
Segmenting the Optic Disc Using a Deep
Learning Ensemble Model Based on OWA

Operators

Mohammed Yousef Salem ALI a,1, Mohamed ABDEL-NASSER a,c

Mohammed JABREEL b Aida VALLS a and Marc BAGET d
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Abstract. The optic disc (OD) is the point where the retinal vessels begin. OD car-
ries essential information linked to Diabetic Retinopathy and glaucoma that may
cause vision loss. Therefore, accurate segmentation of the optic disc from eye fun-
dus images is essential to develop efficient automated DR and glaucoma detection
systems. This paper presents a deep learning-based system for OD segmentation
based on an ensemble of efficient semantic segmentation models for medical image
segmentation. The aggregation of the different DL models was performed with the
ordered weighted averaging (OWA) operators. We proposed the use of a dynami-
cally generated set of weights that can give a different contribution to the models
according to their performance during the segmentation of OD in the eye fundus
images. The effectiveness of the proposed system was assessed on a fundus image
dataset collected from the Hospital Sant Joan de Reus. We obtained Jaccard, Dice,
Precision, and Recall scores of 95.40, 95.10, 96.70, and 93.90%, respectively.
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1. Introduction

Retinal diseases like diabetic retinopathy (DR) and glaucoma highly affect the optic disc
(OD) of the human eye–OD is also called the optic nerve head. The early detection and
treatment of DR and glaucoma are essential to prevent total vision loss [1]. Ophthalmol-
ogists inspect eye fundus images to detect the signs of such diseases. Yet, the manual
analysis of many fundus images is expensive in terms of both time and effort. Modern
computer-aided diagnosis (CAD) systems can analyze the medical images and provide
a diagnosis as accurate as ophthalmologists with many years of experience [2]. Deep
learning (DL) technologies have become the cornerstone of several modern CAD sys-
tems.
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Recently, several DL-based automated systems have been proposed to segment the
OD automatically. Most of them use convolutional neural networks (CNNs) to automati-
cally learn representative and high-level features from the input fundus images to achieve
accurate segmentation [3]. For instance, the authors of [4] modified the U-Net model by
reducing the size of the filters in all CNN layers to segment the OD directly. They stated
that this modification produced a lighter model and improved the segmentation perfor-
mance. With the DRIONS-DB dataset, they achieved IOU and Dice scores of 89 and
94%, respectively. With RIM-ONE v.3, they obtained IOU and Dice scores 89 and 95%,
respectively. The authors of [5] modified the U-Net and DeepLabv3+ models by inserting
an attention module between the encoder and decoder networks and adding a conditional
random field layer in the output layer. The method was evaluated using DRIONS-DB,
RIM-ONE v.3, and DRISHTI-GS fundus image datasets. They achieved a 95% Dice and
91% Jaccard with DRIONS-DB, a 97% Dice and a 94% Jaccard with RIM-ONE, and a
96% Dice and a 92%Jaccard with DRISHTI-GS.

In [6], a multi-label deep neural network called M-Net was proposed for segmenting
OD and optic cup (OC) jointly. M-Net includes a multi-scale input layer, U-shape CNN,
a side-output layer, and a multi-label loss function based on the dice loss. The side-
output layer works as an initial classifier to provide a local prediction map for different
scale layers. M-Net achieved an accuracy of 98.30% with the ORIGA dataset. The study
confirmed that the accurate segmentation process of OD and OC jointly is essential to
glaucoma detection and diagnosis. The authors of [7] leveraged the multi-task learning
and dense connections to segment the OD and OC jointly. They evaluated their work
on three datasets: DRISHTI-GS, RIM-ONE, and REFUGE. With the OD segmentation
task, they achieved a 91.83% Jaccard and a 95.97% Dice with DRISHTI-GS, a 91.01%
Jaccard and a 95.82% Dice with RIM-ONE, and an 88.37% Jaccard with REFUGE.

