Artificial Intelligence Research and Development 455
M. Villaret et al. (Eds.)

© 2021 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210166

Applying and Verifying an Explainability
Method Based on Policy Graphs in the
Context of Reinforcement Learning

Antoni CLIMENT 2, Dmitry GNATYSHAK P and Sergio ALVAREZ-NAPAGAO "

& Universitat Politecnica de Catalunya, Barcelona, Spain
®Barcelona Supercomputing Center, Barcelona, Spain

Abstract. The advancement on explainability techniques is quite relevant in the
field of Reinforcement Learning (RL) and its applications can be beneficial for the
development of intelligent agents that are understandable by humans and are able
cooperate with them. When dealing with Deep RL some approaches already exist in
the literature, but a common problem is that it can be tricky to define whether the
explanations generated for an agent really reflect the behaviour of the trained agent.
In this work we will apply an approach for explainability based on the creation of a
Policy Graph (PG) that represents the agent’s behaviour. Our main contribution is a
way to measure the similarity between the explanations and the agent’s behaviour,
by building another agent that follows a policy based on the explainability method
and comparing the behaviour of both agents.

Keywords. Explainable Al, Reinforcement Learning, Policy Graphs

1. Introduction and Motivation

Humans and complex algorithms for controlling agents do not usually share a common
language. In the context of many artificial intelligence methods, including those based on
Neural Networks (NN), when evaluating a specific problem we can learn the accuracy,
the sensitivity, the reward or the loss with respect to an objective function, along with
other metrics. These metrics can give us an idea about whether an algorithm controlling
an agent, such as a robot, is learning to perform a certain task correctly or not. However,
these metrics are frequently not enough to understand the agent behaviour or the rationale
behind their decisions. This is known as the explainability problem.

Much of the current state of the art in Reinforcement Learning (RL) is usually
enabled by neural network-based methods for finding a (near) optimal policy. This type
of programs do not follow a code made by a human that logically solves the problem in
a procedural or rule-based manner, but instead they are based on giving training input
to generate a non-intelligible complex function and taking the result from it to build a
behavioural policy. Furthermore, it is usually difficult to know whether the neural network
is learning what it is supposed to, which causes reliability issues.

This type of problem —how can we explain the behaviour of an agent and its rationale—
is an important sub-field of Explainability of Artificial Intelligence (XAI) [11]. Relevant

456 A. Climent et al. / Applying and Verifying an Explainability Method

topics of research in this topic include finding new ways of solving a task, elaborating
insights about the agents’ strategies, and analyse how an agent takes decisions in specific
scenarios where they perform a task better than humans.

The main objective of our work has been to create a graph-based policy in order
to analise whether the outcomes of an explainability method are able to accurately
describe the behavior of a trained agent. There are currently several approaches to apply
explainability methods to RL. In this paper, we briefly overview some of them (Section 2),
we choose one based on the creation of graphs representing the observable agent’s
behaviour, and we apply it to a practical use case (Section 3). In order to validate the
results of the method, we present a proposal based on creating a policy based on this
generated graph and we use it to find problems on the original proposal as well as to
validate the explanations produced (Section 4). The paper ends with a summary of the
main conclusions and contributions from the work done (Section 5).

2. State of the art

Over the years, a vast variety of different explainability and interpretability approaches
specific to the setting of RL has been proposed. In this section we provide a short overview
of some of them and as well as the one that was the foundation of this paper. A more
comprehensive and detailed study of the explainability methods in RL can be found in the
recent surveys on the topic [1,14].

When considering ways to classify the methods to obtain explanations or describe the
inner logic of RL methods, several approaches can be followed. One of the most common
of them is to denote whether the explanations are intrinsic to the RL model or algorithm
itself or are generated post-hoc. In addition to that, it is common to further subdivide these
approaches by the scope of their explanations into global and local ones. The former
showcase the global strategy used by the agent, while the latter can explain the policy’s
actions locally on case-by-case basis.

