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Abstract. EfficientNet is a recent Deep Convolutional Neural Network (DCNN)
architecture intended to be proportionally extendible in depth, width and resolu-
tion. Through its variants, it can achieve state of the art accuracy on the ImageNet
classification task as well as on other classical challenges. Although its name refers
to its efficiency with respect to the ratio between outcome (accuracy) and needed
resources (number of parameters, flops), we are studying a method to reduce the
original number of trainable parameters by more than 84% while keeping a very
similar degree of accuracy. Our proposal is to improve the pointwise (1x1) con-
volutions, whose number of parameters rapidly grows due to the multiplication of
the number of filters by the number of input channels that come from the previous
layer. Basically, our tweak consists in grouping filters into parallel branches, where
each branch processes a fraction of the input channels. However, by doing so, the
learning capability of the DCNN is degraded. To avoid this effect, we suggest inter-
leaving the output of filters from different branches at intermediate layers of con-
secutive pointwise convolutions. Our experiments with the CIFAR-10 dataset show
that our optimized EfficientNet has similar learning capacity to the original layout
when training from scratch.
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1. Introduction

Plenty of image classification architectures are tested and benchmarked with ImageNet
[1] dataset. On the other hand, it should be noted that not all problems in image clas-
sification have 1000 classes and millions of samples nor every research group has the
required computing resources to train deep neural network models on large datasets. In
this sense, we propose a highly parameter-efficient DCNN architecture that performs
well at training from scratch with small datasets and small computing resources. As an
example, in the scope of plant disease classification, the Cropped-PlantDoc dataset [2]
has less than 10k image samples. Due to its small sample size, this dataset is prone to
overfitting. We show that our highly parameter-efficient architecture performs better than
the baseline when training them with small datasets.
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This article is structured as follows: section 2 presents and discusses relevant work
in regards to DCNNs, parameter-efficient DCNNs and datasets used in this work. Section
3 presents our proposed pointwise convolution replacement. Our results and discussion
are given in sections 4 and 5, respectively. Section 6 summarizes the paper.

2. Related work

In 1980, Fukushima [3] devised a layered artificial neural network for image classifica-
tion inspired by the visual cortex structure. In that network, the first layer contains neu-
rons that detect simpler patterns with a small receptive field. Deeper layers detect more
complex patterns with wider receptive fields by composing patters from previous layers.
That was the first Convolutional Neural Network (CNN).

In 2012, Krizhevsky et al. [4] reported a major breakthrough in the ImageNet Large
Scale Visual Recognition Challenge, using their AlexNet architecture. Since then, many
other DCNN architectures have been introduced, like ZFNet [5], VGG [6], GoogLeNet
[7], ResNet [8] and DenseNet [9]. Since the number of layers of proposed convolutional
neural networks have increased from 5 to more than 200, those models are usually re-
ferred as Deep Learning or DCNN.

In regards to datasets, the following three are in our interest:

• The Oxford-IIIT Pet dataset [10] consists of 25 breeds (classes) of dogs and 12
breeds (classes) of cats. In total, there are 37 classes of images. Each class has
around 200 images. Images have various sizes and complex backgrounds and
illumination patterns.

• CIFAR-10 dataset [11] consists of 60k 32x32 images belonging to 10 differ-
ent classes: airplane, automobile, bird, cat, deer, dog, frog, horse ship and truck.
These images are taken from natural and uncontrolled lightning environment.
They contain only one prominent instance of the object to which the class refers
to. The object may be partially occluded or seen from an unusual viewpoint.

• Cropped-PlantDoc dataset [2] was devised to allow plant leaf disease classifica-
tion. It was created by cropping individual leafs from a smaller dataset called
PlantDoc that contained multiple leafs per image. This dataset has 13 plant
species and 27 classes for different diseases on each specie. Images have complex
backgrounds and the area covered by the leafs has varying sizes.

These datasets offer together an interesting broad set of classes. Cropped-PlantDoc
contains plants only. The Oxford-IIIT Pet dataset contains animals only. The CIFAR-10
dataset contains animals and man made objects. Besides, they are relatively small and
allow easy replication of our ideas with affordable hardware and small computing time.

To be able to reduce the number of weights in our DCNNs, we propose the use of
grouped convolutions. A grouped convolution evenly separates input channels and neu-
rons for each group. Each neuron processes only input channels entering its own group.
This drastically reduces the number of weights and floating point computations. A depth-
wise convolution is an extreme case which each group has only one input channel and
only one filter. In a depthwise convolution, the number of input channels, filters and
groups are the same. In AlexNet, due to implementation constraints, convolutions were
separated into two groups. In 2016, Ioannou at al. [12] experimented grouped convolu-
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tions with 2, 4, 8 and 16 groups per convolution for CIFAR-10 classification. Ioannou at
al. showed that replacing 3x3 and 5x5 common convolutions by grouped convolutions
can reduce the number of parameters by more than 50%. They also showed that their split
architectures can keep the original classification accuracy or even improve it slightly. In
their work, there was no attempt to optimize the 1x1 pointwise convolutions, i.e., con-
volutions that have 1x1 kernels with one trainable parameter per input channel. These
kernels do not take into account neighboring positions such as, for example, 3x3 filters.