Although the methods mentioned above achieved good OD segmentation accuracy,
no individual model performs best under all conditions. The fusion of the predictions of
individual models can improve the segmentation accuracy [8]. In [9], a CNN model was
trained using probability masks instead of binary masks to segment OD and OC. Each
probability mask was obtained by fusing segmentation masks made by multiple experts.

In [10], an ensemble of different CNN architectures for medical image classifica-
tion is used. The study demonstrated that different CNNs learn different levels of seman-
tic image representation, and therefore an ensemble of CNNs produces richer features.
[11] fused the predicted labels of five CNNs models (Resnet50, Inceptionv3, Xception,
Dense121, and Dense169) to improve the results of DR classification in fundus images.

However, most existing methods use fixed weights associated with each model to
construct the ensemble. This strategy may not be appropriate for all situations. Differ-
ently, in this paper we employ the ordered weighted averaging operator (OWA) [12] to
aggregate the information provided by several OD segmentation models. More specifi-
cally, this paper proposes an ensemble-based OD segmentation system based on a set of
deep learning models and an aggregation stage based on OWA.

OWA is an aggregation operator that uses a set of weights to define the aggregation
policy for the inputs, which can vary from full conjunctiveness to full disjunctiveness.
These weights do not indicate the importance of each source of information but the im-
portance of the input values that are merged. The definition of the proper weights is a
key issue in this aggregation operator. A dynamic way of generating weights is through
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quantifier functions [12]. Notably, this OWA-based ensemble of DL models will allow
the construction of a dynamic OD segmentation system.

The remainder of this paper is organized as follows. Section 2 explains the proposed
OD segmentation system. Section 3 presents the experiments and results. Finally, the
conclusion and future work are provided in section 4.

2. The Proposed Optic Disc Segmentation Method

To develop a reliable and efficient OD segmentation system, we first train several deep
learning segmentation models. Figure 1 shows the procedure of segmenting a new image.
The test image fed into N individual OD segmentation models. Then, the OWA operator
aggregates the different segmentation masks given by the models to produce the final
segmentation mask (final prediction).

Figure 1. Structure of the proposed method.

2.1. Constructing individual OD segmantation models

In this study, we developed ten OD segmentation models based on different state-
of-the-art deep learning-based semantic segmentation models. Specifically, we used the
Unet, Gated Skip Connections (GSCs), DoubleU-Net, DeepLabV3+, CGNet, ERFNet,
SegNet, ESNet, LinkNet, and SQNet models. Each of them was trained to maximize
the segmentation accuracy. The architecture of all models based on the encoding and
decoding method for work except the CGNet. The binary cross-entropy loss func-
tion and ADAM optimizer were used to train all models. The source code of CGNet,
ERFNet, SegNet, ESNet, LinkNet, and SQNet can be found at https://github.

com/xiaoyufenfei/Efficient-Segmentation-Networks/blob/master/model.
We briefly introduce each model below.

• UNet [13] had five blocks in the contracting path (downsampling path) and five
blocks in expanding path (upsampling path). The model contained a total of
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twenty-three convolutional layers. Source code available at https://github.
com/jakeret/unet/blob/master/src/unet/unet.py

• Gated Skip Connections (GSCs) [14] is a modified version of UNet. It had five
encoder blocks with two convolutional layers, five decoder blocks with four con-
volutional layers, a total of thirty-three convolutional layers, and a gated skip
connection mechanism in each decoder block with a convolutional layer.

• DoubleU-Net [15] included two stacked U-Net [13] in sequence. The first stack
based on pre-trained VGG19 of an encoder with four blocks in each encoder-
decoder, Second stack similar Unet with four blocks encoder-decoder, atrous
spatial pyramid pooling after per encoder for each stack. Each block contained
two convolutional layers and max-pooling. Source code available at https:

//github.com/DebeshJha/2020-CBMS-DoubleU-Net

• DeepLabV3+ [16] included ResNet50 backbone, deep separation convolution,
and atrous separable convolution. Source code available at
https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.

0/blob/master/deeplab.py

• CGNet [17] included three down-sampling stages with Context Guided (CG)
blocks for each stage. In total, it contained a total of fifty-one convolutional layers
with no decoder modules.

