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Abstract. Advanced technologies of Sensorics and Internet of Things (IoT) enable
real-time data analytics based on multiple sensors covering the target industrial pro-
duction system and its manufacturing processes. The rolling bearings fault diag-
nosis is one of the most urgent problems and can be solved by using convolution
neural networks and edge artificial intelligence (edge AI) devices. The limitations
of the hardware platform must be taken into account to achieve maximum perfor-
mance. In this paper, we analyze efficient CNN architecture for bearings fault diag-
nosis that is able to process data in real-time on edge AI devices. We observe that
the accuracy of the proposed CNN is unsatisfactory for practical use, and better
accuracy is possible with increasing the number of bearings in the training dataset.
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Introduction

Continuous condition monitoring of industrial equipment enables early detection of mal-
functions of machinery and its units, thus increasing the efficiency of staff scheduling,
reducing costs, and preventing accidents. In this work, we extend our previous study on
applying neural network data analysis to diagnose industrial rotary machinery failures
using edge artificial intelligence (edge AI) devices [1]. We focus on the rolling bear-
ings fault diagnosis, as an important practical problem. Up to 40% of rotary machinery
failures caused by bearings faults [2]. There are many studies aimed to the problem of
bearings fault diagnosis and a number of datasets have been collected for training and
evaluating machine learning and deep learning models [3].

In order to increase the autonomy of the monitoring system and reduce the data traf-
fic, it is preferable to analyze the data near the place of its acquisition in accordance with
the edge computing paradigm. When building an industrial monitoring system, placing
high-performance servers near the monitored equipment is usually difficult due to severe
operating conditions, such as a wide range of temperatures, dust, and vibration. In such
conditions, it is preferable to use compact, low-power devices.
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The balance between the computational complexity of the applied data processing
methods and the performance of the used devices should provide real-time analysis, since
equipment malfunctions must be detected immediately. Recently, among edge computing
devices, the neural network accelerators – edge artificial intelligence (edge AI) devices
– have been developed, optimized for intelligent data processing with neural networks
usage [4]. At the same time, there has been great progress in the use of neural networks
for rolling bearings fault diagnosis [3]. In this paper, we combine these two research
directions to assess the practical applicability of existing solutions. Our contribution is
the following.

• We propose a CNN architecture that addresses the hardware limitations of the
edge AI device and ensures efficient use of hardware resources.

• We evaluate the proposed CNN accuracy in accordance with a protocol close to
the conditions of a real industrial monitoring system deployment.

• We evaluate the performance of the proposed CNN on the low-capacity edge AI
device and show that can perform real-time sensory data analysis in industrial
monitoring tasks.

The rest of the paper is organized as follows. Section 1 considers existing approaches
to rotating machinery fault diagnosis and edge neural network computing applications.
Section 2 describes our solution to the bearing fault diagnosis using the edge AI device,
as well as introduces the dataset and data preprocessing technique. Section 3 shows the
results of our experiments. Finally, Section 4 summarizes this study.

1. Related work

1.1. Condition monitoring and bearing fault diagnosis

Bearing defects can be diagnosed using frequency spectral analysis, based on bearings
characteristic fault frequencies, which are related to the defect type, bearing geometry
and operating mode through a well-defined mechanical model. However, this method re-
quires human expert to make a decision. Machine learning (ML) and deep learning (DL)
techniques have been explored to automate bearing diagnostics and enable continuous
condition monitoring (CM). The ML includes such methods as artificial neural networks
(ANN), principal component analysis (PCA), k-nearest neighbors (k-NN), support vec-
tor machines (SVM) and others [2]. These methods perform classification task based on
a set of features that describe the original data, such as mean, standard deviation, root
mean square, kurtosis, crest factor, etc., calculated from the raw signal, spectrum, enve-
lope spectrum or their intervals. The set of these features is determined by the researcher
and affects the accuracy of the resulting method. Therefore, a lot of human effort and
proficient domain knowledge are required.

