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Abstract. Pose estimation is typically performed through 3D images. In contrast,
estimating the pose from a single RGB image is still a difficult task. RGB images
do not only represent objects’ shape, but also represent the intensity that is relative
to the viewpoint, texture, and lighting condition. While the 3D pose estimation
from depth images is considered a promising approach since the depth image only
represents objects’ shape. Thus, it is necessary to know what is the appropriate
method that can be used for predicting the depth image from a 2D RGB image
and then to use for getting the 3D pose estimation. In this paper, we propose a
promising approach based on a deep learning model for depth estimation in order
to improve the 3D pose estimation. The proposed model consists of two successive
networks. The first network is an autoencoder network that maps from the RGB
domain to the depth domain. The second network is a discriminator network that
compares a real depth image to a generated depth image to support the first network
to generate an accurate depth image. In this work, we do not use real depth images
corresponding to the input color images. Our contribution is to use 3D CAD models
corresponding to objects appearing in color images to render depth images from
different viewpoints. These rendered images are then used as ground truth and to
guide the autoencoder network to learn the mapping from the image domain to
the depth domain. The proposed model outperforms state-of-the-art models on the
publicly PASCAL 3D+ dataset.

Keywords. Deep learning, depth prediction, image segmentation, UNet, UNet++,
image to image translation.

1. Introduction

Inferring depth and 3D pose estimation from a single RGB image is one of the most
challenging problems in computer vision. In this work, we address the challenging prob-
lem of depth estimation that is useful to determine pose estimation showing in a scene
using a monocular camera. Practicality, the important challenge in a 3D pose estimation
directly from a single image is the ambiguity of the object shape in a monocular im-
age. Since the appearance of an object in an image dramatically depends on its intrinsic
characteristics (e.g., texture and color/albedo), and extrinsic characteristics related to the
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acquisition (e.g., camera pose and gamma correction conditions). Thus, estimating a 3D
pose requires the depth image that only contains the shapes of the objects in order to
estimate the correct pose of the main objects in a 3D scene.

Nowadays, with the significant progress of deep learning models, several approaches
based on deep networks have been proposed to predict depth maps from a single image.
In particular, [1] presents a framework for depth and surface normal estimation from
monocular images. It consists of a regression stage using a deep CNN model to learn
the mapping from multi-scale image patches to depth or surface normal values at the
super-pixel level (the SLIC algorithm [2] that is used to segment the depth images into
super-pixels). [1] used then refined the estimated super-pixel depth or surface normal to
the pixel level by exploiting the potentials on the depth or surface normal map, which
include a data term, a smoothness term among super-pixels and an auto-regression term
characterizing the local structure of the estimated depth map. In [3], a three-layer CNN
trained with a per-pixel Euclidean loss was presented to convert the given color image
to a geometrically meaningful output image. Besides, they used Conditional Random
Fields (CRF) as a loss layer to enforce local consistency in the output image.

This work is close in spirit to that of [4,5,6] in the sense that we also use a deep
learning approach to retrieve depth maps from a single image. Our method is a promising
method since it can be applied to predict depth images for indoor and outdoor scenarios.
Besides, it can be used as a co-representation method to be applied to predict the pose
estimation from a single RGB image. Furthermore, it is producing promising results with
a high precision rate and an acceptable computational cost.

In this work, we propose to use an autoencoder network as a generator based on
UNet and UNet++ models [7,8]. In particular, a cutting-edge technique for image trans-
formation as a baseline network for predicting a depth image from a single color image.
However, with the lack of annotated training data for depth images of objects, we use 3D
CAD models for rendering depth images from different viewpoints. The obtained depth
images are used to train the autoencoder network. The proposed model consists of two
successive networks. The first network is depth estimation that learns to map the RGB
image domain into the depth image domain. In order to enforce the generator to gener-
ate a depth close to the ground truth, we propose a second network is a discriminator
network that helps the first network by comparing the ground truth and generated depth
images. The two networks are integrated into a single pipeline to solve the problem of
depth image estimation. Figure 1 shows the proposed framework for depth estimation
from a single image using technique segmentation.

