
Choosing the Root of the Tree
Decomposition When Solving WCSPs:

Preliminary Results

Aleksandra PETROVA a,1, Javier LARROSA a and Emma ROLLON a

a Dept. of Computer Science, UPC, Barcelona, Spain
(petrova, larrosa, erollon)@cs.upc.edu

Abstract. In this paper we analyze the effect of selecting the root in a tree decom-
position when using decomposition-based backtracking algorithms. We focus on
optimization tasks for Graphical Models using the BTD algorithm. We show that
the choice of the root typically has a dramatic effect in the solving performance.
Then we investigate different simple measures to predict near optimal roots. Our
study shows that correlations are often low, so the automatic selection of a near
optimal root will require more sophisticated techniques.

Keywords. Weighted CSPs, Tree Decomposition, Discrete Optimization

1. Introduction

Many combinatorial optimization tasks on graphs can be computed in linear time when
the graph is acyclic. It is well-known that in many cases we can benefit from this obser-
vation even when the graph of interest is cyclic by using a so-called tree decomposition
which maps the graph into a tree [1]. Roughly speaking, the nodes in the decomposition
contain the cyclic parts of the graph and the edges capture the acyclic interaction between
the cyclic parts. Then, the tree decomposition can be used to guide a dynamic program-
ming algorithm that proceeds bottom-up in the decomposition solving the respective sub-
problems. Typically such algorithms have time and space complexity exponential in the
size of the largest cyclic part, which is called the (tree decomposition) width [2].

This approach has been widely studied in the context of Graphical Models [3],
which is an umbrella term that covers a broad number of problems such as Bayesian Net-
works, Markov Networks [4], Weighted CSPs [5,3], etc. If we can find a small tree width
for the instance of interest, then we can apply directly a dynamic programming algorithm
(e.g. Bucket Elimination [6,7]) and solve it very efficiency. However, if we can only find
decompositions with large width, then dynamic programming is useless (typically for its
space complexity) and we have to rely on heuristic search methods such as Depth-first or
Best-first. Heuristic search algorithms are unfeasible in terms of worst-case complexity
because they are exponential in the problems size. However, the Graphical Models com-

1Projects RTI2018-094403-B-C33, funded by: FEDER/Ministerio de Ciencia e Innovacin Agencia Estatal
de Investigacin,Spain

Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210116

56

munity has enhanced them with intelligent pruning techniques and they can solve many
large instances in pretty reasonable time [8].

A very fruitful line of research is the exploitation of decomposition trees beyond
small widths by adapting heuristic search to the problem decomposition. The basic idea is
simple and has been known for decades as AND/OR search [9]. In the context of Graph-
ical Models corresponds to moving from a tabular to a memoization implementation of
DP. However, the real challenge is to make it work in practice, that is, to add all the ad-
vantageous pruning techniques developed for standard heuristic search [10,11,12]. Such
algorithms, that we call decomposition-based backtracking algorithms, have a proven
time and space worst-case complexity exponential in the tree width, but their actual per-
formance is much better than that due to the pruning techniques.

The definition of decomposition tree is not rooted, but decomposition-based algo-
rithms must pick one. For standard implementations of dynamic programming algo-
rithms such choice is not very important, since worst-case complexity is a tight bound of
average-case complexity. However, some authors have reported that in decomposition-
based backtracking algorithms choosing the root has an impact in performance [13].

In this paper we want to dig into this issue. We focus on the backtracking tree-
decomposition algorithm BTD [10] inside toulbar2 2 which is arguably the best example
of this line of work.

We report an experiment in which we solve a carefully selected set of instances with
all clusters as root. The experiment confirms that the impact of choosing a good root is
high. We also observe that such impact changes very much from one problem to another.
In some instances the best root hardly halves the time of the worst root. However, in other
instances the best root makes the algorithm thousands of times faster than the expected
time of making a random choice. The results from the experiment raise the natural ques-
tion of how to identify a good root from the structure of the decomposition. To answer
that question we have measured the correlation between performance and some simple
yet reasonable cluster parameters. We observed that such simple parameters are often
uncorrelated to performance, so they cannot be used as a heuristic way to identify a near
optimal root.

To the best of our knowledge, this is the first systematic study on the impact of
root selection in decomposition-based backtracking algorithms for Graphical Model op-
timization tasks, and the first attempt to identify a predictor of near optimal roots. Since
we have not found simple single measurements correlated to algorithmic performance,
we hypothesize that more sophisticated techniques such as machine learning are needed.

