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Abstract. While individuals benefit from the goods and services provided by com-
panies that enrich their lives and that have adapted to a dynamic environment that is
always changing, these companies pay a high communication cost to access oppor-
tunities to provide these goods and services and to seek a better understanding of
individual customers’ changing needs. Although vast amounts of information can be
obtained, databases and machine learning are playing an increasingly important role
in extracting meaning from this information, turning it into meaningful information
assets that consider circumstances and contexts, and individualizing the economy
of information. I propose an implementation method for providing information to
enrich the profiles of individual customers by consolidating different data, calcu-
lating the individual customers’ needs through the relationships between customers
and products, evaluating the change in relationships between individual customers
and products over time, and providing goods and services to suit different intervals
of change to factors such as lifestyle and living environment. As there are different
factors involved in estimating the incidence of needs, and different frequencies and
rates at which they occur, based on the special characteristics of products, different
data are required to estimate such needs. By profiling individuals over the long term,
it is possible to build an information provision environment that is conducive to
companies’ customer acquisition.

Keywords. Recommendation system, Mathematical Model of Meaning, Logistic
Regression Mixture Model, Local Variational Inference, Retail Application, Hawkes
process

1. Introduction

We live in an era in which digitalization technology, along with high-speed communi-
cation, large volumes of data, and advanced artificial intelligence technologies such as
machine learning, can effectively support the use of information. Today, companies can
not only send various types of messages to a massive number of customers and obtain
their responses but also interact with them and get feedback on products and services
through messaging. There is a growing expectation that further development of infor-
mation digitalization will make it possible to store a huge amount of information in the
form of databases that can be applied to digital marketing. In addition, the popularization
of smartphones has increased the number of digital points of contact with customers,
enabling the consideration of reachability, segmentation, perception, and recordability
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when evaluating such messaging media and recording their position, time, and response in
more detail. Given the need to find meaning from information, convert it to a meaningful
property that considers the situation and context, and personalize its economic efficiency,
information technologies involving databases and machine learning are expected to be
advanced further.

The era of digital marketing is forcing companies to change their business formats
and break away from single channels with only brick-and-mortar stores. The same can be
said about marketing channels, which require a paradigm shift to digital omni-channels
and need to stop relying only on traditional distribution channels and sales methods.
Thus, in this new era, adopting an omni-channel strategy is essential for survival. The
essence of marketing is to generate and control customer needs for products and direct the
flow of products and services from manufacturers to consumers and users by combining
products, distribution, promotion, and prices. To this end, it is necessary to capture the
behavior of each customer, record it as data, and monitor its trend for long periods.

The advertisement industry uses a technique that considers the processes of attention,
interest, desire, memory, and action (AIDMA). For each of these processes, it identifies
elements of perception, knowledge, feelings and emotions, intentions, and actions that
form a consumer’s attitude and measures advertising effectiveness by applying an attitude
scale used in psychology. Companies are required to turn these processes into data and
understand each process from the perspective of customers for all products and services.
To ensure communication that encompasses the entire living environment of the dweller
or consumer and stimulate these processes, as each person assigns a different value to
information and requires it at different times, it is important for companies to specialize
for each customer, design the value of information, record it, and use it to predict demand.

Response: Customer responses to messages Recommend: Recommendations made
by companies based on analysis of customer responses Reach: Messages reach both com-
panies and customers Relation: Sell products and services through relationship building
Repeat: Multiple uses of products and services Retention: Maintain a customer base by
transforming them into repeat purchasers Royalty: Win customer loyalty by gaining their
trust

Several advertisement techniques are based on passive information, but users nor-
mally provide poor responses to information they did not request. Merely recorded infor-
mation increases asymmetry, driving companies to implement massive promotion mea-
sures for marketing activities that explore the emergence of customer needs. Therefore,
for companies to detect customer interest in products that emerges with life events, obtain
information close to the timing of their purchase intention, and understand the customer’s
needs, they must evaluate the economic efficiency of the information through the use of
a database.