To the best of our knowledge, this work is the first attempt to use an autoencoder
network used for the image segmentation purpose as a generator to a training model for
estimating depth maps of the main object depicted in a 2D image. Consequently, the
main contributions of this paper are the following:

• We propose an autoencoder segmentation network as a generator that can predict
a depth image from a single 2D color image of an object.

• We propose a discriminator network to achieve a more accurate comparison of the
ground truth and generated depth to enforce the autoencoder network to generate
an accurate dense depth image.

• The integration of the two networks into a single pipeline to solve the problems
of generating a depth image from a single color image.
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This paper is organized as follows. Section 2 describes the proposed methodology
to estimate a depth image using segmentation. Section 3 describes experimental results.
Finally, Section 4 concludes this work and suggests future lines of research.

2. Methodology

This section explains the proposed scheme, the tools, and the resources being used in this
work. We formulate the problem in subsection 2.1. The remaining subsections explain
each part of the proposed model in detail.

2.1. Problem Formulation

Let a ∈ A be a 2D color image, and the problem of generating its corresponding depth
image, b ∈ B, can be dened formally as a function f : A → B maps elements from domain
A to ones in its co-domain B. Figure 1 shows the graphical description of the system. It
contains two main modules. The first one is a depth generator G based on an autoencoder
segmentation Network, and the second one is the discriminator network D based on a
CNN.
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Figure 1. General overview of the proposed depth estimation model.

2.2. Generator Network

Two main variations of our autoencoder segmentation network are proposed in this paper
as a generator network. Both of them are encoder-decoder neural network architecture.
The first network is UNet [7], it involves convolution layers, and it does not include a
fully connected layer that is demanding on a big amount of data. This network is simple,
efficient, and easily used. It consists of two parts: the first one is an encoder that obtains
different image feature levels continuously sampled through multiple convolution layers.
Also, we tested the UNet++ [8], which consists of a series of nested dense convolutional
blocks, as a encoder to choose the best between UNet and UNet++ networks
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The second one is a decoder that performs multi-layer deconvolution on the top-
level feature map and combines different feature levels in the down-sampling process
to restore the feature map to the original input image size and completes the end-to-
end depth estimation task from the input image. Besides, it uses the skip connection
operation to connect each pair of down-sampling layers and the up-sampling layer that
makes the spatial information directly applied to much deeper layers and a more accurate
segmentation result.

The generator G learns the mapping from an input color image to the correspond-
ing depth image. The input to the segmentation network is a 2D color image, a, and it
generates a depth image, b̂.

In order to optimize the structural similarity between the depth image and ground
truth, we use two loss functions: the first one is a MSE loss function based on feature
matching that can be defined as follows (1):

Lgan(a,b,G(a)) =
1
n

n

∑
i∈T

f (b̂(i)−b(i))
2, (1)

where a is input 2D color image, G is a generator network, f is the MSE error, b(i) is
the real depth of pixel i, b̂(i) is the associated predicted depth by generator network, T is
the set of valid pixels (i.e., both the ground-truth and predicted depth pixels that do not
have depth values equal to zero or non-black regions as shown in Figure 2 and n is the
cardinality of T .

2.3. Discriminator Network

The generator network generates depth images b that belong to domain B from the do-
main A of color images. To model this additional constraint, we proposed a discrimina-
tor network that is composed of five convolution layers with 4× 4 filters, stride 2 and
padding 1. Each convolution layer is followed by batch normalization (BN) except for
the first convolutional layer Cn1 followed by an output logistic unitLeakyReLU [3,9]. The
idea of our approach is to train the generator to generate samples very close to the real
samples and the samples have to be in the depth image domain. To model this addi-
tional constraint, we train a discriminator neural network D to distinguish between a real
sample consisting of (input color image and real depth image rendered from 3D CAD
models) and a fake sample consisting of(input image and generated depth image from
the generator G). The discriminator network D is used to determine whether the depth
images estimated by the generator G are comparable to depth images or not.