2. Preliminaries

2.1. Graphical Models

A Graphical Model is a tuple P = {X ,D,F} where X = {x1, . . . ,xn} is the set of vari-
ables, D = {d1, . . . ,dn} is the set of domains (di is the domain of xi), F is the set of cost
functions. Each cost function fS ∈ F has associated a subset of variables S ⊆ X , called
scope, and the function assigns a cost to each possible assignment of these variables. A
Graphical Model implicitly specifies an objective function

2https://miat.inrae.fr/toulbar2/

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs 57

E C

A B H

F D G

ABC

ABD

ACE

ADF BDG BHG

Figure 1. Interaction graph of a graphical model with 8 variables (one per node) and arity-2 cost functions
(one per edge) (left) and one of its possible tree-decompositions (right).

F(X) = ∑
fi∈F

fS(S)

and the goal that we are considering here is to minimize it. In probabilistic problems (i.e,
the objective function has a probabilistic interpretation) this task is called most probable
explanation. In non-probabilistic problems it is usually referred as Weighted CSP.

Solving a Graphical model is an NP hard problem, which means that the existence
of polynomial algorithms is unlikely to exist. The design of effective algorithms for this
problem has attracted a lot of research interest in the last decade [3,4].

2.2. Interaction Graph

The term Graphical Model comes from the existence of an underlying graph that captures
important structural properties. Given a Graphical Model P = {X ,D,F}, its Interaction
graph, noted GP = (V,E), is an undirected graph with vertices V and edges E. There is
one vertex i ∈V associated to each variable xi ∈ X , and there is an edge (i, j) ∈ E if and
only if there some cost function fS ∈ F with {i, j} ⊆ S. Thus, the interaction graph tells
pairs of variables that are linked (or connected) via cost functions. Figure 1 (left) shows
the interaction graph of a graphical model with 8 variables (one per node) and 10 arity-2
cost functions (one per edge).

It is well-known that graphical models whose interaction graph is acyclic can be
solved efficiently. For graphical models with a cyclic interaction graph, we can identify
its acyclic sub-components through a tree-decomposition.

2.3. Tree Decomposition

A tree-decomposition of a graphical model P = {X ,D,F} is a tree T = (V,A). For every
vertex e ∈ V there is a cluster Ce ⊆ X . The set of clusters must cover all the variables
(i.e, ∪e∈VCe = X) and all the cost functions (for every fS ∈ F there is some cluster Ce
such that S ⊆Ce). Furthermore, if a variable xi appears in two clusters Ce and Ck, it must
also appear in all the clusters on the unique path from e to k (this is called the running
intersection property).

The tree-width of a tree decomposition, noted w, is maxe∈V{|Ce|}− 1. The tree-
width of G is the minimum tree-width of all tree decompositions of G.

Figure 1 (right) shows a width 2 tree-decomposition of the graphical model whose
cyclic interaction graph is depicted on the left.

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs58

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

E E G F E E G F E E G F E E G F

0 0 0 01 1 1 10 0 0 01 1 1 1

C C C CD D D D

0 1 0 1

B B

0 1

A

H

0 1

H

0 1

H

0 1

H

0 1

Figure 2. AND/OR graph search space.

2.4. Decomposition-based Backtracking Algorithms

Let T = (V,A) be a tree decomposition of graphical model P. If we chose a node r ∈ V
as the tree root, then each tree node e ∈V has a parent pa(e) and a set of children ch(e).
The separator of Ce is the set of common variables with its parent Se =Ce ∩ pa(Ce). The
set of proper variables of Ce is Ve =Ce −Se. Note that proper variables of clusters define
a partition of the variables. We denote [i] the index of the cluster where xi is a proper
variable. Each cost function fS is associated to the higher cluster that contains S and we
denote [S] the index of such cluster.

Decomposition-based backtracking algorithms assign variables in a top-down order
with respect the decomposition. In other words, if variable xi is a proper variable of
cluster Ce (that is [i] = e), it cannot be assigned until all the variables of its parent pa(Ce)
have been assigned. Therefore, we can think of a partial assignment t as tree-structured.
Corresponding to a top-down partial labeling of the variables in the decomposition.