Several DL methods have been developed, such as convolutional neural network
(CNN), auto-encoder (AE), deep belief network (DBN), recurrent neural network
(RNN), generative adversarial network (GAN). Applying the DL methods to bearing di-
agnostics has been investigated in [2]. The benefit is end-to-end learning, eliminating the
need for manual feature engineering and selection. The CNN shows the state-of-the-art
performance in many data classification problems and is therefore of particular interest
among researchers involved in solving the problem of bearing diagnostics [3].
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The input data of the CNN could be the raw vibration signal, spectrum, spectro-
gram, envelope spectrum, wavelet scaleogram. The advantage of using a raw vibration
signal as input data for a CNN is that there is no need for data preprocessing by other
methods, which is especially important when using neural network accelerators, since
preprocessing methods may not be supported by such accelerators. Consequently, it be-
comes necessary to use additional hardware accelerators (for example, FFT), or perform
preprocessing on the CPU, which can increase the total processing time, compared to
the processing performed entirely on the neural network accelerator. The hardware used
can also limit the choice of neural network architectures. In order to enable hardware
acceleration for applied in our research hardware, we use 2D CNN (see Section 2).

The use of 2D CNN for raw vibration signal bearing diagnostics has been explored
in papers [5,6,7]. Wen et al. [5] apply LeNet consists of four convolution + pooling layers
and two fully connected layers to classify bearings fault type by raw vibration signal
fitted row-by-row in 64x64 matrix. The obtained model achieves accuracy of 99.79%
on Case Western Reserve University (CWRU) dataset. Guo et al. [6] applied a similar
approach, differing in that they split the tasks of fault type classification and fault size
estimation among separate CNNs. One CNN was used to classify the fault type and other
three separate CNNs to estimate the fault size for each type of fault. They demonstrate
97.9% accuracy in fault type classification in tenfold cross validation.

Liu et al. [7] have proposed a dislocated time series convolutional neural network
(DTS-CNN), which features the transformation of 1D raw signal into the 2D matrix by
row-by-row placing 1D raw signal into the rows of the matrix in such a way that each row
shifts relative to the previous one. Wherein the offset step increases with each row. This
approach aims to allow CNN to extract periodic fault information between non-adjacent
signals. The authors demonstrated up to 6.7% improvement in DTS-CNN accuracy over
CNN in the induction motor fault diagnosis task.

Pandhare et al. [8] evaluate the performance of CNN with a 2D input formed from a
1D raw vibration signal. The sizes of the convolution kernels and poolings are one along
the first dimension. That is, they cover only one row. Thus, such CNN is equivalent to
a 1D CNN that processes a one-dimensional signal by one-dimensional kernels. Cross-
validation on Paderborn University dataset was done by splitting the training and test
datasets by bearing instances, so CNN performance was evaluated on bearings that were
not present in the training dataset. The authors demonstrate that the average accuracy of
CNN with raw vibration signal input is superior to other considered alternatives, but does
not exceed 61.86%, which is an unsatisfactory result for practical use.

Researches [5,6,7,8] demonstrate that CNN with raw vibration input outperforms
machine learning methods based on hand-crafted features. However, in the context of
the vibration diagnostics for the edge computing conditions, the mentioned works have
the following disadvantages. First, the CNN accuracy evaluation methodology in pa-
pers [5,6,7] does not match the actual model performance that would be expected during
deployment. The accuracy is evaluated on the same bearings, which was used in training.
While when deploying the model to production, CNN will have to determine the condi-
tion of the bearing, which was absent in the training dataset. Second, the CNN models
proposed in works [5,6,7] do not allow full utilization of hardware acceleration on the
edge AI device , since they include an unsupported kernel and pooling sizes.
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1.2. Edge neural network computing

The data processing near the place of its acquisition, by the edge computing paradigm,
can provide reduced latency and traffic and increased privacy and autonomy. With
increased interest in artificial intelligence and its applications, edge AI devices have
evolved to accelerate the inference of neural networks.

A comprehensive study of the performance of edge AI devices was carried out in [4].
The authors note that the inference time on neural network accelerators is not directly
related to the number of operations, in contrast to the inference on the Central Processing
Unit (CPU). It is shown that, in some cases, state-of-the-art lightweight neural networks
are computed more slowly than more computationally complex but conformed with the
target hardware platform ones. The authors emphasize the need to develop an individual
neural network architecture for each accelerator, taking into account the features of the
target hardware platform and using such sets of operations, layers, and their parameters
that ensure the most efficient utilization of hardware resources.