In addition, it provides a second loss measure, along with the reconstruction error
of the generated depth map, that is useful for training an accurate generator to generate
a dense depth image and minimize the difference between the corresponding features
and avoid the over-fitting and make the training more stable and converge faster. The
discriminator is trained by minimizing the following binary cross-entropy (BCE) loss is
defined as follows (2):

�Dis(D,a,b, b̂) =−Eab̂b[log(D(a,b))+ log(1−D(a, b̂)] (2)
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2.4. Total Loss

The final objective function, i.e. the training loss, at one iteration of our learning algo-
rithm is defined as:

L(G,D,a,b, b̂) = �gan(G,D,a,G(a))+ �Dis(D,a,b, b̂) (3)

This loss L(G,D,a,b, b̂) is efficiently integrated into the back-propagation for the
generator network through ADAM optimization.

3. Experiments and Results

This section describes the experiments performed to evaluate the proposed model on the
publicly PASCAL 3D+ dataset using various evaluation measures.

3.1. Dataset

In this work, a comprehensive set of experiments have been conducted to validate the
performance of the proposed model on the public PASCAL3D+ dataset [10], which con-
tains 12 object categories. Every object category contains ten or more 3D models and
more than 1,000 color images related to every category. We used the 3D models to render
corresponding depth images for the RGB images to train the proposed model. We ren-
der a depth image from a 3D model corresponding to each color image according to the
viewpoints specified in the dataset. We randomly split the images in each category into
70% for the training set and 30% for the testing set. To increase the number of training
samples, we apply data augmentation (DA) techniques Shown in Figure2 that show the
transformations applied to every input image and the corresponding depth images. Thus,
each category has more than 10,000 images for training the model. After applying data
augmentation to the real color images and corresponding depth ones, and using them as
inputs to the model for the training process, we found that the efficiency of the network
significantly improved due to exposing the model with more difficult samples and sam-
ples under different conditions. For all the tested 3D models, we rendered depth images
using the MATLAB 3D Model Renderer 2 based on the viewpoints (i.e, azimuth and el-
evation angles), as well as the distance between the camera and the 3D model obtained
from the annotation of the PASCAL 3D+ dataset.

3.2. Parameter settings

We used the Adam optimizer [11] with β1 = 0.5, β2 = 0.999 and an initial learning rate
of 0.0001. A batch size of 4 with 1000 epochs yielded the best combination. The input
images is reshaped to 128× 128 pixels and normalizes through divided by 255. For all
these experiments, we used a 64-bit I7-6700, 3.40GHz CPU with 16GB of memory, as
well as one NVIDIA GTX 1080 GPU on Ubuntu 16.04. We used the Pytorch [12] deep

2https://www.openu.ac.il/home/hassner/projects/poses/
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Figure 2. Transformations (flipping, blurring, noise, and rotation) are applied to every real image and its
corresponding rendered depth image in all transformations, except blurring and noise, we apply them for the
real image only.

learning framework. The computational time of the proposed method for the training
process takes around 1.2 minutes for each epoch with a batch size of 4. In turn, the online
estimation of depth maps has a performance of around 7 images per second.

3.3. Evaluation Measures

For depth image prediction, we used four different measures to assess the final perfor-
mance. The first measure is the root mean square error (RMSE), which provides a quan-
titative measure of per-pixel error, computed as (4):

RMSE =

√
1
n ∑

i∈T
(b̂(i)−b(i))2, (4)

where b(i) is the real depth of pixel i, b̂(i) is the associated predicted depth, T is the set of
valid pixels (i.e., both the ground-truth and predicted depth pixels that do not have depth
values equal to zero or non-black regions as shown in Figure 2 and n is the cardinality of
T .

The second measure assesses the accuracy of the proposed model to estimate errors
under a given threshold, serving as an indication of how often our estimate is correct. The
threshold accuracy measure from [3] is essentially the expectation that the depth value
error of a given pixel in T is lower than a threshold thrZ :

δZ = ET [F(max(
b(i)
b̂(i)

,
b̂(i)
b(i)

)< thrZ)] , (5)

where F(·) represents an indicator function that yields 0 or 1. As in [3], we set thr = 1.25,
and Z ∈ {1,2,3}.

The third measure is the Intersection Over Union (IOU) value, also referred to as the
Jaccard index that can be computed as (6):

IoU =
T P

T P+FP+FN
, (6)
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where T P indicates the number of pixels whose estimated depth coincides with the real
depth, FP indicates the opposite, and FN indicates the number of pixels where the real
depth has no predicted depth associated.