We denote Pe the problem with all the variables of Ce and its descendent clusters
and all the cost functions having in their domain at least one proper variable of these
clusters. Consider a partial assignment t of the variables in P that includes the variables
in Ce but does not include any proper variable of any child of Ce. Then for every Ck
child of Ce, we denote Pk(t) to Pk conditioned by t. Each one of these conditioned sub-
problems can be solved independently. Consequently, the search space traversed by this
algorithms is the space of tree-structured partial assignments. To fully mimic the dynamic
programming approach and inherit its good worst-case complexity, these algorithms may
record the optimum of each solved subproblem, so they need not to solve it more than
once. In terms of search space, this corresponds to merging nodes that correspond to
identical subproblems. Figures 2 and 3 show two different search spaces for the tree
decomposition of Figure 1 assuming binary domains. The two search spaces correspond
to choosing two different roots for the tree-decomposition. Choosing the root producing
the most cost-effective search space is the topic addressed in this paper.

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs 59

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

E B E B E B E B

0 1 0 1

C C

0 1

A

D

0 1

D

0 1

G G

0 1 0 1

H

0 1

H

0 1

H

0 1

H

0 1

F

0 1

F

0 1

F

0 1

F

0 1

Figure 3. Another AND/OR graph search space for the same problem.

3. Experimental Design

In order to conduct our study we needed a diverse set of instances that were neither too
easy (in order to make comparisons meaningful) nor too hard (so that executions would
not exceed our computation budget). For that purpose we used two repositories:

• The evalgram repository (http://genoweb.toulouse.inra.fr/ degivry/evalgm/)
• The Cost Function Library (https://forgemia.inra.fr/thomas.schiex/cost-function-

library/-/tree/master/)

Together they contain more than 16500 instances coming from different application do-
mains such as Bioinformatics, Boolean discrete problems, Bayesian netorkws, Airplane
landing, Satelite observations, Graph coloring, Tractability-preserving Transformations
of Global Cost Functions, Warehouse location problems and many others.

We made a massive execution of all the instances using toulbar2 default and selected
instances whose execution time range from 10 to 30 minutes 3. For each problem having
selected instances we selected two of them. Then we computed their tree decomposition
using the minfill heuristic [14] and eliminated hard instances having more than 100 clus-
ters and instances having large tree widths (not suitable for decomposition-based algo-
rithms). We further eliminated instances that were problematic for different reasons such
as having several connected components or having soft global constraints. As a result we
obtained 19 diverse and challenging instances.

3For obvious reasons (i.e, 16500×0.5 = 344 days-cpu), in this experiment we used all the machines that we
had available. Although they were roughly similar, they were not identical, so cpu times between instances are
not comparable

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs60

Instance Name var. dom. const. arity costs optimum width separ. clust.

autocorr bern50-13 50 5 4120 4 4171 747152 12 12 38

carseqtern 13 37 285 2−13 1046 3 1332 57 13 13 272

graph06 r 198 6−44 841 2 1040 4123 58 50 136

scen06-18reduc 82 4−26 327 2 409 3263 11 8 44

composed 83 8−10 624 2 707 2 46 46 34

rus 50 100 3 2 135 2 3407 2 3543 1340579 34 34 101

hole10 110 2 561 10 671 1 71 52 19

geo 50 20 466 2 516 1 22 22 24

sanr400 0.5.clq 400 2 39816 2 40217 387 381 381 19

aim 200 2 427 3 628 105 68 63 122

packupweighted1 707 2 2659 9 3367 186592 69 55 388

packupweighted2 613 2 2463 9 3077 93956 51 48 343

wellparhardtern9 9 163 1−3 1192 3 1355 44 61 59 102

wellpartern5 79 254 2−13 1046 3 1332 4035 22 16 197

parity learn 48 24 6.2 459 2−19 4120 4 4171 5 23 19 436

or chain 244.fg 750 2 1604 3 2355 397147782 84 64 591

cnf2.80.1000.266842 80 2 802 2 883 146 55 54 25

max cut 50 500 1.asc 50 2 500 2 550 188 36 36 14

cnf3 150 2 710 3 861 64 101 98 48
Table 1. Benchmark Description. Composed, geo, aim, packupweighted1, packupweighted2 and cnf3
full names are composed-75-1-2-9 ext 100, geo50-20-d4-75-86 ext 1000, aim-200-1 6-yes1-4.cnf.mo,
978532fa-c730-11df-b070-00163e3d3b7c l1, e69a0e36-9ef1-11df-9d4a-00163e46d37a l1, weightedregular,
cnf2.80.1000.266842, respectively.