When companies regard each customer as a human being, they can record marketing
activities from the customer’s human side, taking into consideration what kind of products
and services would make their lives more comfortable, from birth till death. It can be
said that understanding customers through communication is becoming an increasingly
important element. In this context, companies are increasingly expected to implement
digital marketing strategies that predict the timing of customer needs according to their
life stages and events.

The expansion of contact points with customers faced limits. In face-to-face channels
because customer information, service history, and past suggestions are not shared
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across channels in real time when collecting information regarding a first-time customer,
it is necessary to interview them from the ground up; thus, the process from suggestion
to purchase takes a considerable amount of time.

It is possible to identify the relationships among products from different backgrounds
such as durable goods (e.g., cars, houses, furniture, household appliances), consumer
goods (e.g., food, daily-use items), non-durable goods (e.g., eating out, cultural enter-
tainment), and luxury consumer goods (e.g., travel, jewelry) as well as those among the
methods of payment used to purchase such goods and financial products such as mort-
gages, fund management, and asset formation. Customers’ opportunity and frequency of
purchase of these products and services varies in their life. Companies are also expected
to ensure consistency between customers’ life events, evaluate their economic power in-
cluding consumption capability (e.g., work and family history, asset status), analyze how
it changes over time, and suggest products and services with adequate pricing. Financial
institutions, particularly banks, possess a large number of information assets obtained
through payment and deposit data for each customer. These information assets create op-
portunities for them and other companies to suggest financial products and offer services
that suit customers’ life events and style. Such use of information is expected to play
an important role in the stimulation of processes through corporate marketing activities
in the next years. While companies are working to stimulate marketing processes indi-
vidually by offering products and services with different frequencies and cycles, banks
and other financial institutions are expected to understand customers’ global needs from
their perspective and effectively support the stimulation of marketing processes. Banks
record not only customers’ attributes but also their purchase history and behavior through
various points of contact, and, based on the potential needs identified, make suggestions
from various channels through establishing contact in real time and immediately evaluate
the causal effect and prediction accuracy of those suggestions. Based on the assessment
results, they can quickly make further suggestions according to the customer needs identi-
fied. In such processes, the advancement of information technologies related to databases,
machine learning, and big data analysis plays an essential role.

The advancement of such digital banking services will allow companies to build
full profiles of their customers, enabling them to offer products and services according
to their life events and styles and suggest related financial products. The effect of this
process can be maximized if companies reduce the asymmetry of the information volume
designed to learn about customers and make the information acquisition process more
efficient. Targeting can play the most important role in maximizing the return on marketing
investments.

2. Related Works

We have previously proposed a recommendation system that utilizes action and demand
vector simultaneously and updates a recommendation list in a same cycle [1]. After this
work, we have proposed another system that utilizes the action vector more frequently
than the demand vector [2]. In this paper, we introduce a new concept life time that is
longer interval to update than the action and the demand.
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3. Basic Theories

Here, we introduce the methodologies used in this study. Specifically, we use the mathe-
matical model of meaning (MMM) and machine learning; Bayesian inference of a logistic
regression mixture model (LRMM) and Hawkes process.

3.1. Mathematical Model of Meaning

The MMM was first used to extract semantic information behind data deterministically
[3]. Let X ∈RN×M be a data matrix, where N is the number of data and M is the number of
features. We normalize each column of the matrix by the 2-norm, and denote the resulting
normalized matrix by X̃, i.e. the (i, j)th element of the matrix is

X̃i, j =
Xi, j√∑N
k=1 X2

k, j

. (1)

This is referred to as the fundamental data matrix. For the product of (1) X̃TX̃, we calculate
the eigenvalues and eigenvectors. Let λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0 be the eigenvalues and
v1,v2, . . . ,vM the corresponding eigenvectors , Y = [YT

1 ,Y
T
2 , . . . ,Y

T
t ] ∈ Rt×M t×M context

matrix, and Q = [v1,v2, . . . ,vM] ∈ RM×M . Then, for a threshold ε, MMM determines the
index set of the chosen eigenvectors Λε by

Λε =
{
j ∈ {1,2, . . . ,M}|0 < ε < 1,

(QY ) j

‖QY‖∞ > ε
}
. (2)

