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Abstract. The Food and Agriculture Organization (FAO) estimated that plant dis-
eases cost the world economy $220 billion in 2019. In this paper, we propose a
lightweight Deep Convolutional Neural Network (DCNN) for automatic and reli-
able plant leaf diseases classification. The proposed method starts by converting
input images of plant leaves from RGB to CIE LAB coordinates. Then, L and AB
channels go into separate branches along with the first three layers of a modified
Inception V3 architecture. This approach saves from 1/3 to 1/2 of the parameters
in the separated branches. It also provides better classification reliability when per-
turbing the original RGB images with several types of noise (salt and pepper, blur-
ring, motion blurring and occlusions). These types of noise simulate common im-
age variability found in the natural environment. We hypothesize that the filters in
the AB branch provide better resistance to these types of variability due to their
relatively low frequency in the image-space domain.
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1. Introduction

Plant leaf images taken in the field and away from controlled laboratory conditions fre-
quently suffer from blurring, motion blurring, occlusion and illumination variations. Au-
tomated detection systems frequently suffer from these common adverse effects. Inspired
on Multi-path Convolutional Neural Networks [1] and Dual Paths Neural Networks [2],
we created an Inception V3 [3] based architecture that has two branches (paths) along
the first 3 convolutional layers. One branch is fed with the achromatic L channel, while
the other branch is fed with AB channels provided by the input CIE Lab color coordi-
nate space. In this work, we study 3 two-branches Inception V3 variants: 20%L-80%AB,
50%L-50%AB and 80%L-20%AB. In this notation, the percentages indicate the propor-
tion of the original number of neurons of each separated layer dedicated to each path.
This two-branches solution provides more resistance to adverse effects such as blurring.
For this work, we are training our architecture with the PlantVillage dataset [4] that con-
tains classes for 12 healthy crops and 26 crop diseases.

Based on
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This article is structured as follows: section 2 presents and discusses relevant work
in regards to computer vision, DCNNs and image based plant disease diagnostic. Section
3 presents the proposed method. The results and the discussion are given in sections 4
and 5. Section 6 summarizes the main conclusions.

2. Related work

In a previous work [5], training a CNN with input images encoded in the CIE Lab color
space, we were able to show that we can classify the CIFAR-10 dataset [6] more effi-
ciently and with higher classification accuracy by creating an architecture that has a sub-
path dedicated to light and another subpath dedicated to color channels. In this previous
work, each subpath has only the first convolution layer dedicated for each L and AB
channels.

A number of machine learning methods have been proposed specifically for im-
age based plant disease diagnostic [7,8]. Mohanty et. al. [9] worked with AlexNet and
GoogLeNet models for the PlantVillage dataset classification. They trained both models
from scratch and with transfer learning. They also experimented feeding their models
with RGB and grayscale images. They found better results feeding RGB images to both
tested models. Their best result without transfer learning was 98.37%. Geetharamani et
al. [10] classified the PlantVillage dataset with 3 convolutional, 2 max poolings and 2
dense layers achieving 96.46% of accuracy. Toda at al. [11] working with a trimmed In-
ception V3 showed that DCNNs can learn the colors and textures specific to plant leaf
diseases resembling human made classification.

3. Methodology

Figure 1 shows two designs of CNNs for plant disease classification. Toda & Okura’s
[11] proposed an Inception v3 variation that gets rid of the last 5 mixed layers (out of 11).
The authors proved that it is enough for the sake of classification PlantVillage dataset.
Therefore, we have chosen their model as our baseline.

The design shown on the right of figure 1 corresponds to our proposal, which splits
the first three convolution layers of the baseline model into two branches, one for the L
channel and the other for the AB channels from the transformed RGB image. Then, the
output from each branch is concatenated and the rest of the network is the same as the
baseline.

Another relevant remark is that we use a hyperparameter that determines the distri-
bution of a fixed number of filters among L and AB branches, which allows us to look
for the optimal contribution of each branch to the classification task. This distribution is
implemented with the value of a variable x, shown in figure 1 as the number of L filters in
the third layer. In the original Inception V3 implementation, the first three convolutional
layers have 32, 32 and 64 filters, respectively. We have analyzed three configurations
of the two-branch design named after the percentage of filters dedicated to L and AB
branches: 20%L-80%AB, 50%L-50%AB and 80%L-20%AB. The resulting number of
filters for each variant is shown in the table 1.

