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Abstract. The bounded traveling waves solutions of a (3+1) dimensions mKdv-

ZK equation be investigated by using method of dynamical systems. The exact 

expressions of bounded periodic waves, solitary waves and kink waves are given. 

Under fixed parameter condition, the planar simulation graphs of the bounded 

periodic waves, solitary waves and kinks are obtained by using the software 

Mathematica 7.  
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1. Introduction 

The well-known Kdv equation has perfect dynamic properties. Since Kdv equation 

was proposed, many scholars have done a lot of research and obtained a lot of results. 

Some researchers have extended the Kdv equation, and proposed Kdv-B, mKdv, 

mKdv-ZK equation, etc. In reference [1], the mKdv-ZK equation is studied with 

homogeneous balance method, and some traveling solution is given. In this paper, the 

Vries – Zakharov – Kuznetsov (mKdV-ZK) equation is investigated by using the 

bifurcation method [2, 3, 4] of dynamical systems: 

 

where ,  and   are real constants, the properties of singular point of mKdv-ZK 

plane are obtained, and the bifurcation of phase portraits are given. The exact solutions 

of bounded periodic waves, solitary waves and kinks of mKdv-ZK are obtained by 

using phase portraits. Under fixed parameter conditions, the plane simulation diagrams 

of the bounded periodic waves, solitary waves and kinks were obtained by using the 

software Mathematica 7. 
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2. The Bifurcation of Phase Portraits 

Letting , , where c is wave velocity, then Eq. 

(1) can be transformed into: 

 

   Integrating straightforwardly Eq. (2), and taking integral constant as 0, we get 

 

Letting , then Eq. (3) can be transformed into a plane system: 

 

Obviously, plane system (4) is a Hamiltonian system, where Hamitonian function as 

follow Eq. (5): 

 

Letting , obviously, the plane system (4) has the properties of singular 

points as follow: 

 when ,  the plane system(4) has three singular points , , 

 and  

 If , then  is a saddle point,  and  are two 

center points.  

 If , then  is a center point,  and  are two 

saddle points.  

 When , then plane system (4) has only one singular point ,  

 If , then  is a saddle point.  

 If , then  is a center point.  

From the above analysis, the phase portraits of plane system (4) can be drawn by 

Eq.(5).  
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（i）  ,             (ii) ,   

   

(iii)  ,          (iv) ,   

Figure 1 The bifurcation of phase portraits of the system (4) 

3. The Traveling Wave Solutions 

Setting  as a initial point, substituting it into Eq.(5), then we get 
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0
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where . The traveling wave solutions can be obtained by integrating Eq. 

(1).  

3.1. The Periodic Wave Solutions 

Since the traveling wave corresponding to the smooth closed orbit of the phase portrait 

is a bounded periodic wave, the solution of the bounded smooth periodic wave can be 

obtained by integrating Eq.(8) along the periodic orbit.  

Property 1. Under the following conditions, Eq. (1) has a bounded smooth periodic 

wave.  

(i). If ,  , , then the periodic orbit  (see Figure 1(ii)) 

determines a periodic wave and its solution is: 

 

(ii). If ,  , , then the periodic orbit  (See Figure 

1(vi)) determines a periodic wave and its solution is: 

 

where .  

(iii). If , , , then the periodic orbit  (See Figure 

1(iii)) determines a periodic wave and its solution is Eq.(9) 

(vi). If , , , then the periodic orbit (See 

Figure 1(iii)) determines a periodic wave and its solution is: 
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where .  

(v). If , , , then the periodic orbit  (See Figure 

1(iii)) determines a periodic wave and its solution is: 

 

where .  

Proof: (i). when the conditions ,  are satisfied, taking , then 

the orbit (See Figure 1(ii)) passing through initial point  is a smooth closed 

orbit, and on  plane, the traveling wave corresponding to it is bounded periodic 

wave.  

Eq.(8) can be transformed into: 

 

Integral Eq.(13) along  

 

Using the elliptic integral formula 259. 00 in reference [5] to calculate (20), the 

bounded smooth periodic wave solution (9) can be obtained.  

(ii). when the conditions ,  are satisfied, taking  to satisfy 

, then the orbit  (See Figure 1(vi)) passing through initial point 

 is a smooth closed orbit, and on  plane, the traveling wave corresponding 

to it is bounded periodic wave.  

Eq.(8) can be transformed into: 

 

letting , Integral Eq.(15) along  
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Using the elliptic integral formula 255. 00 in reference [5] to calculate Eq.(18), the 

bounded periodic wave solution Eq.(10) can be obtained.  

(iii) when the conditions , are satisfied, taking , then 

the orbit (See Figure 1(iii)) passing through the initial point  is a smooth 

closed orbit, and on  plane, the traveling wave corresponding to it is a bounded 

periodic wave. In the same way as (i), the periodic wave solution is Eq.(9).  

(vi) when , , taking  to satisfy , then the 

orbit  (See Figure 1(iii)) passing through the initial point  is a smooth closed 

orbit, and on  plane, the traveling wave corresponding to it is a bounded periodic 

wave.  