Here, QY =
∑t

i=1 YiQ, (QY ) j is the j-th element of QY , and ‖QY‖∞ = max
1≤ j≤M

|(QY ) j|. Ar-

ranging the chosen eigenvectors, we obtain the semantic projection

P(Y) = [vT
j | j ∈ Λε] ∈ R|Λε |×M , (3)

where |Λε | represents the cardinality of Λε . When we apply the projection to each datum
g ∈ RM , the datum is regarded as an element of a semantic space, denoted by P(Y)g. In
this semantic space, we can measure the distance between the datum and the semantic
centroid D̄:

D̄ =
1

‖PY‖∞ PY , (4)

where PY =
∑t

i=1 P(Y)Yi. Let D̄ j and (P(Y)g) j be the j-th elements of the vectors; the
distance is calculated as the weighted Euclidean distance dist(D̄,g),

dist(D̄,g) =

√√√√ |Λε |∑
j=1

c j
(
D̄ j− (P(Y)g) j

)2
, (5)

where c j =
(PY ) j
‖PY ‖∞ .
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3.2. Logistic Regression Mixture Model and Local Variational Inference

LRMM is a mixture of a logistic regression model, and used to solve classification
problems like those found in marketing, clinical trials, and psychology [4,5,6]. This model
represents the probability of a binary output y given an input data x as follows:

p(y|x,w) =
K∑

k=1

akr(x,bk)y(1− r(x,bk))1−y, (6)

where y ∈ {0,1}, x ∈ RM , bk ∈ RM , 0 ≤ ak ≤ 1 for 1 ≤ k ≤ K,
∑K

k=1 ak = 1, and r(·) is
a sigmoid function r(x,bk) = 1/(1+ exp(−xTbk)). w = (a1,a2, . . . ,aK ,b1,b2, . . . ,bK) is a
parameter, and we must estimate it or the probability distribution itself from n pairs of
input and output (xn,yn) = (x1, x2, . . . , xn,y1,y2, . . . ,yn).

Several methods have been proposed to estimate the parameters [7,8,9]. In this study,
we use the method proposed by [1] to estimate the probability distribution because it
is more accurate than the other methods. Moreover, the method leverages mini-batch
learning; thus it learns efficiently. The calculation is as follows. In the first step, we assume
a prior and a posterior distribution of the parameter given the training data. Let ϕ(w) be
the prior distribution, and p(yn|xn,w) the likelihood of (6); then, the posterior distribution
of the parameter p(w|xn,yn) is obtained as follows:

p(w|xn,yn) =
1
Z

p(yn|xn,w)ϕ(w), (7)

where Z =
∫

p(yn|xn,w)ϕ(w)dw. By using the posterior distribution, we obtain the output
distribution p(y|x, xn,yn) that we want to predict, which we call the predictive distribution
in this paper:

p(y|x, xn,yn) =
∫

p(y|x,w)p(w|xn,yn)dw. (8)

However, the normalization constant Z of the posterior distribution is intractable.
To avoid the problem, we leverage an approximated posterior distribution replacing (7).
Local variational inference (LVI) with mini-batch learning can construct the approximated
distribution efficiently and accurately. [1]. In mini-batch learning, we first divide the
whole data (xn,yn) into T mini-batches of data:

{(xn,yn)} = {(xn1 ,yn1 ), (xn2 ,yn2 ), . . . , (xnT ,ynT )}.

Let the prior distribution ϕ(w) be

ϕ(w) ∝
K∏

k=1

aα−1
k exp

(
−β

2
bT

k bk
)
, (9)

where α,β ∈ R+ are hyperparameters that are tuning parameters. Then, the approximated
posterior given the t-th partition (xnt ,ynt )= ((x1,t,y1,t), . . . , (xnt ,t,ynt ,t)) is written as follows
[1]:
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p̂(w|xnt ,ynt ) ∝
K∏

k=1

a
α̂t

k−1
k exp

(
−1

2
(bk − μ̂t

k)Tβ̂t
k(bk − μ̂t

k)
)

(10)

α̂t
k =α̂

t−1
k +

nt∑
i=1

uik,t(ξ), (11)