In 2017, Howard at al. [13] developed an architecture called MobileNet. The Mo-
bileNet building block is composed by a depthwise separable convolution followed by
a pointwise convolution. MobileNets are parameter-efficient when compared to pre-
vious models. As an example, MobileNet-160 has nearly 45 times less parameters
than AlexNet and achieves similar accuracy when classifying the ImageNet dataset.
MobileNet-224 has nearly 40% less parameters than GoogLeNet and achieves higher
accuracy than GoogLeNet. Howard at al. noted that as their models are more parameter-
efficient, these smaller models require less data augmentation. There is an aspect in their
MobileNet models that has central interest for our proposal: nearly 75% of the parame-
ters and 95% of multiplications and additions are computed by pointwise convolutions.
This makes a strong case for an optimized pointwise convolution.

Also in 2017, Ting Zhang et. al. [14] proposed mixing grouped convolutions with
interleaving layers. They proposed a grouped spatial convolution followed by an inter-
leaving layer and a grouped pointwise convolution. The most evident difference from
their work to ours is about us developing a solution specifically targeting a pointwise
convolution replacement.

In 2019, Mingxing Tan et al. [15] developed the EfficientNet architecture. At that
time, their EfficientNet-B7 variant was 8.4 times more parameter-efficient and 6.1 times
faster than the best existing architecture achieving 84.3% top-1 accuracy on ImageNet.
As in the case of MobileNets, more than 80% of the parameters of EfficientNets come
from standard pointwise convolutions. This aspect opens an opportunity for a huge re-
duction in number of parameters and floating point operations.

3. Methodology

Latest DCNN architectures have a big portion of their parameters located in pointwise
convolutions. Thus, we propose replacing pointwise convolutions by parameter-efficient
counterparts. Figure 1 shows a diagram of our proposed pointwise replacement. It starts
with a pointwise grouped convolution K (parallel groups K1 to KNi ) followed by a chan-
nel interleaving layer which mixes channels for the next pointwise grouped convolution
L (parallel groups L1 to LNi ). All channels from parallel groups K1 to KNi are concate-
nated into a single output of the K layer. The same happens for the L layer. Concatenated
outputs from K and L layers are summed channel by channel, which makes the L layer
to behave as a residual convolution.

In standard pointwise convolutions, each filter has one trainable parameter per input
channel. Therefore, the number of parameters P in layer i is calculated from the number
of channels of the preceding activation map Ci−1 and the number of filters Fi as in Eq. 1:

Pi =Ci−1 ·Fi (1)
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For grouped convolutions, let us note the number of groups in layer i as Ni. Each
group is fed a contiguous subset of Ci−1/Ni of the input channels. Moreover, the number
of filters per group is Fi/Ni. Thus, the number of parameters per group is the number
of filters per group multiplied by the number of channels per group (Fi/Ni) · (Ci−1/Ni).
Therefore, multiplying the previous expression by the number of groups, we obtain the
total number of parameters of a grouped convolutional layer as in Eq. 2:

Pi = (Ci−1 ·Fi)/Ni (2)

When grouping convolutions, we follow these constraints:

• Each group must have at least 16 input channels. This will allow a minimum
degree of intragroup combinations.

• The number of groups Ni shall be the greatest common divisor of the number of
input channels Ci−1 and the number of filters Fi respecting the previous constraint
(Ci−1/Ni ≥ 16).

• Given above constraints, if we cannot have more than one group, then the original
pointwise convolution is not replaced by this sub-architecture.

• Only when the number of output channels per group (Fi/Ni) is bigger than 1, an
interleaving layer will be added.

• Only when the number of input channels is greater or equal than the number of
output channels (Ci−1 ≥Ci), a grouped pointwise convolutional layer is added af-
ter the interleaving layer and then the result of both grouped convolutional layers
are summed.

As an example, in a monolithic pointwise convolution with Ci−1 = 1,024 and Fi =

512, we will obtain Pi = 524,288 parameters. If we replace this pointwise convolution
with our sub-architecture, according to the constraint of a minimum of 16 channels per
group, Ni must be 64. In this example, the first grouped convolutional layer will have
1,024 · 512/64 = 8,192 parameters. The second grouped convolutional layer will also
have 64 groups, but the number of input channels will be 512, hence the total number
of parameters will be 512 · 512/64 = 4,096. Summing both results, the total number
of parameter of the whole sub-architecture will be 12,288, which is a saving of almost
97.7% from the original parameter count.

In all of our experiments, we used an Amazon AWS instance with a single Tesla T4
GPU paired with 8 virtual cores. In regards to software, we used Keras/Tensorflow and
RMSProp optimizer. Our experiment with Oxford-IIIT Pet dataset has cyclical learning
rate of 25 epochs. All training experiments have data augmentation. For each dataset, we
used a specific number of epochs as shown in Table 1. We used more epochs in smaller
datasets to compensate the smaller number of samples. The number of epochs fits a
multiple of our learning rate cycle. In this work, we did not use transfer learning as our
goal is to evaluate learning capacity of parameter-efficient models. In all experiments,
we kept the same dropout as per original EfficientNet (baseline) implementation.