There are a number of works using edge AI devices for various practical applica-
tions, such as face mask detection [9], resilient image compression for IoT cameras [10],
mineral granulometric analysis [11], conveyor belt longitudinal rip detection [12]. Most
of the work focuses on the problems of image analysis. In this article, we explore the
applicability of edge AI devices for analyzing time-domain signals from sensors, specif-
ically, for analyzing vibration signals in order to identify bearing faults.

2. Experimental setup

2.1. Edge neural network computing device

We use the Kendryte K210 system-on-chip as an edge neural network computing device.
This system-on-chip has a dual-core CPU, interfaces for connecting sensors and data
transmission modules, and a hardware accelerator unit for CNN inference, suiting well
for edge AI applications. We simulate the data of vibration sensor by transmitting signal
fragments from the dataset via Universal Asynchronous Receiver-Transmitter (UART).

The hardware platform imposes the following restrictions on neural networks used.
Only CNN could be hardware accelerated, and its size should not exceed 5 MB. Ac-
cording to the nncase neural network compiler documentation, which is used to deploy
CNN to the Kendryte K210, only a sequence of convolution, batch normalization, acti-
vation, and pooling operations could be hardware accelerated. The following restrictions
are imposed on the parameters of these operations to be accelerated:

• 2D convolution or 2D depthwise convolution;
• kernel size 1x1 or 3x3;
• stride 1 or 2;
• channels number from 1 to 1024;
• input feature map size up to 320x240;
• output feature map size no less than 4x4;
• same symmetric zero padding;
• pooling size 2x2, 4x4, or without pooling;
• pooling type: max or average.
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Also, fully connected (dense) layers could be accelerated through conversion to con-
volution operation. However, such a conversion requires tensor transpose and padding
operations that are performed on the CPU and add data transfer operations between the
CPU and the hardware accelerator.

We use Kendryte K210 standalone SDK to program Kendryte K210, nncase neural
network compiler to deploy CNN to the Kendryte K210 with hardware acceleration and
kflash utility for firmware uploading. We measure CNN inference time through the sys-
tem clock. To profile inference time layer-by-layer we compile firmware with the pre-
processor directive NNCASE_DEBUG set to 1, which enables the layer execution time
to be output to the debug serial port. The CNN inference time measurement and infer-
ence profiling were performed separately, using different firmware compilations, since
printing the layer execution time to the serial port slows down inference.

Our experiments show the hardware acceleration on Kendryte K210.

• The difference in inference time with kernels 3× 3 and 1× 1 is less than 5%.
• The layer (as a set of operations convolution+activation+pooling) inference time

does not depend on stride, activation function type, pooling size and type.

Considering limitations and features mentioned above, we develop a CNN for rotat-
ing machinery fault diagnosis, described in the next section.

2.2. CNN for condition monitoring

In our previous work [1], we used 1D CNN and showed that it was able to run on
Kendryte K210. However, the hardware acceleration was not utilized, and all computa-
tions were performed on the CPU. Based on this, the measured neural network execution
time was approximately 1.66 times larger than the size of the input signal frame. In this
paper, we take into account the constraints, which have to be met and solved to enable
hardware acceleration (see Section 2.1). Thus, we focus on the 2D CNN.

The input data is the raw vibration signal placed in a 2D tensor (Section 2.3). The
convolution of this data with a 2D kernel (for example, 3x3 kernel) could be thought of as
a kind of atrous (dilated) 1D convolution. The atrous convolution application to bearing
fault diagnosis was studied in [13]. This type of convolution enables filters field of view
enlarging without increasing the number of parameters or the amount of computation.

