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Abstract. In this paper, we introduce a framework for probabilistic logic-based
argumentation inspired on the DeLP formalism and an extensive use of condi-
tional probability. We define probabilistic arguments built from possibly inconsis-
tent probabilistic knowledge bases and study the notions of attack, defeat and pref-
erence between these arguments. Finally, we discuss consistency properties of ad-
missible extensions of the Dung’s abstract argumentation graphs obtained from sets
of probabilistic arguments and the attack relations between them.
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1. Introduction

In many scenarios, one has to deal with both uncertain and inconsistent information. Ar-
gumentation systems [4] have shown to be very suitable tools to reason with inconsistent
information. In the literature, there have been a number of approaches to combine differ-
ent theories of argumentation, both abstract and instantiated, with probability theory and
other uncertainty models in order to allow for a more fine-grained reasoning when argu-
ments involve uncertain information. See for instance [1,9,15,21,11,12,13,2,14,19,6].

According to [11], two main approaches can be distinguished. The epistemic ap-
proach takes the stance that the uncertainty is within the instantiated arguments (prob-
abilities are used for capturing the strength of an argument, given the uncertainty con-
cerning the truth of its premises or the reliability of its inferences, see for instance [20]).
In the constellation approach, usually in the frame of abstract argumentation, the un-
certainty is about the arguments themselves (probabilities are used for expressing un-
certainty about the acceptance of the argument by some arguing agent, see for instance
[11,12]). In contrast to [11], but similarly to [19], in this paper we consider logic-based
arguments A = (support;conclusion), where support and conclusion are logical propo-
sitions, pervaded with uncertainty due a non-conclusive conditional link between their
supports and their conclusions. In such a case, it is very reasonable to supplement the ar-
gument representation with a quantification α of how certain conclusion can be claimed
to hold whenever support is known to hold [17], leading to represent an arguments as
triples A = (support;conclusion : α). A very natural choice is to interpret α as some pa-
rameter related to the conditional probability P(conclusion | support). In this paper we
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will consider α to be a probability interval [c1,c2], meaning that the argument A provides
the information P(conclusion | support) ∈ [c1,c2].

If we internalise the conditional link within the argument as a conditional formula
support� conclusion and arguments get more complex and need several uncertain con-
ditionals to link the support with the conclusion, then we can attach conditional proba-
bility intervals to each of the involved conditionals, so arguments become of the form

A = (Π,Δ = {(ψ1� ϕ1 : β1), . . . , (ψn� ϕn : βn)}; ϕ : α),

whereΠ is a finite set of factual (i.e. non conditional) premises, ψi,ϕi’s are logical propo-
sitions, βi’s are probability intervals, and α is a probability interval with which ϕ can be
logically entailed from Π and Δ. In fact, this type of arguments can be seen as a proba-
bilistic generalization of those at work in the Defeasible Logic Programming argumen-
tation framework (DeLP) [10].

In this paper we extend our preliminary work in [7]. First of all, we consider a more
general language to build arguments, allowing conditionals (or rules) to have arbitrary
propositional formulas as antecedents and consequents, while in [7] only conjunction of
literals and literals were allowed. Second, we allow to attach intervals to conditionals
for the corresponding conditional probabilities rather than only lower bounds as in [7].
Finally, in this paper we start the study of Dung’s abstract argumentation systems asso-
ciated to our probabilistic argumentation systems, and in particular the status of Cam-
inada and Amgoud’s rationality postulates [5] for the acceptability semantics based on
complete extensions.

This paper is structured as follows. In Section 2 we introduce the notions about logic
and probability necessary for the rest of the paper. In Section 3 we present our frame-
work of probabilistic argumentation based on conditional probabilities, with the notion
of probabilistic arguments and the attack and defeat relations among them. In Section
5 we consider the abstract argumentation system associated to a set of probabilistic ar-
guments and their attacks, and we study the status of rationality postulates for Dung’s
extensions-based complete semantics. We conclude the paper with some comments on
future work.