Before we go into specialised approaches, it is important to note that various statistics
and metrics can be produced during and after the agent’s construction or training, across
all of these classifications. For instance, in [15] the authors propose to gather three levels
of performance data: the data about the environment, about the behavior of the agent,
and the data from the meta-analysis of the previous two, possibly with some domain
knowledge. For each level they have outlined a wide array of statistics and metrics that
may yield useful insights on agent’s performance and the environment’s influence on it.

Decision tree models are a classical example of global intrinsic approach, with
the new methods and their variations still being proposed [16,4]. Here, the RL agent
simply needs to “answer” a straightforward series of questions going from the root of a
tree-like question structure to get the instructions on which action to choose. Although
these methods are meant to be understandable by design, building a decision tree model
that can adequately perform in a complex environment usually produces an enormous
tree that is too complex to be analysed as whole (thus imposing a trade-off of accuracy
and explainability). A number of approaches are proposed to deal with these issues. For
instance, [4] proposes to use NN models to generate decision trees, while [16] introduces
differentiable decision trees that can be incrementally updated and trained via, for example,
gradient descent.

A. Climent et al. / Applying and Verifying an Explainability Method 457

Another example of a global intrinsic approach is using agent policies built with
some high-level domain-specific programming language [19]. This way the generated
policies are transparent by design, you need only to analyse their sequences of commands.

In environments with visual observations we can find a large array of saliency maps-
based methods which can represent both local intrinsic and local post-hoc explainability
approaches. For instance, a method proposed in [13] in addition to selecting an action,
also generates intrinsic importance maps for the pixels of the image. Alternatively, the
classical saliency maps described in [17] use post-hoc backpropagation to find the maps.
Additionally, [6] proposes a perturbation-based approach (akin, for example, to the well-
known LIME algorithm for deep NN) to generate saliency maps. Although one needs
to be careful with utilizing it for some tasks with potentially critical consequences, as
perturbation-based methods were recently shown to be prone to adversarial attacks [18].

To get global post-hoc explanations, we may analyse the behavior of the trained
policy to pinpoint the most interesting or important situations or states, showcasing the
behaviour of the agent. Different metrics and approaches can be used to select these
execution traces. For instance in [2] the importance measure for states is defined as the
difference between the discounted reward values for the best and the worst action choice
in this state. Traces centered around the most important states are then shown. Another
metric is proposed in [8]: here authors look for critical states which are defined as states
for which choosing a random action is significantly worse than choosing a specific one in
terms of reward. Further analysis about this family of methods can be found in [3].

Finally, on the border between global and local post-hoc explanation approaches lie
various methods that create simplified representations of the policy or the environment (or
its observed version) and then use them to generate local explanations. For instance, in
[9,10] authors use NN to generate a graph representation of scenes (images, for instance)
that can be later used by a reasoning engine. Another way of doing it is to build a full
Markov decision process and traverse it as a graph from the query state to the main
reward state [12]. This allows us to ask simple questions about the chosen actions. As an
alternative we can simplify the state representation (discretising it if needed) to make the
process more feasible in more complex environments [7]. We base our work on the latter
approach. It consists of creating a policy graph by creating a mapping from the original
state to a set of predicates and then repeatedly running the agent policy, recording its
interactions with the environment. This graph of states and actions can then be used for
answering simple questions about agent’s execution which is shown in Section 3.