The fourth measure is the Dice score, which computes the ratio between the amount
of intersection and the total number of pixels in both the predicted b̂ and the real depth b
that can be defined as (7):

Dice =
2|b̂∩b|
|b̂|+ |b| =

2T P
2T P+FP+FN

. (7)

Table 1. Results for depth image estimation from 2D color images on the PASCAL3D+ dataset under different
measures with (a) GAN proposed in [13], (b) GAN with a reconstruction loss proposed in [14], (c) Adversarial
Learning proposed in [6] and (d) the proposed model. Lower is better for the RMSE metric, and higher is better
for the other measures. The best results are highlighted in bold.

aero bike boat bottle bus car chair table mbike sofa train tv mean

IoU 0.46 0.26 0.50 0.80 0.62 0.71 0.42 0.44 0.48 0.61 0.56 0.78 0.55
Dice 0.62 0.40 0.66 0.87 0.76 0.82 0.57 0.60 0.61 0.73 0.71 0.87 0.69

GAN Model RMSE (linear) 0.21 0.26 0.20 0.14 0.16 0.18 0.23 0.23 0.24 0.15 0.19 0.15 0.20
threshold δ < 1.25 0.77 0.53 0.69 0.66 0.47 0.63 0.71 0.75 0.65 0.59 0.56 0.53 0.63
threshold δ < 1.252 0.83 0.60 0.78 0.83 0.63 0.74 0.81 0.81 0.71 0.78 0.68 0.69 0.74
threshold δ < 1.253 0.86 0.65 0.84 0.89 0.73 0.83 0.85 0.83 0.77 0.87 0.75 0.81 0.81

IoU 0.49 0.32 0.51 0.79 0.67 0.73 0.47 0.42 0.51 0.63 0.61 0.80 0.58
Dice 0.64 0.41 0.66 0.88 0.79 0.84 0.62 0.58 0.67 0.76 0.75 0.89 0.71

RMSE (linear) 0.20 0.24 0.20 0.17 0.15 0.18 0.23 0.23 0.22 0.18 0.18 0.16 0.20
GAN with a reconstruction threshold δ < 1.25 0.83 0.65 0.68 0.76 0.61 0.67 0.72 0.77 0.72 0.66 0.62 0.54 0.69

threshold δ < 1.252 0.87 0.68 0.76 0.85 0.75 0.79 0.80 0.84 0.80 0.80 0.69 0.71 0.78
threshold δ < 1.253 0.89 0.70 0.82 0.89 0.80 0.85 0.83 0.85 0.84 0.88 0.79 0.82 0.83

IoU 0.52 0.43 0.56 0.82 0.70 0.75 0.52 0.49 0.53 0.62 0.54 0.78 0.61
Dice 0.66 0.55 0.71 0.90 0.81 0.86 0.67 0.65 0.68 0.75 0.69 0.87 0.73

RMSE (linear) 0.18 0.23 0.20 0.14 0.15 0.16 0.21 0.22 0.23 0.16 0.20 0.14 0.19
Adversarial Learning threshold δ < 1.25 0.80 0.70 0.65 0.76 0.58 0.69 0.74 0.78 0.71 0.61 0.58 0.52 0.68

threshold δ < 1.252 0.85 0.74 0.75 0.86 0.72 0.82 0.82 0.84 0.79 0.79 0.68 0.70 0.78
threshold δ < 1.253 0.87 0.76 0.82 0.91 0.79 0.87 0.86 0.87 0.84 0.86 0.76 0.81 0.84

U
N

et

IoU 0.53 0.41 0.61 0.77 0.75 0.79 0.62 0.53 0.55 0.70 0.65 0.78 0.64

Dice 0.69 0.51 0.75 0.86 0.83 0.88 0.75 0.68 0.69 0.82 0.77 0.87 0.758

RMSE (linear) 0.18 0.25 0.17 0.11 0.15 0.14 0.20 0.21 0.22 0.20 0.17 0.17 0.18

Our Model

threshold δ < 1.25 0.87 0.70 0.67 0.82 0.65 0.78 0.78 0.82 0.81 0.84 0.72 0.69 0.762
threshold δ < 1.252 0.89 0.74 0.76 0.87 0.78 0.86 0.87 0.85 0.86 0.89 0.76 0.76 0.824
threshold δ < 1.253 0.90 0.78 0.85 0.93 0.85 0.88 0.89 0.87 0.88 0.91 0.81 0.86 0.867