• ERFNet [18] included two types of residual layer design (bottleneck and non-
bottleneck), skip connections between encoder and decoder, contained a total of
twenty-three convolutional layers.

• SegNet [19] had four blocks in the encoder part with thirteen convolutional layers
of the VGG16 backbone network, four blocks in the decoder part with thirteen
convolutional layers too.

• ESNet [20] had three blocks in the each encoder and decoder part,contained fac-
torized convolution unit and parallel factorized convolution unit, contained a total
of eighteen convolutional layers.

• LinkNet [21] had four blocks in each encoder and decoder part, four convolu-
tional layers per each encoder block, residual block per two layers in each encoder
block and two convolutional layers per each decoder block (26 layers).

• SQNet [22] is based on a modified SqueezeNet 1.1 (fire module). It contained
eight SqueezeNet with three convolutional operations in each fire module, four
parallel dilated convolutions and a refinement module in the decoder network.
Exponential Linear Units were used in SQNet to avoid the bias shift.

2.2. OWA-based Aggregation Function

For the aggregation step, we propose the use of the Ordered Weighted Average op-
erator defined by Yager [12]. This operator performs a weighted average of a vector of
input values X = (x1,x2, ...xm), but before averaging, the values are sorted from the best
to the worst (denoted with σ). In that way, the weighting vector W is associating impor-
tance to each position in the ordered input vector, regardless of the source of the value in
that position. This is expressed in (Equation 1). Notice that the sum of weights must be
equal to 1.
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FW (x1,x2, . . . ,xm) =
m

∑
k=1

wkxσk (1)

The key property of this operator is that the weights can model different aggregation
policies, ranging from situations of full andness (when wm = 1 and rest are 0) to full
orness (when w1 = 1 and rest are 0). Any possibility in between can be represented with
an appropriate combination of the weights.

Manually setting the weights for a certain policy may be difficult. One usual way of
generating the weighting vector automatically is through Regular Increasing Monotone
fuzzy linguistic quantifiers [12]. Each weight is then obtained using the expression in
(Equation 2), where Q(z) is a function that corresponds to a fuzzy quantifier. This quan-
tifier can generate weights representing different ”quantities” of agreement, which is a
factor to determine the degree of andness/orness of the aggregation.

wk = Q
(

k
m

)
−Q

(
k−1

m

)
(2)

Three common aggregation strategies that can be defined using a fuzzy quantifier
are the following: i) At least half, Q1, which is more tolerant and focuses only on a small
subset of the best values aggregated (Equation 3). It corresponds to a situation of low
andness. ii) As many as possible, Q2, which is quite strict in the aggregation as it gives
most importance to the worst values aggregated (Equation 4). It represents a situation
of high andness. iii) Most, Q3, which represents a case of finding the majority value
(Equation 5). It corresponds to a situation of moderate andness (close to neutrality).

Q1(z) =
{

2z if 0≤ z≤ 0.5
1 if 0.5<z≤ 1 (3)

Q2(z) =
{

0 if 0≤ z≤ 0.5
2z−1.0 if 0.5<z≤ 1 (4)

Q3(z) =

⎧⎨
⎩

0 if 0≤ z≤ 0.3
2(z−0.3) if 0.3<z≤ 0.8
1 if 0.8<z≤ 1

(5)

These three quantifiers are the ones that have been used for aggregating the probability
values obtained with the different DL models for each class. The aggregation is applied
at each pixel of the image studied. A threshold of 0.5 is applied to the result and the class
with the maximum activation is taken as label.

2.3. Evaluation Metrics

The evaluation is done with the segmented masks and the corresponding ground
truth. The segmented masks were binarized so that pixels in the OD have the label ’1’
while pixels in the background have the label ’0’. We computed the number of true
positive (TP), true negative (TN), false positive (FP), and false-negative (FN) pixels.
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Then, we computed the evaluation metrics commonly used in the OD segmentation task:
the intersection-over-union (IOU), Precision (Prec.), Recall, and Dice coefficient (Dice).

i) IOU is the ratio of the intersection between the two masks (original and predicted
mask) for OD with respect to their union. It is computed using Equation 6.