3. Generating explanations for the Cartpole scenario

The approach we followed was to attempt to reproduce the method described in [7] with
regards to its application on the Cartpole environment. In this paper, the authors present a
list of predicates to represent and discretise the states of the environment, and a list of
examples of automatically generated explanations, tested against explanations proposed
by humans, while accounting for "the occasional presence of incorrect actions taken"
by the trained policy. Looking into methodology, we were interested in several aspects
of the original work that were not explicitly tested. First of all, we wanted to know how
significant the presence of incorrect actions is from a performance point of view and how
they might impact the quality of the explanations. Also, we wanted to know whether

458 A. Climent et al. / Applying and Verifying an Explainability Method

— episode_reward loss mean_gq

pivot point 125

/ 100
75 -

.. L
ﬁ

0
10000 20000 30000 40000 50000 60000 70000
TFaining steps

(a) Cart Pole standing up (b) Loss, reward and mean g-values of our trained agents
Figure 1. Cart Pole environment and training illustration

there is any method to validate the quality of the explanations complementing human
validation.

This environment has been taken from the OpenAlI ! Gym Al library. It consists of a
pole attached by an un-actuated joint to a cart, which moves along a frictionless track as
shown in Figure 1a. The system is controlled by applying a force going left or right to the
cart. The pendulum starts upright and the gravity force will make it fall if not controlled
correctly. The goal is to prevent it from falling over. The state is represented with four
numbers representing cart position (pos), cart velocity (vel), pole angle (ang) and pole
velocity (velAtT). It is considered fallen when the pole angle goes beyond 12° from the
center or when the cart goes out of the truck.

Connected to this environment, we have used the keras-rl2 python library. We created
an experimentation pipeline based on training Deep Q Network (DQON) Agents using, as
in [7], a neural network with 3 convolutional layers with ReLU as an activation function, a
reward function equal to the number of steps without the pole fallen and a learning rate of
le-3. The average loss (based on MAE), episode reward and mean g-values of the training
of 75 agents are summarised in Figure 1b.

Our objective was not to find the optimal policy for solving this problem, but rather
to find a method to generate agents with variable levels of performance in order to analyse
the outcomes of the explainability method at these different levels, and to study the impact
of the presence of incorrect actions. From Figure 1b we can see that our agents receive
a poor reward at 10k steps but at 20k steps they already solve the problem (which is
considered to happen when the average reward is higher than 195). However, at 60k steps
the reward starts being unstable while the loss function is always growing. Based on these
metrics, we used a maximum of 70k steps for training due to not being seemingly useful
to put a higher maximum for our study.

The explainability method proposed in [7] is based on generating a policy graph
(PG) representing the states and actions observed by the trained agents acting on random
environments. A policy graph G is a tuple (R, N, &,¢) where R is a root node representing
an initial point for decision making, N is a set of nodes, representing states in our case, €
is a set of directed edges, representing actions in our case, and ¢ is the matrix of transition
probabilities for the edges [5]. This formalisation allows to represent any multistage
stochastic programming problem, including Markov decision processes as a special case.

Thttps://gym.openai.com

https://gym.openai.com

A. Climent et al. / Applying and Verifying an Explainability Method 459

In order to build a policy graph, we need to discretise states and actions. For this,
we need to define a set of predicates, which will also be useful when trying to transform
the state description into natural language. The initial proposal consisted in using 10
predicates (combining terms and domains):

e pole_falling(X), with X = left when [ang < 0 AvelAtT < 0] and X = right when
[ang > 0 AvelAtT > 0].

® pole_stabilizing(X), with X = left when [ang < 0 AvelAtT > 0], X = right when
[ang > 0 AvelAtT < 0].

e pole_standing_up() when [—0.0005 < ang < 0.0005].

e cart_moving(X), with X = left when [vel < 0], X = right when [vel > 0].

o cart_pos(X), with X = far_left when [pos < —2|, X = far_right when [pos >
2].

e cart_near_middle() when [—2 < pos < 2].

The Gym library allows us to introduce a state and an action and have in return the
next state, which we can introduce into the agent that will give us the action to be taken.
This cycle allows us to have full knowledge of how the run is going. With this data we
have all we need to build the PG graph. We made each agent perform 2k runs of the game
of 200 steps each one. We stored all the decisions that the agent took for the reached
states, as well as the states visited just after taking the decisions. The created graph shows
us the probability of taking a certain action for each state, as well as the probability of
reaching a state after taking such action.

