHE is currently poor, but it is improving.  Mobile devices include 

technology that can allow secure remote management and software updates, which is 

similar to what is required of the “server in HSM” solution.  
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