IOU(A,B) =
A∩B
A∪B

=
T P

T P+FP+FN
(6)

ii) Precision is the ratio of TP and the pixels predicted as OD.

Precision =
T P

T P+FP
(7)

iii) Recall is the ratio of TP and the correct pixels in OD according to ground truth.

Recall =
T P

T P+FN
(8)

iv) Dice coefficient makes an harmonic mean of precision and recall. It is also referred to
as F-score.

Dice = 2 · Precision. Recall
Precision + Recall

(9)

3. Results and Discussions

3.1. Dataset and Experimental Setup

Here, we used an in-house fundus image dataset collected from Hospital Universitari
Sant Joan de Reus (SJR). It includes 105 images that were manually labeled by ophthal-
mologists in SJR. The original size of the images is 3008×2000. We randomly divided
the dataset into three subsets: the training set (56 images), the validation set (14 images),
and the testing set (35 images). We used data augmentation techniques to increase the
training data set size, generating a training set with 1120 images. Then, we resized the
images and the ground truths to 256×384 to make the training process faster. The vali-
dation set was used to save the best checkpoint of the trained models. We employed the
binary cross-entropy loss function in all models. We trained the models with 50 epochs
using Adam optimizer with a learning rate of 0.001, and a batch size of 4 images.

3.2. Analysis of the Results of Individual DL models

We trained and tested 10 state-of-the-art deep CNN independently for OD image
segmentation on the SJR dataset. The results are shown in Table 1. We noted that the
GSCs model has the best result of IOU and Dice. Then ERFNet gives the best result of the
Precision metric. Also, the DoubleU-Net has the best results of the Recall metric. So, we
can see that there is not a unique winner method in all quality indices. This fact motivates
the idea of using an ensemble of a subset of these models. To illustrate the results, we
displayed some sample masks obtained for the three best IOUs OD segmentation models

M.Y.S. Ali et al. / Segmenting the Optic Disc310



Table 1. Performance comparison on SJR dataset.

Models
Evaluation Metrics

IOU (%) Dice (%) Prec.(%) Recall (%)

ODS1: GSCs 95.1 94.9 97.0 92.9

ODS2: DoubleU-Net 94.4 94.2 93.3 95.0

ODS3: DeepLabV3+ 94.1 93.8 97.7 90.1

ODS4: U-Net 92.4 91.8 96.6 87.5

ODS5: LinkNet 92.4 91.8 99.7 85.3

ODS6: SQNet 91.9 91.2 97.6 84.8

ODS7: ESNet 91.9 91.2 99.5 84.3

ODS8: CGNet 91.6 90.8 99.6 83.7

ODS9: ERFNet 91.5 90.7 99.8 83.4

ODS10: SegNet 90.5 89.4 99.3 81.8

Figure 2. Results of the best three OD segmentation models and the worst one. Here ODS1, ODS2, ODS3,
ODS10 indicate to GSCs, DoubleU-Net, DeepLabV3+, SegNet models.

and the worst one in Figure 2. Pixels in red are the FP, in green the FN, while white ones
TP are the correctly classified.

3.3. Analysis of the Results of the OWA-based DL Ensemble System

In this section, we compared the three OWA aggregation policies defined before in
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Section 2: Q1 uses a disjunctive approach, considering only the models with the best
performance, Q2 applies a strong conjunctive approach, requiring that most models agree
on the same output, while Q3 takes an intermediate point between the previous ones.

We used different subsets of models to build the ensemble. Reducing the number
of models is interesting to decrease the execution time. After ranking the DL models
with the IOU index, we compared a set with the Top-7 models: GSCs, DoubleU-Net,
DeepLabV3+, U-Net, LinkNet, SQNet, and ESNet; a set with the Top-5 models: GSCs,
DoubleU-Net, DeepLabV3+, U-Net, and LinkNet; and with the Top-3 models: GSCs,
DoubleU-Net, and DeepLabV3+. Results are shown in Table 2.