The policy graph can then be used to answer three questions that help explaining an
agent behaviour: 1) What will you do when you are in x state?, 2) When do you perform x
action? and 3) Why did not you perform x action in y state?. The answer to 1) is generated
by looking for the most used action in the policy graph from the input state that the user
wants to check. In 2), the user inputs an action and the policy graph is used to search
for the states where this action has the higher probability to be taken. And in 3), with an
action and a state as inputs, the policy graph is used to look for nearby (similar) states to
the input state and, for each one, there is a check on whether the contrary action is more
likely to be taken, in which case the answer will consist on inferring the difference (in
terms of holding predicates) between both states.

While testing the explainability algorithm, we found that not all possible states were
reached during the policy graph creation phase. To account for potential edge cases, we
introduced a modification in the algorithm to enable searching for nearby (similar) states
in the policy graph when querying for an unknown state.

4. Validating the explainability method: creation of a graph-based agent policy

Once the explainability algorithm was implemented and improved, we had access to the
generation of natural language explanations as shown in [7]. In that case, the validation
is carried out by comparing the generated sentences against sentences written by human
experts. One of our objectives was to look for complementary methods that could be
automated in order to reduce the dependency to such domain-specific experts.

With the answers from the three questions, it was possible to know if they had more
or less sense from a human perspective, but it was not possible to ensure that the answers

460 A. Climent et al. / Applying and Verifying an Explainability Method

given had any relationship with the behavior (or even the strategy, if there is any) of the
agent, and therefore some kind of validation was missing. However, having a PG built
from the observation of the agent’s behaviour can give us a powerful tool to work with.

For this validation, we propose the creation of an agent policy inferred from this
PG structure, trying to mimic the original trained agent’s policy, in order to compare the
behaviour of both. One concern related to this proposal is that the PG graph is based on a
simplification of the states and the actions (using predicates), and therefore such a policy
could also be an over-simplification of a policy that is backed by a deep neural network.
However, our aim was not to create equal agents but rather to ensure that the explanations
generated are able to reflect the trained agent.

Following this proposal, we implemented, using the Gym API, a policy based on
answering the first of the three questions (What will you do when you are in x state?)
for each current state and using the output to determine the action executed on the
environment. Once implemented, we started testing it on the environment in order to
check whether the policy was functional.

In this process, we encountered one problem: in a high percentage of runs, the pole
ended up falling or going out of track. This brought up two issues: the results were
unsatisfactory as the performance of the policy was much lower than the trained agent’s
average reward; and the behaviour of the policy graph-based policy did not quite reflect
the original behaviour. Our hypothesis was that this divergence was caused by a poor state
representation with the 10 predicates. By our own observations, the trained agent was
able to learn a concept not possible to capture by these predicates, namely the pole being
displaced left or right but in a stable position (due to the inertia of the moving cart). We
solved this by adding two more predicates to the state representation:

o stuck(X), with X = left when [-pole_standing_up() A—3x : pole_falling(x) A
—3y : pole_stabilizing(y) Aang > 0], X = right when [—pole_standing_up() A
—3x : pole_falling(x) A —3y : pole_stabilizing(y) A ang < 0].

By making this change, the new policy inferred from the PG generated using the 12
predicates turned out to be feasible and effective, as we will see later in this section. This
issue indicates that human validation might not be enough when dealing with behaviours
of agents in scenarios representing complex systems. In order to analyse the behaviour of
the policy graph-based agent, we trained 15 agents for a number of steps between 10k and
70k, for a total of 105 agents. For each of these agents, we generated its corresponding
policy graph, with the intention of inferring a policy based on answering the first question.