Table 1 contains information about the instances. It can be seen that the guarantee
of benchmark diversity does not come only from the different origin of instance, but
also from their syntactical structure. The number of variables (column 2) ranges from 50
to 750, the domain size (column 3) ranges from 2 to 44, the number of cost functions
(column 4), the maximum arity of cost functions (column 5) ranges from 2 to 10. The
number of different costs appearing over the cost functions (column 6) ranges from 409
to 40217. The optimal value (column 7) ranges from 1 to 397147782. In terms of decom-
posability, using the minfill heuristic the tree-width (column 8) ranges from 11 to 381
and the separator size (column 9) from 8 to 381. Finally, the number of clusters (column
10) ranges from 14 to 591.

Toulbar2 makes a sophisticated pre-process before starting the solving process.
This pre-process may change slightly the problem structure (e.g. eliminating variables)
and in turn the tree decomposition. To avoid that these changes could obfuscate our
results, we transformed each instance to its VAC (that is, virtual arc-consistent [5])
pre-processed version (e.g. "toulbar2 instance.wcsp -A -z=2") and computed a
minfill tree decomposition again (e.g. "toulbar2 instanceVAC.wcsp -B=1 -hbfs:

-O=-3 -Z=1").
Then we solved each instance instanceVAC.wcsp with each node r of the tree de-

composition as root using the BTD algorith [10] (e.g."toulbar2 instanceVAC.wcsp

-O=-3 -B=1 -hbfs: -R=r"). In order to make the comparison of cpu time meaningful
in this experiment all executions were done using identical machines (Fujitsu Primergy
CX250 S1 with Intel Xeon E5-2660 @ 2,2 Ghz and 128G of RAM). Jobs were managed

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs 61

Instance Name worst mean best worst / best mean / best

autocorr bern50-13 3059 1479 669 4.57 2.21

carseqtern 13 37 ∗(17) 1849 498 211.76 108.8

graph06 r ∗(106) 2861 0 5077.57 4035.69

scen06-18reduc ∗(39) 3340 24 148.95 138.21

composed ∗(19) 2072 0 50000 28780.4

rus 50 100 3 2 630 504 375 1.68 1.34

hole10 ∗(15) 3468 1417 2.54 2.32

geo ∗(10) 2374 720 4.99 3.16

sanr400 0.5.clq 746 627 534 1.4 1.17

aim ∗(117) 3513 329 30.77 29.79

packupweighted1 ∗(242) 2722 327 14.88 11.22

packupweighted2 2417 1033 134 18.01 7.7

wellparhardtern9 9 ∗(23) 1596 157 156.52 68.76

wellpartern5 79 ∗(17) 1031 92 211.76 60.35

parity learn 48 24 6.2 1874 1132 491 3.82 2.3

or chain 244.fg 43 6 0 60.37 9.01

cnf2.80.1000.266842 ∗(20) 3356 1860 180 161.17

max cut 50 500 1.asc ∗(1) 2431 1325 3600 2257.49

cfn3 ∗(27) 2614 235 133.33 94.84
Table 2. Results solving each instance with every tree decomposition cluster as root. Times (worst, mean and
best columns) are given in seconds.

with SLURM queue system with each job requesting exclusive use of 1 core and 8Gb of
RAM. To bound the duration of the experiment a time out was set to 3600 seconds 4

Results from this experiment are reported in Table 2. The second and fourth columns
report execution times for the worst and best roots. In the second column, an asterisk in-
dicates that the time out has been reached as many times as the number within parenthe-
sis. The third column reports the average time over all the roots or, equivalently, the ex-
pected time by choosing a root randomly. However, note that in most of the instances the
average is underestimated, since the timeout is often reached for several roots. Columns 5
and 6 report ratios. Note again that ratios are underestimations in all the instances where
the timeout is reached.

The main observation from the ratios is that most of the times choosing the right
root has a dramatic effect in the algorithm’s performance. In a couple of instances, the
best root makes the algorithm thousands of times faster than the worst root and even than
the expected time from a random root selection. In most instances the best root makes
the algorithm around an order of magnitude faster. There is only one instance where the
best root is more than half the time of the worst.