Table 2. Results of different OWA’s policies with a different number of aggregated models.

Aggreg.

Mod.

Evaluation Metrics of OWA Policies (%)

At least half, Q1 As many as possible, Q2 Most, Q3

IOU Dice Pre Rec IOU Dice Pre Rec IOU Dice Pre Rec

10 Mod. 93.4 92.9 99.6 87.3 93.7 93.2 99.5 87.9 93.5 93.0 99.6 87.5

Top-7 94.1 93.8 99.2 89.2 94.4 94.1 99.0 89.8 94.3 94.0 99.1 89.6

Top-5 94.9 94.6 98.3 91.4 95.1 94.8 98.3 91.9 95.0 94.7 98.2 91.7

Top-3 95.2 95.0 97.4 93.0 95.4 95.1 96.7 93.9 95.3 95.1 97.2 93.3

With the three aggregation policies, we can see that performance indicators are better
when we reduce the number of models in the ensemble. The best results are obtained
with the Top-3 ensemble, which achieved an IOU of 95.4% and Dice of 95.1%. We
observe that the IOU and Dice scores of the aggregated models are better than the ones
of the individual models. However, precision is higher when using more models. An
improvement in recall means that we reduce the False Negatives. The non-improvement
of precision means that the number of FPs is the same or increase a bit. However, as IOU
and Dice are better it means that the improvement in FNs is considerably larger than the
increase of FPs.

Regarding OWA, we can also observe that the most conjunctive policy (i.e. as many
as possible, Q2) is outperforming the others. Comparing the results with the Q2 ensem-
ble system and the individual models, we observe an improvement in the performance
(Table 1). In this experiment, results improve when using a strict conjunctive aggregation
policy, which is the one that requires a high agreement of the models in order to choose
the final class. As OWA is using the best performing subset of n models, this aggregation
is taking into consideration the consensus of the n models regarding the class probabil-
ity of each pixel (i.e. probability of each class given by each model). As this consensus
may be difficult to find, it is reasonable that smaller subsets perform better than adding
more models with fewer performance indicators. This observation is interesting because
it means that it is not necessary to include a large number of DL models in the ensemble.
From the improvement with respect to individual models, we can conclude that the en-
semble approach can improve the segmentation result, correcting some of the mistakes
of individual models. Figure 3 displays the segmentation made with the three different
OWA policies when using the Top-3 methods with the same images than previous figure.

It is interesting to determine the statistical significance of the differences in perfor-
mance between the proposed ensemble and GSCs (the best individual model) in terms
of the IOU and Dice. To do so, we used Student’s t-test (significance level < 0.05) to
determine the difference in IOU and Dice values. The p-values obtained are higher than
0.05, indicating no statistical significance.
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Figure 3. Results of the three policies of the OWA proposed method. Here Q1, Q2, Q3 indicate to the policies

4. Conclusions and future work

This paper presented an automated system for segmenting the OD in fundus images of
the human eye based on accurate deep learning-based segmentation models and OWA
operators. We assessed the performance of three different policies and a different number
of individual OD segmentation models. We found that a high conjunctive aggregation
with a reduced subset of the classifiers leads to the best OD segmentation model. With
an in-house fundus images dataset collected from the Hospital Sant Joan de Reus, our
system achieved an IoU and Dice scores higher than 95%, a precision higher than 96%,
and a recall higher than 93%. Using an ensemble of DL models increases the training
time significantly because several individual OD segmentation models must be built be-
fore constructing the ensemble. The fact that a combination of only three models has
given the best results makes this ensemble approach feasible. The inference time is low
enough to be used in a hospital in real-time. Moreover, the improvement achieved with
the proposed ensemble system can give a more accurate segmentation of the OD, which
reduces human errors for ophthalmologists in detecting eye pathologies. Future work
will include using the proposed OD segmentation model to develop detection tools for
eye diseases like glaucoma or diabetic retinopathy.
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