β̂t
k =β̂

t−1
k −

nt∑
i=1

2uik,t(ξ)vik,t(η)xi,t xT
i,t, (12)

μ̂t
k =(β̂t

k)−1κ̂tk, (13)

κ̂tk =κ̂
t−1
k +

nt∑
i=1

uik,t(ξ)
(
yi,t −0.5

)
xi. (14)

For simplicity, we set the initial conditions as α̂0
k = α, β̂

0
k = βIM , and κ̂0k = 0. In

(10)-(14), it is necessary to determine the local parameters uik(ξ) and vik(η). They are
represented as follows:

uik,t(ξ) =
exp(hik,t(ξ))∑K
l=1 exp(hil,t(ξ))

, (15)

vik,t(η) =−
tanh(

√
gik,t(η)

2 )

4
√

gik,t(η)
, (16)

hik,t(ξ) =Ψ(α̂t
k)−Ψ(

K∑
k=1

α̂t
k)+ (yi,t − 1

2
)xT

i,tμ̂
t
k − log2cosh

( √gik,t(η)
2

)
, (17)

gik,t(η) =xT
i,t
(
μ̂t

k(μ̂t
k)T+ (β̂t

k)−1)xi,t, (18)

where Ψ(·) is the digamma function, i.e. Ψ(x) = d
dx logΓ(x), where Γ(·) is the gamma

function. Note that (10) - (14) and (15) - (18) include their opponent each other, thus
by iterative update the method can attain a local minimum. Algorithm 1 outlines this
approach.

The predictive distribution for the t-th partition is approximated by replacing the
obtained approximated posterior distribution with the posterior distribution used in (8),
as follows:

p(y|x, xnt ,ynt ) ≈
∫

p(y|x,w)p̂(w|xnt ,ynt )dw ≈
⎧⎪⎪⎨⎪⎪⎩
∑K

k=1 âkr̃(x) (y = 1)∑K
k=1 âk(1− r̃(x)) (y = 0)

. (19)

Here, ât
k = α̂

t
k/
∑K

l=1 α̂
t
l and r̃(x) is

r̃(x) = r
( xTμ̂t

k√
(1+πxT(β̂t

k)−1x)/8

)
.
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Algorithm 1 Mini-batch LVI for LRMM
1: procedure Minibatch(α,β, iteration, tol, partition)
2: F←∞
3: Initialize α̂k, β̂k, μ̂k
4: for t← 1,∞ do
5: pick up next (xnt ,ynt )
6: while ite ≤ iteration do
7: ĝik(η)← (18), v̂ik(η)← (16)
8: ĥik(ξ)← (17), ûik(ξ)← (15)
9: α̂t

k← (11)
10: β̂t

k← (12)
11: μ̂t

k← (13)
12: ite← ite+1
13: end while
14: end for
15: end procedure

3.3. Hawkes Process

Hawkes process is one of a point process which is modeled to describe the timing of
events like the timing of purchase, e-mail message, tweet, earthquake, and so on [10,11].
Especially, Hawkes process leverages past events, that is the more events happen in the
past, the more likely they are to happen at the current time. We utilize the process to
classify a current status of life event.

Let λ(t) be an intensity function at time t, then the probability distribution of the
number of event occurrence N(t, t+ δ) between t and t+ δ, where δ > 0 is a sufficiently
small real number, is described as,

p(N(t, t+δ) > 1) = o(δ),

p(N(t, t+δ) = 1) = λ(t)δ+o(δ),

p(N(t, t+δ) = 0) = 1−λ(t)δ+o(δ).

Here, o(δ) represents a term that converges to 0 faster than δ. In particular, the Hawkes
process consists of the following intensity function:

λ(t) = μ+
∑
j|t j<t

g(t− t j), (20)

where μ ∈R+ and t j is the timing of the event. g(t− t j) is non-negative real valued function
and usually used the following exponential kernel:

g(t− t j) = αβexp(−β(t− t j)),

where α,β ∈ R+. Figure 1 shows a intensity function of the Hawkes process and timing
of events. The solid line shows the intensity function λ(t) = 10+

∑
j|t j<t exp(−(t− t j)), and

the cycle shows the timing.
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time

Figure 1. Example of Hawkes process with intensity function λ(t) = 10+
∑

j|t j<t exp(−(t− t j)).