U
N

et
++

IoU 0.53 0.42 0.61 0.77 0.76 0.81 0.61 0.52 0.56 0.69 0.67 0.76 0.64

Dice 0.70 0.51 0.75 0.86 0.83 0.88 0.75 0.67 0.70 0.81 0.78 0.85 0.757
RMSE (linear) 0.18 0.24 0.17 0.12 0.15 0.14 0.20 0.21 0.21 0.21 0.16 0.17 0.18

threshold δ < 1.25 0.87 0.71 0.69 0.82 0.67 0.78 0.78 0.81 0.82 0.83 0.73 0.67 0.765

threshold δ < 1.252 0.89 0.75 0.78 0.87 0.79 0.86 0.87 0.84 0.86 0.89 0.78 0.76 0.828

threshold δ < 1.253 0.90 0.78 0.85 0.93 0.86 0.89 0.89 0.86 0.89 0.91 0.83 0.86 0.87

3.4. Results and Discussion

We have compared the proposed model with three alternative methods using the PAS-
CAL3D+ dataset: [13,14,6]. In Table 1, we show the four evaluation measures for the
predicted depth images corresponding to the 12 categories of the PASCAL3D+ dataset.
We evaluate the results with three different versions of GAN and our proposed model.
The first version is the GAN model proposed in [13]. The second version is the GAN
model with a reconstruction loss based on the L1-norm proposed in [14]. The third ver-
sion is the adversarial learning model proposed in [6]. Our model achieved the best mean
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results for the 12 categories with the four measures used in the evaluation. It achieved
an average IOU score of 64% and a Dice score of 75.8%. In turn, the RMSE error with
the proposed model is 0.18. With δZ = 1.25, the accuracy rate is 76.5%, while with
δZ = 1.253, the accuracy rate is increased by 3%. That shows the effect of discriminator
and feature matching on improving the performance of the estimation of depth images.
However, the other three tested methods provided results better than our model, for bike,
and bottle.

For a qualitative assessment, Figure 3 shows how the proposed model can generate
depth images that are very close to the ground truth. The figure shows the output of the
proposed model for different categories of PASCAL 3D+.

In addition, the performance of the proposed model for some of the categories of
PASCAL 3D+ is shown in Figure 4. We show the depth image generated against the real
depth images rendered from the corresponding 3D models. Besides, we show composite
images from the color and the generated depth image in (row 1 and row 2). These exam-
ples show that the proposed model can predict a proper depth image that has the pose of
the object in color images.

Figure 3. Intensity images (row 1), resulting depth images (row 2), Ground-truth depth images (row 3).

Figure 4. We show some correct and erroneous predictions given by our final method compared to the
ground-truth. As it is shown, in the first six columns, we show the correct prediction, and in the last four-
columns, we show the error prediction. Intensity images (row 1), resulting depth images (row 2), Ground-truth
depth images (row 3), and composite images from intensity and resulting depth images (row 4).
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4. Conclusion

We have introduced a novel cross-domain deep model for estimating a depth image of
the main object depicted in a 2D color image. We have designed a deep model based on
two deep networks. The first network is an autoencoder segmentation network, called a
generator. The generator network maps the color image to a depth image. The second
network is a discriminator network to achieve more comparison and allows the system to
generate a dense depth image. During training, the proposed model in the first network
is fed with a single 2D image for the object and the corresponding depth image rendered
from a 3D model of the same object. Both the input color image and the depth image
generated by the generator network are fed into the discriminator to make a more accu-
rate comparison to the ground truth images to help in generating a more precise depth
image. The model performance has been evaluated on the PASCAL3D+ dataset, yielding
promising results with a high precision rate and a low computational cost comparing to
the state of the art. Future work aims at applying the generated depth maps to predict the
pose estimation of objects showing in a scene.
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