4Note that if every execution reached the timeout a total of 2954 hours (123 days) of cpu would be required

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs62

Instance Name S(T, ·) Sd(T, ·) CD(T, ·) H(T, ·)
autocorr bern50-13 - - 0.95 0.95

carseqtern 13 37 0.24 0.25 0.12 0.12

graph06 r 0.35 0.36 −0.29 −0.25

scen06-18reduc −0.8 −0.79 −0.75 −0.84

composed 0.98 0.98 −0.89 −0.89

rus 50 100 3 2 0.07 .0.07 −0.02 −0.02

hole10 −0.86 −0.86 0.99 0.99

geo −0.72 −0.72 0.71 0.62

sanr400 0.5.clq −0.77 −0.77 0.74 0.61

aim 0.7 0.7 −0.27 0.38

packupweighted1 - - 0.31 0.21

packupweighted2 - - - −0.34

wellparhardtern9 9 −0.15 −0.15 −0.47 −0.45

wellpartern5 79 0.04 0.03 0.11 0.05

parity learn 48 24 6.2 −0.06 −0.05 0.05 0.08

or chain 244.fg 0.15 0.15 −0.48 −0.08

cnf2.80.1000.266842 0.7 0.71 −0.81 −0.8

max cut 50 500 1.asc −0.9 −0.9 0.74 0.74

cfn3 −0.63 −0.63 0.31 0.38
Table 3. Results solving each instance with every tree decomposition cluster as root. Correlation with four
different measures.

The previous results confirm our initial hypothesis of the interest of finding auto-
matic mechanisms to identify near optimal roots. Aiming at that, we looked for a simple
predictor. In particular we considered four options:

• Cluster Size: The size of cluster e ∈V , noted S(T,e), is the number of variables
that it contains S(T,e)= |Ce|. It seems reasonable choosing as root r the node with
the largest size S(T,r), because it means that the solving process will start with
a large cluster of highly connected variables. This idea follows the well-known
fail-fist principle which, in our context, means that the propagation effect of local
consistency properties will become apparent as early as possible. In other words,
selecting the node with the largest cluster represents a greedy way to produce
good lower bounds quickly which in turn will produce good pruning.

• Domain Aware Cluster Size: The previous definition takes all the variables as
equivalent. If we want to use cluster size as a proxy of search space size a better
approach is to take into account domain sizes. Accordingly, we define,

Sd(T,e) = ∑
xi∈Ce

log |di|

It seems reasonable choosing the root r with the largest Sd(T,r) as a refinement
of cluster size. Note that for instances in which all the variables have the same
domain size, Sd(T,r) and S(T,r) are equivalent.

• Cluster Decomposition Size: The cluster decomposition size with root r ∈ V ,
noted CD(T,r), is the size of the largest sub-problem after the assignment of the

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs 63

variables in Ce. Formally, CD(T,r) is the maximum |D(T,e)| over all e ∈ ch(r)
defined as,

D(T,e) =Ve ∪∪k∈ch(e)D(T,k)

where ch(e) is implicit by the choice of r as the root. It seems reasonable choosing
as root the node with the smallest decomposition because it is the root that breaks
the problem into sub-problems whose largest one is minimal. In other words, the
assignment of its variables produces the minimal largest sub-problem. Note that
this measure also favors rooting with large clusters since a large root leaves less
variables for the sub-problems

• Cluster Height: The previous definition only considers the decomposition after
the root assignment. It does not account for subsequent deeper decompositions.
To incorporate that we define the height of a tree decomposition rooted with r ∈V
as the size of the longest path starting from r. Formally, the height of root r is
H(T,r) with,

H(T,e) = |Ve|+ max
k∈ch(e

H(T,k)

where ch(e) is implicit by the choice of r as the root. It seems reasonable choos-
ing as root the node with the lowest height, minr H(T,r) because it means that
backtracking will search on tree-structured assignments of minimum height (i.e,
they will be the widest and most shallow).