Our source code is publicly available and can be fount at https://github.com/
joaopauloschuler/kEffNet/ .
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Figure 1. Graphical representation of our pointwise convolution replacement. At the left, a classic monolithic
layer M with Fi pointwise filters. At the right, our substitute for M, made of two grouped pointwise convolu-
tional layers, K and L, with Ni parallel groups in each layer. Each parallel group has Fi/Ni filters. The size of
activation maps, transmitted through arrows, is the multiplication of height H, width W and number of channels
C, sometimes divided by Ni. The subindex i indicates architecture level. For pointwise convolutions, Hi=Hi−1,
Wi=Wi−1 and Ci=Fi.

4. Results

We have analyzed two types of results: test classification accuracy and heatmaps. In the
following subsections, we name our modified EfficientNet variants as ”kEffNet” fol-
lowed by the corresponding complexity code ”-Bn” (”-B0”, ”-B1”, etc.).

4.1. Test Classification Accuracy

Table 1 compares test accuracies and trainable parameter count of the baseline
EfficientNet-B0 and our variant kEffNet-B0 with the tested datasets.

As the scope of this work is limited to small datasets and small architectures, we only
experimented with the smallest EfficientNet variant (EfficientNet-B0) and our modified
variant (kEffNet-B0). Nevertheless, Table 2 provides the number of trainable parameters
of the other EfficientNet variants (original and modified).
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dataset classes epochs model parameters test accuracy

Cropped-PlantDoc 29 75 EfficientNet-B0 4,044,697 49.08%
kEffNet-B0 664,041 64.39%

Oxford-IIIT Pet 37 150 EfficientNet-B0 4,054,945 56.73%
kEffNet-B0 674,289 60.09%

CIFAR-10 10 50 EfficientNet-B0 4,020,358 91.66%
kEffNet-B0 639,702 91.64%

Table 1. Classification accuracies found with baseline and our variant.

variant EfficientNet Parameters kEffNet Parameters Reduction

B0 4,020,358 639,702 84.09%
B1 6,525,994 922,770 85.86%
B2 7,715,084 1,130,344 85.35%
B3 10,711,602 1,532,902 85.69%
B4 17,566,546 1,952,306 88.89%
B5 28,361,274 2,633,470 90.71%
B6 40,758,754 4,714,030 88.43%
B7 63,812,570 4,669,218 92.68%

Table 2. Number of trainable parameters per EfficientNet and kEffNet variants, for a 10 classes dataset.

4.2. Heatmap

We produced heatmaps for a number of samples from the Oxford-IIIT Pet as shown in
Figure 2. We observed that our kEffNet-B0 tends to concentrate feature activation close
to the ears and to the top of the cats head, while the baseline frequently finds feature
activation in the background.

In Figure 3, we find an image sample that both the baseline and our model do not
focus on the cat. We speculate that the proposed model is detecting textile patterns that
are commonly found in cat photos.

5. Discussion

We face two main limitations when applying grouped convolutions:

1. It prevents the DCNN from exploring all possible combinations among all fea-
tures coming from the previous layer due to missing connections.

2. The output of parallel groups must be somehow joined.

To alleviate the first and partially the second limitation, we interleave the channels of
the first grouped pointwise convolution before feeding the next grouped convolution. To
alleviate the second limitation, we propose the use of summation operator for joining
paths. Compared to concatenation, summation has the advantage of not increasing the
number of output channels. Our pointwise parameter-efficient replacement does not di-
rectly explain why we got higher classification accuracy in the Cropped-PlantDoc dataset
or in the Oxford-IIIT Pet dataset. Most likely, as we have less trainable parameters, our
modified kEffNets are less prone to overfitting. As CIFAR-10 is comparatively a bigger
dataset, we found almost the same test classification accuracy in baseline and modified
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Figure 2. On the left, heatmaps produced by the EfficientNet-B0 baseline. On the right, heatmaps produced
with our kEffNet-B0.

Figure 3. On the left, heatmap produced by the EfficientNet-B0 baseline. On the right, heatmap produced with
our kEffNet-B0.
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kEffNet. In regards to heatmaps, the baseline seems to be more frequently concentrating
attention on the background. This effect may not be necessarily a product of overfitting.

6. Conclusion

In this work, we have experimented with a replacement of EfficientNet pointwise con-
volutions using a sub-architecture that contains up to two grouped convolutions, an in-
terleaving layer and a summation layer at its end. By doing this replacement in the
EfficientNet-B0 variant, we were able to save more than 84% of the trainable parameters
while keeping the classification accuracy on the CIFAR-10 dataset when training from
scratch. As we have less trainable parameters, we found significantly better classifica-
tion accuracy in the Cropped-PlantDoc (+15.3%) and Oxford-IIIT Pet datasets (+3.3%)
probably due to less overfitting. As a matter of future research, we may delve in fine
tuning our sub-architecture details such as decreasing the dropout rate as we having less
trainable parameters.
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