2. Logic and probability

When aiming towards the definition of a formal argumentation framework, a first step is
the selection of the underlying language and logical system that will govern the deriva-
tion of new knowledge from a given set of information. Let L be a classical proposi-
tional language built over a finite set of variablesV and � be the consequence relation of
classical propositional logic.

Following [16], we introduce the set of probabilistic conditionals. We let LPr be the
set of expressions of the form ψ�φ: [c1,c2], where ψ,φ are formulas ofL and c1 ≤ c2 are
real numbers from the unit interval [0,1]. We call φ the consequent of ψ�φ: [c1,c2], and
ψ its antecedent. We can distinguish between classical and purely probabilistic condition-
als. Classical conditionals are either of the form ψ�φ: [1,1] or of the form ψ�φ: [0,0],
and purely probabilistic conditionals are of the form ψ�φ: [c1,c2], with c1 < 1 and c2 > 0.

Let Ω stand for the (finite) set of classical truth-evaluations e :L→ {0,1} of the for-
mulas in L. Probabilities on the set of formulas L can be introduced in the standard way,
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as it is done in probability logics [6], namely by defining a probability distribution on the
set of interpretations Ω, and extending it to all formulas by adding up the probabilities of
their models. In other words, given a probability distribution π : Ω→ [0,1], i.e. is such
that
∑

e∈Ω π(e) = 1, then π induces a probability on formulas P :L→ [0,1] by stipulating

P(ϕ) =
∑

e∈Ω:e(ϕ)=1

π(e).

As defined, P satisfies the classical axioms of probability measures, namely P(�) = 1
and finite additivity P(φ∨ψ) = P(φ)+P(ψ) whenever φ∧ψ � ⊥, and moreover P respects
logical equivalence: if � φ↔ ψ then P(φ) = P(ψ). Conversely, for any probability P on
L, there is a probability distribution π on Ω such that π induces P as above. Given a
probabilistic conditional ψ�φ: [c1,c2] ∈ LPr , we say that a probability P on L satisfies
ψ�φ: [c1,c2], if either P(ψ) = 0, or P(ψ) > 0 and P(φ | ψ) := P(φ∧ψ)/P(ψ) ∈ [c1,c2],
written

P |=pr ψ�φ: [c1,c2],

namely, the conditional probability of φ given ψ is a number in the real interval [c1,c2].
Remark that the probability of a conditional ψ� ϕ is interpreted as the conditional prob-
ability P(φ | ψ), not as the probability of the material implication P(¬ψ∨φ). Moreover,
we say that P satisfies a set of probabilistic conditionals Σ, if it satisfies each expression
in Σ. We will denote the set of probabilities that satisfy Σ by PMod(Σ).

Now we introduce a consequence relation on the set of probabilistic conditionals
LPr first defined in [16].

Definition 2.1. For any subset of probabilistic conditionals Σ∪ {ψ�φ: [c1,c2]} ⊆ LPr ,
the conditional ψ�φ: [c1,c2] is a consequence of Σ, denoted by Σ |=pr ψ�φ: [c1,c2], if
every probability P ∈ PMod(Σ) satisfies ψ�φ: [c1,c2].

Notice that, so defined, |=pr on LPr is a Tarskian consequence relation, satisfying
the rules of reflexivity, monotonicity and cut.