(8) can be transformed into: 

 

letting , integral Eq.(17) along  

 

Using the elliptic integral formula 253. 00 in reference [5] to calculate Eq.(18), the 

bounded periodic wave solution Eq.(11) can be obtained.  

(v). when , , takint  to satisfy , then the orbit

 (See Figure 1(iii)) passing through the initial point  is a smooth closed 

orbit, and on  plane, the traveling wave corresponding to it is a bounded 

periodic wave.  

Eq.(8) can be transformed into: 
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Letting , integral Eq.(19) along  

 

Using the elliptic integral formula 256. 00 in reference [5] to calculate Eq.(20), the 

bounded periodic wave solution Eq.(12) can be obtained.  

3.2. Solitary Wave Solutions 

Since the traveling wave corresponding to the homoclinic orbit of the phase portraits is 

a bounded smooth solitary wave, the solution of the bounded smooth solitary wave can 

be obtained by integrating Eq.(8) along the homoclinic orbit.  

Property 3 when , , there is a solitary wave in Eq. (1).  

(i). The homoclinic orbit  (See Figure 1(iii)) determines a downward bounded 

smooth solitary wave, and the solitary wave solution is: 

 

(ii). The homoclinic orbit  (See Figure1(iii)) determines a upward bounded 

smooth solitary wave, and the solitary wave solution is: 

 

Proof: (i). when the conditions ,  are satisfied, then the orbit  

passing through point  is a homoclinic orbit, and on the  plane, the 

traveling wave corresponding to it is a bounded smooth solitary wave.  

Eq.(8) can be transformed to: 

 

Integrate Eq. (23) along  
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A bounded smooth solitary wave Eq.(21) can be obtained by calculating Eq.(24).  

(ii). the orbit  passing through point  is a homoclinic orbit, then on the 

 plane, the traveling wave corresponding to it is a bounded smooth solitary wave.  

Eq.(8) can be transformed to: 

 

Integrate Eq.(25) along  

 

The bounded smooth solitary wave Eq.(24) can be obtained by calculating Eq.(26).  

3.3. Kink Solutions 

Since the traveling wave corresponding to the heteroclinic orbit of the phase portraits is 

a bounded kink, the solution of the bounded kink can be obtained by integrating Eq.(8) 

along the heteroclinic orbit.  

Property 4 when , , there are two kink in the Eq. (1).  

(i). the heteroclinic orbit (See Figure 1(iv)) determines a kink, and the solution 

of the kink is: 

 

where .  

(ii). The heteroclinic orbit (See Figure 1(iv)) determines a kink, and the 

solution of the kink is: 
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where .  

Proof: (i)when the conditions ,  are satisfied, taking  to satisfy 

, the orbit  passing through saddle point  are two 

heteroclinic trajectories, on the  plane, the traveling waves corresponding to it 

are two bounded kinks.  

Eq.(8) can be transformed to: 

 

Integrate Eq.(29) along  

 

The two bounded kinks Eq.(27) and Eq.(28) can be obtained by calculating Eq.(30).  

4. The Plane Simulation Graphs of Traveling Wave 

Taking fixed parameters, according to the solution of the traveling wave, then the plane 

simulation graphs of bounded periodic wave, solitary wave and kink can be obtained 

by using Mathematica7.  

Example 1. Letting , then , 

. Letting , then . Substituting 

these data into Eq.(11), we draw a plane simulation graph of a bounded periodic wave, 

as shown in Figure 2(i).  
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Example 2. Letting , then . Letting 

, then . Substituting these data into Eq.(12), 

we draw a plane simulation graph of a bounded periodic wave, as shown in Figure 2(ii).  

Example 3. Letting , Substituting these data into Eq.(21) 

and Eq.(22), we draw respectively two plane simulation graphs of a bounded solitary 

wave, as shown in Figure 3(iii) and (iv).  

Example 4. Letting , then . Letting 

, substituting these data into Eq.(27) and Eq.(28), we draw respectively two 

plane simulation graphs of a bounded solitary wave, as shown in Fig. 4(iii) and (vi).  

 

 
 

(i)  (ii)  

Figure 2. The periodic waves of Eq (1) when  

  

(iii)  (iv)  

Figure 3. The solitary waves of Eq (1) when  
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v)  (vi)  

Figure 4. The kinks of Eq (1) when ,  

5. Conclusion 

In the study of traveling wave solutions of wave equations, the bifurcation theory of 

differential dynamic systems has been widely applicated. In a Hamiltonian system, the 

phase graphs bifurcation of a plane system can be drawn by using the bifurcation 

theory of differential dynamic systems. The orbit on the phase graphs correspond to 

different traveling wave bifurcation. The smooth closed orbit determines the periodic 

wave solution of the wave equations. The homoclinic orbit determines the solitary 

wave solutions of the wave equation. The heteroclinic orbit determines the kink wave 

solutions of the wave equation. In this paper, the periodic wave solutions, the solitary 

wave solutions, and kink solutions of mKdv-ZK equation are derived by using the 

bifurcation theory of differential dynamic systems, and their plane simulation graphs 

are given.  
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