In practice, we should decide the parameters μ, α, and β from the timing data tn =

(t1, t2, ..., tn). Several methods to infer the parameters have been proposed [12,11,13,14].
In this paper, we optimize the following objective function: the function L(μ,α,β|tn) is
formalized by negative log likelihood with a regular regularization term

L(μ,α,β|tn) =−
∑
i=1

log
{
μ+
∑
j| j<i

αβexp(−β(ti− t j))
}

+
{
μT +

n∑
i=1

α
(
1− exp(−β(T − ti))

)}
+

c1

2
μ2+

c2

2
α2+

c3

2
β2, (21)

where T is total time that observes the events and c1,c2,c3 ∈ R+ are hyperparameters. To
minimize the objective function, we use quasi-newton method.

4. Implementation for Architecture

This section specifically shows the method to implement our recommendation system.
Previous work [2] assumed that personalized recommendation system is necessary be-
cause the needs highly depend on each customer, and utilizes demand and action vectors
to personalize the system. Additionally, we assume that the customer’s behavior highly
depends on their stage of life event, therefore we detect the status of the life event in this
paper. Figure 2 shows a calculation flow that takes the above concept into account. In
the term and cycle phase, the demand and action vector are updated respectively, and the
stage of the life event is classified in the life time phase. The difference among the phases
is their interval; the cycle phase is the shortest interval among the phases such as 1 hour,
30 minutes, 1 minutes, the term phase is the intermediate such as 1 week, 1 month, and
the life time phase is the longest such as 1 year, 10 years. Note that we assume that the
products information like assortment, sale products is updated in the term phase. We will
explain each phase one by one.

4.1. Initialization phase

The system initializes the setting here. Since the system has no information about action
vector at this phase, it utilizes the product information and the purchased information for
each customer at the first cycle. The process comprises the following steps.
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Figure 2. Calculation flow considered the above concept.

Step 1-1.
Determination for Recommendable products:
The system picks up products that can be recommended in the current term, and
regard the normalized ones as a fundamental data matrix X̃ ∈RN×M as we explained
at section 3.1. Here, N is the number of possible products to recommend, and M
the number of their features.

Step 1-2.
Generation of a Demand Vector:
Let Y j be a context matrix that represents feature matrix of products that was pur-
chased previously by the j-th customer, then the system can calculate the semantic
projection P(Y j) in (3). Using the projection, the system projects a feature vector
of a product onto the meaning space which we call the demand vector in this paper.
For feature vector gs ∈ RM of an product s, the system projects it onto the demand
vector P(Y j)gs.

Step 1-3.
Determination of Recommended Items:
The system calculates a weighted Euclidean distance dist(D̄,gs) in (5) between
the s-th demand vector P(Y j)gs and the centroid of the meaning space D̄ in (4),
and recommends the products in ascending order of the distance by the number of
possible indicating products L.

4.2. Cycle phase

After initialization phase, a customer’s phase moves to the cycle phase. In the cycle phase,
the system updates the recommendation list of customers that purchased something in
the previous cycle. The process is the following steps.

Step 2-1.
Aggregating Customer’s Action:
In this step, the system aggregates the customer’s action log in the previous cycle.

Step 2-2.
Establishing Purchase Willingness:
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After aggregating the customer’s action, the system calculates a purchase willing-
ness for each product. The value of the purchase willingness Ws for action vector
rs of product s is set as follows:

Ws =

⎧⎪⎪⎨⎪⎪⎩1 (dist(ā,rs) ≤ εr)
0 (otherwise).

(22)

Here, ā represents a centroid of action vectors that was purchased previously,
and dist(ā,rs) represents the Euclidean distance between ā and rs. The purchase
willingness represents whether the action vector is close to the action vectors
previously purchased or not.