3. Using conditional probability in arguments

3.1. Knowledge bases and arguments

Usually, arguments are built from an initial knowledge base from which one can build
arguments pro and against certain pieces of information non explicitly contained in the
knowledge base. Our notion of knowledge base is inspired by the approach of DeLP and
other argumentation systems oriented to work with not fully reliable information. The
encoding of the knowledge about a given domain in these systems distinguish pieces
of knowledge considered as certain and consistent (strict knowledge) and knowledge
that is tentative and subject to uncertainty or inconsistency (defeasible knowledge). If
probabilities are added to the pieces of uncertain knowledge, a finer separation arises,
contributing to the trustworthiness and accurateness of arguments and their relations, and
allowing the argumentation system to produce more detailed outputs.
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The intuition is that strict knowledge about a domain is always consistent and cer-
tain information, and hence it can be implicitly used in any argument. Thus, to specify
an argument, it is only needed to specify which observations or factual information are
assumed, and which part of the uncertain probabilistic knowledge is based upon. In this
work, we assume the strict domain knowledge to be consistent knowledge with proba-
bility equal to 1.

Definition 3.1. For any set of propositional formulas S ⊆L, let the closure of S under a
set of probabilistic conditionals Σ ⊆LPr (denoted by ClΣ(S )) be the smallest set contain-
ing S and the consequent of any rule in Σ whose antecedent ϕ is such that ClΣ(S ) � ϕ,
where � is the consequence relation of classical propositional logic.

Inspired in Def. 2 from [18] we distinguish two different notions of consistency.

Definition 3.2 (Direct and indirect consistency). A set S ⊆L is directly consistent iff S �
⊥, and indirectly consistent with respect to a set Γ of classical probabilistic conditionals
if ClΓ(S ), the closure of S under Γ, is directly consistent.

Following the usual terminology in the field of argumentation, we call strict rule a
classical expression in LPr (facts are strict rules of the form ��φ: [1,1], that we will
simply denote sometimes as φ:[1,1]) and probabilistic defeasible rule a purely proba-
bilistic expression in LPr . If Π is a set of strict rules, we will denote by Π f the set of
facts in Π and we will let Πr = Π\Π f be the set of proper strict rules. Moreover, we will
also let Π f = {φ | ��φ: [1,1] ∈ Π f } ⊂ L the set of consequents of the facts.

Definition 3.3. A probabilistic knowledge base is a pair KB = (Π,Δ), where Π is a finite
set of consistent strict rules and Δ is a finite set of probabilistic defeasible rules.

Example 3.4. The following set of probabilistic (strict and defeasible) rules Π∪Δ en-
codes generic knowledge about inferring whether a damage (a big monetary loss) is
caused in a house when the evidence (in Π) is that the alarm goes off, possibly because
of a burglary or a fire.

Π =

⎧
⎪⎪⎨
⎪⎪⎩

alarm : [1,1]

f ire� mon loss : [1,1]

⎫
⎪⎪⎬
⎪⎪⎭
, Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

alarm� burglary : [0.6,0.8]

alarm� f ire : [0.4,0.5]

burglary� mon loss : [0.9,1]

burglary∧alarm� ¬mon loss : [0.8,1]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

With the tools introduced above, we propose the following notion for a probabilistic
logic-based argument.

Definition 3.5 (Argument). Given a probabilistic knowledge base KB = (Π,Δ), a prob-
abilistic argumentA for a formula θ ∈ L, is a tupleA = (Σ, θ, [c1,c2]), where Σ ⊆ Δ, and
such that:

• Probabilistic argument consistency: PMod(Σ∪Π) � ∅
• Logical adequacy: θ belongs to the closure of the set of consequents of Π f under

the rules of Σ∪Πr, i.e. θ ∈ClΣ∪Πr (Π f ).
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• c1 (resp. c2) is the infimum (resp. the supremum) of the values P(θ) with P ∈
PMod(Π∪Σ). In other words,
c1 = sup{d1 ∈ [0,1] | Π∪Σ |=Pr ��θ: [d1,1]},
c2 = inf{d2 ∈ [0,1] | Π∪Σ |=Pr ��θ: [0,d2]}.

• Σ is minimal satisfying the above conditions.

If c2 > 0.5 we will say the argument is proper.