However, doing a direct comparison between both agents can yield misleading
conclusions due to the curse of dimensionality: because the Cartpole scenario defines
a complex system, reducing the state from a high amount of real valued variables to
discrete predicates with small domains may entail frequent deviations in the actions
taken by each policy in certain states. On the one hand we have a policy that is the
product of training with a Q-learning algorithm in a space of states and actions defined
by combinations of continuous variables that might be difficult to interpret; on the other
hand we have a policy that is based on a very reduced set of predicates that have been
designed with interpretability in mind. It cannot be assumed that both policies will have
the same expressive power.

However, if we assume that the policy graph is able to generalise (or else the explain-
ability method is pointless), we should be able to ignore these deviations and consider

A. Climent et al. / Applying and Verifying an Explainability Method 461

the strategy or general behaviour of the two policies compatible. Our hypothesis is that
if we had a single policy that randomly chose actions based on the DQN-policy or the
policy graph indistinctly, the behaviour of the agent should stay consistent with respect to
the original one. The actions chosen by the policy graph should not interfere —or rather,
should be compatible with— the actions chosen by the DQN-policy, as any deviations
caused by the divergence between the policies should be mitigated in the long term by the
actions chosen by the more fine-grained DQN-policy. To this mixed policy, we also add
control policies for checking the behaviour against random agents. Therefore, for each
trained agent we generated the following policies:

DQN: all actions are chosen by the policy trained by the Deep Q-Network.

PGR: all actions are chosen by the policy inferred from the policy graph.

RND: each scenario step, the action is chosen at random from all valid actions.
HEX: each scenario step, the action is chosen at random between DQN and PGR.
HRD: each scenario step, the action is chosen at random between DQN and RND.

Figure 2 shows a histogram of the last steps the different policies achieved before
failing (or succeeding if reaching 200). The two agents with a random selection component,
HRD (5.54% success rate) and RND (0.00%) perform very poorly while DQN (78.65%),
PGR (78.16%) and HEX (72.95%) have very good and similar success rates. As predicted,
the PGR agent success rate deviates considerably at the early steps, as can be seen in
the non-marginal frequencies in the histogram between around steps 25 and 50. This
can be attributed to the aforementioned deviations due to the state simplification and
discretisation, having an impact on the aptitude to stabilise on edge situations, i.e. when
the pole is very far from the center. However, DQN and HEX — which is 50% based on
PGR - have a very similar histogram, which points at the fact that the PGR policy has not
had a strong effect, adjusting well to the original behaviour.

DON Agent PGR Agent 50% DQN, 50% PGR

100000
80000
60000
40000
20000

o
50% DQN, 50% Random Random Agent

100000
BOOODO

60000

40000
20000 =
0

o 50 100 150 200 o 50 100 150 200

Figure 2. Histogram of last stable step before failing (or succeeding if step = 200)

This analysis can be reinforced by analysing the average cart movement, which is a
variable that is causally related to the actual behaviour of the agent. In Figure 3 we can see
the relationship between the cart movement and the last step before failing or succeeding.

When looking at DQN, we can appreciate two main patterns (ignoring most of the
cases, which are successes and they cluster at the right-most border). Across the whole
range of steps, most of the failures happen after having moved the cart a low distance (avg.

462 A. Climent et al. / Applying and Verifying an Explainability Method

of around 0.01 and 0.15), forming a wide band from side to side. There seems to be a
second pattern coming from those failures in where the cart has moved a higher distance,
with the last step not being lower than 100. These patterns indicate the presence of at least
two distinct behaviours, which seem to be also distinguishable in HEX and HRD. Again,
the effect of the PGR actions in HEX seem to have little effect on the original policy.
However, while the patterns seem to be also visible in the PGR case, they are heavily
simplified, which may be a consequence of the simplification of the state representation.