Table 3 reports, for each instance and its given tree-decomposition T , the correlation
between cpu time and the four measurements: cluster size S(T, ·), domain-aware clus-
ter size Sd(T, ·), cluster decomposition size CD(T, ·) and cluster height H(T, ·). In the
autocorr and packupweighted instances some measurements did not change over roots,
so correlation could not be computed. We were expecting to find negative correlations
between cpu and (domain aware) cluster size, and positive correlations between cpu and
decomposition and height. Some instances (e.g. hole10, geo, max-cut, cnf) behaved as
we expected and the correlations were high, which means that our four measures predict
the quality of the root. In some other instances (e.g. rus, parity,...) correlations are very
low, so none of our measures do not capture the quality of the root. Surprisingly, in some
other instances (e.g. graph, composed,...) correlations were high but with the sign op-
posed to our conjecture, so our measures worked totally counter intuitively. In summary,
simple synctactic measurements of the tree decomposition do not seem to capture the
quality of the clusters as roots.

4. Conclusions and Future Work

In this paper we report our preliminary results in the quest of identifying near optimal
roots of tree decompositions to be used in decomposition-based backtracking algorithms
for Graphical Models. We proposed 4 different simple criteria based on synctactical mea-
sures of the tree-decomposition.

We created a small benchmark selecting from two well-known repositories 19 highly
diverse challenging instances. We performed a systematic experiment solving each in-

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs64

stance with every root and checked for correlations. The first lesson to be extracted from
the experiment is the confirmation of the impact of the root on the algorithm perfor-
mance, which validates the importance of our work. The second lesson is about the sig-
nificance of the proposed measures: i) none of them showed significant correlation with
all the instances, and ii) some instances correlated as expected, but others correlated
counter intuitively. Therefore, we conclude that although choosing the root is important,
simple measures based on syntactical features of the tree decomposition do not seem to
predict well good clusters. Accordingly, in our future work we will search for more in-
formed data (e.g. taking into account cost functions) and more sophisticated techniques
to combine it (e.g. machine learning).

References

[1] Bodlaender HL, Grigoriev A, Koster AMCA. Treewidth Lower Bounds with Brambles. Algorithmica.
2008;51(1):81-98.

[2] Robertson N, Seymour PD. Graph minors. III. Planar tree-width. J Comb Theory, Ser B. 1984;36(1):49-
64.

[3] Dechter R. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Sec-
ond Edition. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers; 2019.

[4] Darwiche A. Modeling and Reasoning with Bayesian Networks. Cambridge University Press; 2009.
[5] Cooper MC, de Givry S, Sánchez-Fibla M, Schiex T, Zytnicki M, Werner T. Soft arc consistency

revisited. Artif Intell. 2010;174(7-8):449-78.
[6] Dechter R. Bucket Elimination: A Unifying Framework for Reasoning. Artif Intell. 1999;113(1-2):41-

85.
[7] Bertelè U, Brioschi F. On Non-serial Dynamic Programming. J Comb Theory, Ser A. 1973;14(2):137-

48.
[8] Cooper MC, de Givry S, Schiex T. Graphical Models: Queries, Complexity, Algorithms (Tutorial). In:

Paul C, Bläser M, editors. 37th International Symposium on Theoretical Aspects of Computer Science,
STACS 2020, March 10-13, 2020, Montpellier, France. vol. 154 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik; 2020. p. 4:1-4:22.

[9] Nils N. Artificial Intelligence: A New Synthesis. Morgan Kaufmann; 1998.
[10] Terrioux C, Jégou P. Bounded Backtracking for the Valued Constraint Satisfaction Problems. In: Rossi

F, editor. Principles and Practice of Constraint Programming - CP 2003, 9th International Conference,
CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings. vol. 2833 of Lecture Notes in
Computer Science. Springer; 2003. p. 709-23.

[11] Marinescu R, Dechter R. AND/OR Branch-and-Bound for Graphical Models. In: Kaelbling LP, Saf-
fiotti A, editors. IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005. Professional Book Center; 2005. p.
224-9.

[12] Allouche D, de Givry S, Katsirelos G, Schiex T, Zytnicki M. Anytime Hybrid Best-First Search with
Tree Decomposition for Weighted CSP. In: Pesant G, editor. Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015,
Proceedings. vol. 9255 of Lecture Notes in Computer Science. Springer; 2015. p. 12-29.

[13] Jégou P, Terrioux C. Combining restarts, nogoods and bag-connected decompositions for solving CSPs.
Constraints An Int J. 2017;22(2):191-229.

[14] Dechter R. Constraint processing. Elsevier Morgan Kaufmann; 2003.

A. Petrova et al. / Choosing the Root of the Tree Decomposition When Solving WCSPs 65