In the above definition we have chosen to model evidences in an argument as part of
the strict knowledge, and thus as literals with probability 1, rather than events on which
to compute the conditional probability of the argument conclusion θ, see e.g. [7] where
both options are considered. Of course, this issue is debatable and we let a discussion for
future work. Given an argumentA = (Σ, θ, [c1,c2]) w.r.t. KB = (Π,Δ), we will denote by
ΠA the set of minimal subsets of Π such that A is still an argument w.r.t. KB∗ = (Π′,Δ)
for each Π′ ∈ ΠA. That is, ΠA gathers all the minimal sets of strict rules of Π really
needed in the argumentA.1

Thus, an argument for a literal provides for both a logical and an optimal probabilis-
tic derivation of its conclusion from its premises. In this we follow [11] in decoupling
the logic and the probabilistic aspects. Note that, in a sense, the requirements of the ex-
istence of a logical derivation and of a probabilistic entailment are rather independent.
For instance, if p,q,r are variables, let Σ = {p�q: [α,1],q�r: [β,1]}. If 0 < α,β < 1, then
we have r ∈CnΣ(p), but {��p: [1,1]}∪Σ �|=Pr ��r: [γ,1], for any γ > α ·β. Conversely,
{��¬q: [1,1]}∪Σ |=Pr ��¬p: [1,1], but ¬p �CnΣ(¬q).

Some examples of probabilistic arguments over the KB from Example 3.4 are:

A1 =({alarm� burglary : [0.6,0.8],burglary� mon loss : [0.9,1]};mon loss : [0.54,1])

A2 =({alarm� burglary : [0.6,0.8],burglary∧alarm� ¬mon loss : [0.8,1]};¬mon loss : [0.48,1])

A3 =({alarm� f ire : [0.4,0.5]};mon loss : [0.4,0.5])

Note thatA1 andA2 are proper, whileA3 is not.

3.2. Counter-arguments, attacks and defeats

The next step in our formalization of a probabilistic argumentation system is to intro-
duce the notions of subargument and attack relation between arguments. The notion of
subargument is the usual one.

Definition 3.6 (Subargument). LetA = (Σ, θ, [c1,c2]) be an argument. A subargument of
A is an argument B = (Σ′, θ′, [d1,d2]) where Σ′ ⊆ Σ.

Next we identify when two probabilistic conditionals lead to an inconsistency in the
context of a KB.

Definition 3.7 (Disagreement). Let KB = (Π,Δ) be a probabilistic knowledge base.
We say that two conditionals ψ1�ϕ1: [c1,c2] and ψ2�ϕ2: [d1,d2] disagree whenever
they are probabilistically inconsistent with the strict knowledge, i.e. when PMod(Π∪
{ψ1�ϕ1: [c1,c2],ψ2�ϕ2: [d1,d2]} = ∅.

1It can be shown that the set ΠA is not necessarily a singleton.
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This notion is used to define the following attack relation between arguments that is
somehow more general than an undercut relation (for a general reference on this type of
relations we refer to [4]).

Definition 3.8 (Attack). An argument A = (Σ1, θ1, [c1,c2]) attacks another argument
B = (Σ2, θ2, [d1,d2]) at a formula α if there is a subargument B′ = (Σ′2,α, [e1,e2]) of B
such that ��θ1: [c1,c2] and ��α: [e1,e2] disagree.

Going back to the examples above, it is clear that the argument A2 attacks
both arguments A1 and A3, but it turns out that arguments A1 and A3 also attack
each other despite of they both conclude on the same formula, the reason being that
��mon loss: [0.9,1] and ��mon loss: [0.4,0.5] are probabilistically inconsistent.