100% DQN trained 100% PGR-based
E 003
.,
£ 002 s g
o
E
5 001 1
[~
g
z 000 T T T , T 1
50% DON, 50% PGR 50% DON, 50% Random
003 -
£
£ 002
o
E
5 0014
[~
g
Z 000 : T T 1 T T T
0 50 100 150 200 0 50 100 150

Last stable step Last stable step

Figure 3. Relationship between last step explored and the average cart movement per step

This raises concerns about the generalisation power of the reduction of the DQN
policy into the PGR one. In a more in-depth analysis, we can look at the evolution of the
performance based on the amount of training steps. As we saw in Section 3, with our
training configuration DQN reaches almost optimal reward between 20k and 50k steps
but it becomes unstable after that. In Figure 4 we can see the effect on several metrics:
performance, cart movement, pole velocity and pole rotation. The performance of PGR
between 10k and 40k steps is above 80% while the performance of DQN is always below
80%, which means that the PGR graph is capable of generalising well until 50k steps.

Performance (success rate at 200 steps) Avg. cart movement

10
08

06
— PGR

DON
------- RND
- HEX
—.— HRD

04

02

0.0

I'fainin'g steps' T '?a\ninb steps_'
Avg. pole velocity Avg. pole rotation

0.0035
0.0030
0.0025
0.0020

0.0015

0.0010

10000 20000 30000 40000 50000 E00DO 70000
Taining steps Taining steps

Figure 4. Evolution of metrics through training steps

A. Climent et al. / Applying and Verifying an Explainability Method 463

Finally, we analysed the correlations between the three Cartpole-specific metrics
(Figure 5), using Spearman due to these metrics being ordered (all the policies were run
on the same random scenarios) but not following a normal distribution. The metric more
causally connected to the behaviour (the actions) of the agent, the cart movement, does
not entail very high correlations. The highest values are between DQN and HEX (0.60,
p<0.001) and between PGR and HEX (0.53, p<0.001), which makes sense as this policy
is a combination of both. The correlation between DQN and PGR (0.26, p<0.001) is
statistically significant but it is quite low. If we look at the effect of the actions on the
pole (both velocity and rotation) we can find higher correlations: DQN and PGR (0.55,
p<0.001), DQN and HEX (0.72, p<0.001), PGR and HEX (0.67, p<0.001).

In summary, from the performance results combined with these correlations we can
infer that if we look at all the runs globally, the behaviours of the two agents might yield
similar results, both in performance and in the effect of the actions (the behaviour of the
pole). However, if we look at the individual runs, we will find many frequent deviations.
In other words: by applying the explainability method on the Cartpole scenario we can
extract rough explanations that can approximate the behaviour or strategy of the original
agent in general, but the method might not be able to explain with precision the behaviour
in every instance of the scenario.

Avg. cart movement Avg. pole velocity Avg. pole rotation

SRR 026 0601 012 001 - 100

0.26 053 0

024 001

021 005

0.55 e 0.18 1]
067 023 000
023 018 023 0.01

DON PGR HEX HRD RND

060 053 014 001
012 012 014 0.02

001 002 001 002 gk

024 021 025

001 005 002

RND HRD HEX PGR DON

DON PGR HEX HRD RND DON PGR HEX HRD RND

Figure 5. Cross-correlations between cart movement, pole velocity and pole rotation, averaged by step

5. Conclusions

The topic of XAl applied to Reinforcement Learning is growing in relevance and can be
key to tackle issues such as the possibility to assess the quality of the behaviour of an agent
or aid in the interaction between humans and Al-based agents. There are already some
approaches in the literature that try to provide explainability in this context. However,
they need to be tested in practical use cases in order to assess their effectiveness.

In this paper, we show our work in this direction in which we choose a method and
try to reach a baseline for further research. After an analysis of the literature, we chose
a method based on the generation of PGs by discretising the state representation into
predicates, and applied it to a simple yet complex scenario (Cartpole). The result was a
policy graph that allowed us to produce explanations, that according to the original work
should be validated by human experts with domain-specific knowledge.