Step 2-3.
Updating Learning Model:
In this step, the system adopts the mini-batch LVI for LRMM in section 3.2 to score
the products. The demand and the action vectors of the products are the inputs
xnt , and the purchase willingness of the products are the outputs ynt . Note that the
learning model assumes that a dimension of the input does not change dynamically,
thus the system initializes the model if the context is updated because the new
semantic projection may have different dimensions or represent other demand even
same dimensionality.

Step 2-4.
Updating Recommendation Items:
In this step, the system updates the recommendation products on the basis of pre-
dicted strength of the purchase willingness, which is obtained by p̂(y = 1|x, xnt ,ynt )
in (19). Since there is no information on which products will be purchased or
reacted in the next cycle, the system substitutes the input of the next cycle for the
current ones that was utilized for learning. The system recommends the products
by ascending order of the strength p̂(y = 1|x, xnt ,ynt ) by the recommendation size
L.

4.3. Term phase

After several cycle updates, the customer’s phase moves to the term phase. In the term
phase, products information is updated, therefore the system updates the demand vectors.
The process is the following steps.

Step 3-1.
Updating Recommendable Products:
Like step 1-1, the system picks up the products matrix that that can be recommended
in the current term, and normalizes it.

Step 3-2.
Updating Demand Vector:
In this step, the system updates the context for the customers that purchase some-
thing in the previous term. After that, the semantic projection is recalculated, and
the demand vector for the current term is updated.

R. Konishi et al. / Digital Intelligence Banking of Adaptive Digital Marketing170



4.4. Life time phase

After several term and cycle updates, the customer’s phase moves to the life time phase.
In the life time phase, the system classifies the stage of the life time, and the context is
specialized on the basis of the life time stage. The process is the following steps.

Step 4-1.
Defining Life Time Products:
In this step, the system sets the life time products for each life event such as
marriage, child care, education, and so on. For example, a marriage ring is in the
marriage event, a house is in the child care event.

Step 4-2.
Predicting Status of Life Event:
In this step, the system detects the status of the life event. Let {1,2, ...,L} be a
category set of each life event tn

l = (t(1)
l , ..., t

(nl)
l ) the timing of the life event l,

where l = 1, ...,L, then the estimated intensity function λl(t) for the life event l is
obtained by minimizing (21). Since the intensity function is proportional to the
event occurrence probability,

l̂ = arg max
1≤l≤L

λl(t)

is regarded as the label of the current life stage.

Step 4-3.
Updating Context Based on Life Stage:
In this step, when the estimated life stage l̂ is different from the previous one, the
system detects a change of life event. In that situation, the context is initialized on
the basis of products that was previously purchased by other customers in the same
life event.

4.5. Algorithm

Summarizing sections 4.1, 4.2, 4.3, 4.4, we can describe Algorithm 2 to implement them.
Note that the sections 4.1, 4.2, 4.3, and 4.4 are based on one customer, but in practice,
the entire system needs to consider all customers, therefore a step of registration for
customers to be calculated is appended in the algorithm.
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Algorithm 2 Proposed Recommendation System
Require: C = ∅: A set of customers

1: procedure Recommendation(L)
2: for i← 1, sufficiently long time do
3: Wait for a cycle.
4: if i = 1 then
5: Check a set of customers C′ who purchased items in the past time.
6: else
7: Check a set of customers C′ who purchased items among the cycle.
8: end if
9: C =C

⋃
C′

10: for each c ∈C do
11: if c is appended at time i then
12: Procedure for initialization phase, i.e. section 4.1.
13: else
14: if Life time is changed then
15: Procedure for life time phase, i.e. section 4.4.
16: end if
17: if Term is changed then
18: Procedure for term phase, i.e. section 4.3.
19: end if
20: if Cycle is changed then
21: Procedure for cycle phase, i.e. section 4.2.
22: end if
23: end if
24: Display the recommendation list for customer c with the size L.
25: end for
26: end for
27: end procedure

5. Conclusion

In this study, we proposed a personalized recommendation system that not only consider
about simple use of purchased information and action log, but also the purchased timing
to detect specific life events. Compared to previous works, it is considered that our
recommendation system may be proper for the area where products highly depend on the
customer’s life event such as finance. To validate our method and improve our model in
tuning level, conducting numerical experiments based on synthetic and real data is our
future work.
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