The next question is to specify when an attack can be deemed as effective, that is,
when an attack of argument A to another argument B invalidates the latter, or in other
words when an attack is actually a defeat. In our case, having probabilities in the argu-
ments provides an additional criterion with an important role to be played. One possi-
bility is to directly use the involved weights to decide when an argument prevails over
another one. For instance, according to this criterion, argumentA1 defeats argumentA2.
However, this seems rather counter-intuitive since, even if the derived probability in A2
is smaller than the one derived in A1, argument A2 is using more information than A1.
This is in essence the specificity criterion, an approach that has been developed in non
probabilistic scenarios, e.g. in [10] or [3]. Nevertheless, in case of two conflicting ar-
guments using the same amount of information, then the comparison of the probability
values surely becomes a suitable criterion to use. We start by formalizing the notion of
specificity following ideas of [10].

Definition 3.9 (Activation set). Given a probabilistic knowledge base KB = (Π,Δ), an
activation set of an argument A = (Σ, θ, [c1,c2]) is a set of formulas of the form Act =
Ant(Σ∪Π′), where Ant(Σ∪Π′) is the set of the antecedents of all the rules in Σ and Π′,
for some Π′ ∈ ΠA. We will denote by Act(A) the set of all activation sets forA.

For instance, continuing with Example 3.4, we have that

Act(A1) ={{alarm}, {burglary}},
Act(A2) ={{alarm}, {burglary∧alarm}},
Act(A3) ={{alarm}, { f ire}}.

In the following, if Γ and Γ′ are two sets of formulas, we will write Γ � Γ′ when Γ � ψ
for all ψ ∈ Γ′. Further, if S and S ′ are two sets of sets of formulas, we will write S � S ′
when for all Γ ∈ S there is Γ′ ∈ S ′ such that S � Γ′.
Definition 3.10 (Specificity). We say that an argument A is more specific than another
argument B when Act(A) � Act(B) but Act(B) � Act(A). A and B are equi-specific if
both Act(A) � Act(B) and Act(B) � Act(A), and incomparable whenever Act(A) �� Act(B)
and Act(B) �� Act(A).

It is clear that according to the above definition, concerning the arguments following
Example 3.4,A2 is more specific thanA1, but both are incomparable withA3.

In order to compare two arguments, we will then give the specificity criterion the
highest priority, and if it does not produce a proper comparison, the degrees of probabil-
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ity will determine the strongest argument. This decision is based on the fact that prob-
abilities of the defeasible rules inside each argument, and of the argument itself, reflect
the faithfulness of each rule and indirectly, of the argument itself.

Definition 3.11 (Strength). An argument A = (Σ1, θ1, [c1,c2]) is stronger than another
argument B = (Σ2, θ2, [d1,d2]) whenA is more specific than B, or otherwise whenA and
B are equi-specific or incomparable and c1 > d1.

From the previous notions of the attack and comparative strength, it is now natural
to formalize when indeed an argument defeats or rebuts another argument.

Definition 3.12 (Defeat). An argument A = (Σ1, θ1, [c1,c2]) defeats another argument
B = (Σ2, θ2, [d1,d2]) when A attacks B on a subargument B = (Σ′2,α, [e1,e2]) and A is
stronger than B′.

Continuing with Example 3.4, we have that A2 defeats A1 because A2 is more
specific than A1, and A2 defeats A3 because A2 is not comparable with A3 and its
probability lower bound is greater than that ofA3. On the other handA1 defeatsA3 too,
since they are also non-comparable and the probability lower bound ofA1 is greater than
the probability lower bound ofA3.

4. Probabilistic Abstract Argumentation Frameworks

In this section we study Dung’s abstract argumentation systems associated to our proba-
bilistic argumentation systems. Namely, to any probabilistic conditional knowledge base
KB = (Π,Δ) and set P of proper probabilistic arguments over KB,2 we can associate an
abstract argumentation system 〈P,R〉, where R is the attack relation of Def. 3.8 on the
set P. This is an argument graph in the sense of Dung’s abstract argumentation [8].