Since we intend to compare our variants with the baseline as fairly as possible, the
sum of filters of the two branches in each layer is the same as in the Inception V3 design.
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Figure 1. Graphical representation of the worked network architectures: on the left, the Toda & Okura’s sin-
gle-branch (baseline) approach fed with an RGB image; on the right, our two-branch approach fed with L+AB
images. The x expressions determine a varying number of filters in L branch and a complementary number of
filters in AB branch.

Model 1st & 2nd Layers 3rd Layer

baseline 32 64
20%L + 80%AB 6 — 26 13 — 51
50%L + 50%AB 16 — 16 32 — 32
80%L + 20%AB 26 — 6 51 — 13

Table 1. Number of filters in 1st, 2nd and 3rd layers of the baseline and our variants. For our variants, we have
the number of filters in the L branch at the left and in the AB branch at the right.

However, our design saves from 1/3 to 1/2 of weights and computational floating point
operations in the split layers, as shown in tables 2. Despite the reduction in weights, the
learning capacity of our models is not degraded since our three variants achieve similar
accuracy (99.48%, 99.11%, 99.08%) to the one provided by the baseline (99.32%).

Our design is based on the well-known fact that RGB channels are highly correlated
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among each other [12] in the sense that shading and shadows render a set of different
RGB values from the intrinsic color(s) of a surface. Specifically, intensity variations in-
duced by illumination variation, edges and texture modify the three RGB values at same
proportion. Hence, transforming RGB channels into some sort of achromatic-chromatic
space, like CIE Lab, effectively isolates the gray-level features in the L channel and the
color-related features in the AB channels. We are forcing the filters in each branch to
learn features related to the nature of each cue, i.e., we expect that L filters will focus
on texture and edges of the leafs (intrinsic shape, damaged leaf areas, etc.) while the AB
filters will focus on color findings (lesions, general color of the leaf, etc.).

model weights (Saving) flops (Saving)

baseline 28512 701M
20%L + 80%AB 19746 (31%) 485M (31%)
50%L + 50%AB 14256 (50%) 350M (50%)
80%L + 20%AB 19566 (31%) 481M (31%)

Table 2. Weights and required forward pass floating point operations along the first 3 convolutional layers in
baseline and our variants.

To verify the reliability of the baseline and our variants, we have included one mod-
ule for noise injection. This allows us to perturb the original RGB images with different
types of artifacts and varying degrees of severity of those artifacts. It must be observed
that the noise injection is previous to the RGB-to-LAB transformation.

Our code was coded with Keras/Tensorflow v2.2. We rented cloud based hardware
with NVIDIA GPUs, intel CPUs and virtual machines from 32GB to 64GB of RAM. The
implementation details of our approach are strongly based on the reference paper [11].
Each convolutional layer is composed of a 2D convolution, a batch normalization and a
ReLU activation function. All convolutional filters from Conv1 to Conv5 are of the size
3× 3 except for Conv4 which is 1× 1. The optimization method is stochastic gradient
descent, and the loss function is weighted categorical cross entropy to compensate for
unbalanced number of samples among classes. The batch size is 32 and we store the
weights that obtain the best validation accuracy in 30 epochs. We trained all models from
scratch. The noise injection module has not been used for training since this module is
only intended to verify the reliability of the models under controlled perturbation of the
test images.

4. Results

Figure 2 shows the evolution of test accuracy in the studied models, baseline, two-branch
20%L-80%AB, 50%L-50%AB and 80%L-20%AB, for different types of noise and a
range of noise amount.

In Salt and Pepper experiments, the range of noise indicates the percentage of pixels
of the input image that have been changed to either white or black pixels (see Fig. 3 for
an example). This type of noise simulates spuriously saturated values in the input signal.
The corresponding plot depicts the 20%L-80%AB variant as the most reliable when the
percentage of noisy pixels is above 3%. Above 3%, the classification accuracy is up to
10% more accurate than the baseline. Nevertheless, the baseline holds better performance
than the other two branched models in the range of noise used for these experiments.
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Figure 2. Result plots showing the test accuracy evolution of four approaches under a range of perturbation
with four types of noise.

In Blur experiments, a Gaussian distribution of a given sigma in image space coor-
dinates (distance in pixels) is convolved with the input RGB image values producing the
typical blurring effect (check Fig. 3). This type of noise simulates unfocused snapshots
or dirty lenses. In the corresponding plot, our 20%L-80%AB variant proves the most
reliable under the tested range of sigmas. From σ = 1.25 to σ = 1.75, this best model
overcomes the baseline by 10% of test accuracy. Moreover, the 50%L-50%AB variant
also overcomes the baseline, although by a slight difference.