In order to understand how good the baseline that we were getting was and to be able
to validate the results inferred from the policy graph, we propose a method for extending
this validation with an automatic process by creating several policies based on both the

464 A. Climent et al. / Applying and Verifying an Explainability Method

original policy and the policy graph, and testing them along with the original policy in
random new scenarios. By applying this method we were able to 1) detect predicates that
were missing in order to have a complete state representation, and 2) analyze the quality
of the policy graph as a tool to store a simplified representation of the original behaviour.

This paper presents part of our ongoing work, which is currently advancing in two
research lines. First of all, we are extending the generation of the graph-based policy, in
order to include not only one but the three types of questions that [7] defines for generating
explanations. On a second topic, we are applying the same method to other environments
with a much more complex state representation to check whether this method can be
generalised. Currently we are applying it to the VizDoom environment.

References

[1] A. Alharin, T. N. Doan, and M. Sartipi. Reinforcement learning interpretation methods: A survey.
8:171058-171077, 2020.
[2] D. Amir and O. Amir. HIGHLIGHTS: Summarizing agent behavior to people. AAMAS ’18, page
1168-1176, Richland, SC, 1 2018. IFAAMAS.
[3] Ofra Amir, Finale Doshi-Velez, and David Sarne. Summarizing agent strategies. Autonomous Agents
and Multi-Agent Systems, 7 2019.
[4] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extraction. In
Proceedings of the 32nd International Conference on NIPS, NIPS’ 18, page 2499-2509, Red Hook, NY,
USA, 2018. Curran Associates Inc.
[S] O.Dowson. The policy graph decomposition of multistage stochastic programming problems. Networks,
76(1):3-23, 2020. Publisher: Wiley Online Library.
[6] S.Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing and understanding Atari agents. In Proceedings
of the 35th ICML, volume 80 of Proc. of ML Research, pages 1792-1801. PMLR, 10-15 Jul 2018.
[7] B.Hayes andJ. A. Shah. Improving robot controller transparency through autonomous policy explanation.
In Proceedings of the 2017 ACM/IEEE Intl. Conf. on HRI, page 303-312, NY, USA, 1 2017. ACM.
[8] S.H.Huang, K. Bhatia, P. Abbeel, and A. D. Dragan. Establishing appropriate trust via critical states.
2018 IEEE/RSJ IROS, pages 3929-3936, 2018.
[9] M. Klawonn and E. Heim. Generating triples with adversarial networks for scene graph construction.
CoRR, abs/1802.02598, 2018.
[10] M. Klawonn, E. Heim, and J. A. Hendler. Exploiting class learnability in noisy data. CoRR,
abs/1811.06524, 2018.
[11] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger. Explainable artificial intelligence. In
Machine Learning and Knowledge Extraction, pages 1-16, Cham, 2020. Springer.
[12] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Explainable reinforcement learning through a causal
lens. Proceedings of the AAAI Conference, 34(03):2493-2500, Apr. 2020.
[13] D. Nikulin, A. Ianina, V. Aliev, and S. Nikolenko. Free-lunch saliency via attention in atari agents. In
2019 IEEE/CVF ICCVW, pages 4240-4249, 2019.
[14] E. Puiutta and E. M. S. P. Veith. Explainable reinforcement learning: A survey. In Machine Learning and
Knowledge Extraction, pages 77-95, Cham, 2020. Springer.
[15] P. Sequeira, E. Yeh, and M. T Gervasio. Interestingness elements for explainable reinforcement learning
through introspection. In IUI Workshops, 1 2019.
[16] A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son. Optimization methods for interpretable
differentiable decision trees applied to reinforcement learning. In Proceedings of the 23rd Intl. Conf. on
Al and Statistics, volume 108 of Proceedings of ML Research, pages 1855-1865. PMLR, Aug 2020.
[17] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. In Proc. of ICLR, 2014.
[18] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and SHAP: Adversarial attacks
on post hoc explanation methods. pages 180—-186, 1 2020.
[19] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically interpretable reinforcement
learning. CoRR, abs/1804.02477, 2018.