In order to decide whether to accept a set of arguments, one can consider whether
this set is conflict-free, admissible, or more in general if it fits with any of extension-
based semantics proposed in the literature (complete, grounded, preferred, stable, etc).
In [5] the authors define three principles, called rationality postulates, that can be used to
identify some important properties of closure and consistency of argumentation systems.
In this section, we prove that, in general, only one of these postulates is satisfied in our
system. In the final section we propose some ideas in order to improve our system in a
way that can satisfy the other two postulates.

Following [5], we restrict our language assuming that in the expressions of the form
ψ�φ: [c1,c2], ψ can be only a literal, and φ a conjunction of literals. We recall now some
basic notions of abstract argumentation theory. First we introduce the notion of exten-
sion under Dung’s standard semantics, and then the notion of conflict-free and complete
extension.

Definition 4.1 (Extension). Given an abstract argumentation framework 〈P,R〉, an ex-
tension of 〈P,R〉 is a subset of arguments E ⊆ P. Moreover, it is said that an extension
E defends an argumentA, if for every argument B that attacksA, there is an argument
C ∈ E that attacks B.

2Such a set P somehow corresponds to what Hunter calls a epistemic extension in [11].
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Given an argument A we denote by Conc(A) the conclusion of A. For instance,
in case of a probabilistic argument A = (Σ, l, [c1,c2]), Conc(A) = l is a literal. For any
extension E, we denote by Concs(E) the set of conclusions of the arguments in E.

Definition 4.2 (Conflict-free and complete extension). Given an abstract argumentation
framework 〈P,R〉, it is said that an extension of 〈P,R〉, E ⊆P is conflict-free if there are
not arguments A,B ∈ E such that ARB, that is, such that A attacks B. Moreover, it is
said that E is complete if it is conflict-free and E defends all its arguments.

Now we introduce the rationality postulates of [5]. The idea is to define postulates
not only for each individual extension, but also for the set of overall justified conclusions,
that is, the set called Output in [5], defined as follows: given the set of all extensions
E1, . . . ,En under a given abstract semantics, Output =

⋂
i≤n Concs(Ei).

In what follows P will denote a set of probabilistic arguments over a probabilistic
conditional knowledge base KB= (Π,Δ), and 〈P,R〉will stand for the associated abstract
argumentation system, as described at the beginning of this section.

Definition 4.3 (Cf. [5]). Let E1, . . . ,En be the set of all extensions of 〈P,R〉 under a given
abstract semantics. Then we have the following definitions:

Postulate 1: 〈P,R〉 satisfies Closure if

1. Concs(Ei) =ClΠ(Concs(Ei)), for each i ≤ n.
2. Output =ClΠ(Output).

Postulate 2: 〈P,R〉 satisfies Direct Consistency iff

1. Concs(Ei) is consistent, for each i ≤ n.
2. Output is consistent.

Postulate 3: 〈P,R〉 satisfies Indirect Consistency iff

1. ClΠ(Concs(Ei)) is consistent, for each i ≤ n.
2. ClΠ(Output) is consistent.

Next we show that our system satisfies Postulate 2, but not in general Postulates 1
and 3. Before we prove some basic properties regarding closure under subarguments and
direct consistency of complete extensions.

Proposition 4.4. For every complete extension E of 〈P,R〉, any argument A ∈ E and
subargumentA′ ofA, we have thatA′ ∈ E.

Proof. Assume, searching for a contradiction, that A ∈ E, A′ is a subargument of A′
but A′ � E. Then, since E is complete, either E ∪ {A‘} is not conflict-free, or E does
not defend A′. In the first case, if E ∪ {A‘} is not conflict-free, there is a B ∈ E such
that either B attacks A′, or A′ attacks B. If B attacks A′, by Def. 3.8, B attacks also
A, contradicting the fact that E is conflict-free. If A′ attacks B, since E is complete, E
defends B, and thus, there is a C ∈ E that attacks A′. Therefore, by Def. 3.8, C attacks
also A, contradicting the fact that E is conflict-free. In the second case, if E does not
defendA′, there is aD∈P that attacksA′ and no C ∈ E attacksD. Then, by Def. 3.8,D
attacks alsoA and E does not defendA, which is a contradiction, because E is complete.