Motion blur is similar to blur (also check Fig. 3), but instead of a Gaussian distri-
bution we use a sparse matrix of a given size with all cells equal to zero except for one
line of cells, which is filled with ones divided by the number of cells in that line. By
convolving the image pixel values with such a matrix (kernel), it is possible to simulate
the blurring due to sudden camera shifts. The direction of movement is parallel to the
line of cells different to zero. The extend of movement is equivalent to the length of that
line. The corresponding plot depicts similar behavior to the blurring plot, although it is
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Figure 3. Noise injection in a portion of a test image (Apple Black Rot num.5), in RGB, L and AB spaces:
Salt & Pepper noise in 4% of the image pixels; Blur by convolving a Gaussian bell with σ = 2 pixels; Motion
Blur in up-left direction with 8 pixels of kernel width.

necessary to use a 9 pixels-side kernel to degrade the test accuracy of the 20%L-80%AB
variant as much as with a σ = 1.5 in the blurring experiment.

Occlusion is performed by overlapping a square of gray pixels of a given size in a
random position of the image. This type of noise simulates the occlusion of the target leaf
by other non-interesting objects such as tree branches, fruits, etc. For these experiments,
the model that renders the best reliability in the corresponding plot is our 50%L-50%AB
variant with a remarkable difference of 5% above the second best model, the 20%L-
80%AB variant, which in turn is also 5% above baseline and the 80%L-20%AB variant
when the side of the masking square is beyond 100 pixels.

5. Digression

All results are highly determined by the fact that the leaf shape and their lesions are less
varying in AB channels than in RGB and L channels as can be seen in the example of
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Figure 3. In other words, the leaf representation in AB channels render broad areas of
similar colors. This low-frequency nature of the AB channels makes the color-trained
filters to inherently take into account a wider field of view. Therefore, more erroneous
pixels are needed to mislead the classification. In contrast, the same leaf surface renders
more frequent variations in RGB channels which provokes that their trained filters will
have a smaller field of view. Specifically, high-frequency noise affects more to gray-level
filters, which are actually the ones projected into the L channel. These observations may
explain why focusing 80% of the filters on the AB branch provides the best results in
presence of most types of noise.

For salt and pepper noise, the effect of spurious pixels in AB channels is noticeable
but the larger field of view of corresponding filters allows to overcome those perturbed
values. In the other hand, the field of view of L and RGB filters is closer to the area
of each erroneous pixel. However, the baseline is more reliable than 50%L-50%AB and
80%L-20%AB configurations because its filters can better treat the spurious changes in
the 3D RGB space than the combination of the split L and AB filters.

In contrast to salt and pepper, blurring is a perturbation of low-frequency nature.
Despite this fundamental difference, our 20%L-80%AB configuration becomes again the
most reliable. In this case, the smoothing of pixel values degrades more the features en-
coded in the L and RGB channels than the features encoded in the AB channels. The
50%L-50%AB configuration is also stronger than the baseline. In regards to motion blur-
ring, the 20%L-80%AB and 50%L-50%AB configurations are again the most reliable.

For the occlusions experiment, the 50%L-50%AB and 20%L-80%AB variants are
the most resilient specially for mask sizes above 1/4 of the total image area. Again, the
reasoning for this effect is that a big occlusion in the AB image removes less relevant
details than the same occlusion in L and RGB images as the key features in AB channels
are wider in image space than in L or RGB channels.

6. Conclusion

In this paper, we have suggested a two-branch CNN for plant disease classification where
the first three convolutional layers are specialized in learning chromatic and achromatic
features from the CIE Lab color space. Besides classifying original RGB images with
similar accuracy and less weights, our experiments also show that our 20%L-80%AB
and 50%L-50%AB models better classify input images under salt and pepper, blurring,
motion blurring and occlusion by margins up to 10%.

With regards to the optimal distribution of filters among achromatic and chromatic
branches, our experiments show that about 80% of the filters should go into the chromatic
branch in order to provide the maximum reliability in front of different sources of noise.
The reason behind this conclusion is based in the fact that color filters have wider field
of view than lightness or RGB filters. Another reason is the color cue portrays highly
relevant features for plant disease classification.

As we have Toda & Okura’s Inception V3 based work as our baseline, we did our
experiments with a modified Inception V3. It would make sense as a future work to try
the same two-branches approach with an Inception V4 [13] model.
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