Since in both cases we have reached a contradiction, we can conclude that A′ ∈ E,
i.e., E is closed under subarguments. �
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Proposition 4.5. For every conflict-free extension E of 〈P,R〉, Concs(E) is directly con-
sistent.

Proof. Assume, searching for a contradiction, that Concs(E) is not directly consistent,
i.e. by Def. 3.2, Concs(E) � ⊥. Since Concs(E) is a set of literals, there are arguments
A = (Σ1, l1, [c1,c2]), and B = (Σ2, l2, [d1,d2]), withA,B ∈ E and such that l1 = −l2.

Since E is conflict-free, A does not attack B, and B does not attack A. Thus, by
Def. 3.8, PMod(Π∪{(l1 | �)[c1,c2], (l2 | �)[d1,d2])} � ∅, with c1,d1 > 0.5. Then l1 � −l2,
contradicting our original assumption. Therefore Concs(E) is directly consistent. �

Theorem 4.6. If {E1, . . . ,En} is the set of all the extensions of 〈P,R〉 under the complete
semantics, then 〈P,R〉 satisfies Postulate 2 but not necessarily Postulates 1 and 3.

Proof. (Postulate 2) By Prop. 4.5, because for each i ≤ n, Ei is complete, and thus
conflict-free. Moreover, since the intersection of consistent sets is also consistent, we
have that Output is also consistent.

(Postulates 1 and 3) Let KB = (Π,Δ〉) be the following probabilistic conditional knowl-
edge base:

Π = {��d: [1,1],��e: [1,1],�� f : [1,1],a∧b�¬c: [1,1]}
Δ = {r1 : d�a: [0.9,1],r2 : e�b: [0.7,1],r3 : f�c: [0.8,1]}

Consider now the following set P of proper arguments over KB:

A1 = ({r1},a, [0.9,1]),A2 = ({r2},b, [0.7,1]),
A3 = ({r3},c, [0.8,1]),A4 = ({r1,r2},¬c, [0.6,1]).

On this set of arguments, the relation of attack is the following: A3 attacks A4,
and A4 attacks A3. Thus, the abstract argumentation system associated to this set
of arguments has the two following complete extensions: E = {A1,A2,A3} and F =
{A1,A2,A4}. This is a counterexample for both Postulates 1 and 3, because E is not
closed under strict rules and it is not indirectly consistent. �

5. Future work

In this paper we have proposed a framework for logic-based probabilistic argumenta-
tion where conditional expressions are qualified with conditional probability intervals,
building on Lukasiewicz’s setting for probabilistic logic programming with conditional
constraints [16], and extending previous work [7].

There are many open problems left for future work. Here we mention some of them.
First of all, although the underlying language based on conditionals is quite general, we
could consider a more powerful logic to reason with those conditionals. We also need
to consider and study possible alternatives to the notion of subargument, for instance
in the line of [2] where a more refined notion is at work, and to the attack and defeat
relations with possibly more suitable comparison criteria. Also observe that interval-
valued probabilistic conditionals can be equivalently expressed by pairs of two lower
bound-valued conditionals, which would be an interesting research line. Referring to this
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latter issue, and its influence in the fulfilment of rationality postulates by the associated
abstract argumentation systems studied in the previous section, a promising prospect
seems to consider a notion of collective conflict, also similarly to [2]. Finally, we can also
mention the question of studying whether the probabilities involved in the arguments
could allow for gradual notions of attack and acceptability.

Acknowledgments The authors are grateful to the reviewers and acknowledge par-
tial support by the H2020-MSCA-RISE-2020 project MOSAIC (Grant Agreement
101007627) and the Spanish project ISINC (PID2019-111544GB-C21).

References
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[2] T. Alsinet, R. Béjar, L. Godo, F. Guitart. RP-DeLP: a weighted defeasible argumentation framework
based on a recursive semantics. J. Log. Comput. 26(4): 1315-1360, 2016.

[3] D. Bamber, I.R. Goodman, and H.T. Nguyen. Robust reasoning with rules that have exceptions: From
second-order probability to argumentation via upper envelopes of probability and possibility plus di-
rected graphs. Ann Math Artif Intell., 45:83–171, 2005.

[4] P. Baroni, D.M. Gabbay, M. Giacomin, and L. van der Torre (eds.) Handbook of Formal Argumentation.
College Publications, 2018.

[5] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial Intelligence,
171:286–310, 2007.

[6] F. Cerutti and M. Thimm. A general approach to reasoning with probabilities. International Journal of
Approximate Reasoning, 111:35–50, 2019.

[7] P. Dellunde, L. Godo, and A. Vidal. Probabilistic Argumentation: An Approach Based on Conditional
Probability -A Preliminary Report. In Proc. JELIA’21, LNAI, vol 12678, 25-32, 2021.

[8] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming, and n–person games. Artificial Intelligence, 77(2):321–357, 1995.

[9] P. M. Dung and P. M. Thang. Towards probabilistic argumentation for jury-based dispute resolution. In
P. Baroni et al. (eds.), Proc. of COMMA 2010, vol. 216 of FAIA, pages 171–182. IOS Press, 2010.

[10] A. Garcia and G. Simari. Defeasible logic programming: an argumentative approach. Theory and
Practice of Logic Programming, 4(1-2):95–138, 01 2004.

[11] A. Hunter. A probabilistic approach to modelling uncertain logical arguments. International Journal of
Approximate Reasoning, 54(1):47–81, 2013.

[12] A. Hunter. Probabilistic qualification of attack in abstract argumentation. IJAR, 55(2):607–638, 2014.
[13] A. Hunter and M. Thimm. On partial information and contradictions in probabilistic abstract argumen-

tation. In C. Baral et al. (eds.), Proc. of KR 2016, pages 53–62. AAAI Press, 2016.
[14] A. Hunter and M. Thimm. Probabilistic reasoning with abstract argumentation frameworks. J. Artif.

Intell. Res., 59:565–611, 2017.
[15] H. Li, N. Oren, and T. J. Norman. Probabilistic argumentation frameworks. In S. Modgil et al. (eds.),

Theory and Applications of Formal Argumentation - First International Workshop, TAFA 2011, Revised
Selected Papers, Vol. 7132 of LNCS, pages 1–16. Springer, 2011.

[16] T. Lukasiewicz. Probabilistic logic programming with conditional constraints. ACM Transactions on
Computational Logic, 2(3): 289-339 (2001)

[17] J.L. Pollock. Justification and defeat. Artificial Intelligence, 67:377–408, 1994.
[18] H. Prakken. Historical overview of formal argumentation. In P. Baroni et al. (eds.) Handbook of Formal

Argumentation, volume 1, pages 73–141. College Publications, 2018.
[19] H. Prakken. Probabilistic strength of arguments with structure. In M. Thielscher et al. (eds.), Francesca

Toni, and Frank Wolter, editors, Proc. of KR 2018, pages 158–167. AAAI Press, 2018.
[20] S. Timmer, J.J.Ch. Meyer, H. Prakken, S. Renooij, and B. Verheij. A two-phase method for extracting

explanatory arguments from bayesian networks. Int. J. Approx. Reason., 80:475–494, 2017.
[21] B. Verheij. Jumping to conclusions: a logico-probabilistic foundation for defeasible rule-based argu-

ments. In A. Herzig et al. (eds.), Proc. of JELIA 2012, LNAI, vol. 7519, 411–423, 2012.

P. Dellunde et al. / On Probabilistic Logical Argumentation16