We have chosen the sequence of convolution, batch normalization, activation, and
pooling operations as the main building blocks of our CNN and will refer to them as
“KPUConv2D” layer. The same denotation is used by nncase neural network compiler
in internal representation of computational graph. This choice is justified by the fact that
in the used hardware platform, this sequence of operations is an elementary hardware-
accelerated operation. The proposed CNN consists of a sequence of KPUConv2D layers
followed by a global average pooling layer and a fully connected (dense) layer with a
softmax activation function. The detailed description of the architecture of the proposed
CNN is shown in Table 3. For all convolutions, we used kernel size of 3x3 and stride 1x1.
These values of kernel size and stride have been selected because they are expected to
provide the largest number of degrees of freedom of a neural network while slightly affect
the inference time compared with other allowed ones (see Section 2.1). The padding
type of convolution was set to “same” to comply with restrictions of used hardware. The
Keras with TensorFlow backend is used to implement and train CNN. Deploying CNN
on Kendryte K210 was done using the nncase compiler.
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Table 1. Categorization of dataset.

Fold No. Healthy Outer ring damage Inner ring damage

(Class 1) (Class 2) (Class 3)

1 K001 KA04 KI04
2 K002 KA15 KI14
3 K003 KA16 KI16
4 K004 KA22 KI18
5 K005 KA30 KI21

2.3. Condition monitoring dataset

The Paderborn University Bearing Dataset is used [14] to evaluate the performance of
proposed method. The dataset includes 32 bearings, 12 of which have artificial dam-
ages and 14 have natural damages caused by accelerated lifetime tests. The rest are the
baseline without damages. There are 80 vibration signal fragments for each bearing with
duration of 4 s sampled at 64 kHz and acquired in different operating conditions.

We split the dataset into three parts: train, validation, and test datasets. We select
different bearings for the test and training datasets based on the fact that when deploying
a real monitoring system, bearings are monitored that were not in the training dataset.
We evaluate the model in a cross-validation manner, choosing one fold for test and the
other four folds for train and validation, as shown in Table 1. The files from train and
validation folds were randomly split in the following proportion: 80% as train and 20%
as validation dataset. Hence, the validation dataset is similar to the ones that are used
in works [7,5] and shows whether the CNN is able to classify the same bearings on
which it was trained. The test dataset is the same as in works [8,15] and shows do the
CNN can classify new bearings. Thus test dataset shows the applicability of the model
in production, where CNN is intended to classify new bearings, which was absent in the
training dataset. Further, we will denote a particular combination of train, validation, and
test data by the fold number used for the test dataset.

We normalize raw vibration signal from the original dataset to mean and standard
deviation. To match 1D raw vibration signal with 2D CNN input, we apply the method
suggested in [5]: 1D raw vibration signal is fitted into a 2D array line by line. In pro-
duction, this transformation would not require any additional operations with data since
the raw data from the sensor could accumulate in a memory buffer in the required layout
and then be ready to be passed to the 2D CNN input. Since in the Paderborn University
Bearing Dataset each file contains a signal fragment with a duration of 4 seconds, but
CNN input length is smaller, at each training step, a random frame is selected from a
random file from the dataset. At each training epoch, 7680 training, 1920 validation, and
2400 test samples are generated.

3. Results and Discussion

3.1. Rolling bearing fault classification

The neural network was trained for 100 epochs. Each epoch included 7680 training, 1920
validation, and 2400 test unique samples, generated as described in section 2.3. We use
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Figure 1. The accuracy (left) and loss (right) curves: training (blue), validation (orange), and test (green).

Adam optimizer with batch size of 32, initial learning rate of 0.001, and exponential
learning rate decay after ten epochs with exponent 0.01. The training was performed ten
times for each fold to test the stability of the training process. The obtained learning
curves of CNN accuracy and loss for fold 1 are shown in Figure 1. The CNN accuracy
across all five folds is summarized in Table 2. The accuracy mean and standard deviation
were calculated across all trials for each fold and across all folds and trials.

The large fluctuations of accuracy and loss on the validation dataset and even larger
on the test dataset are observed. These fluctuations are observed both within an indi-
vidual training trial and between trials. While the fluctuations on the validation dataset
decrease with each epoch as the learning rate decreases and therefore could be caused
by the stochastic nature of the training process, the fluctuations on the test dataset are
most likely to be related to the characteristics of the test data. The fluctuations on the
test dataset within an individual training trial indicate the unrepresentativeness of the
test dataset. The fluctuations on the test dataset between trials were caused by random
weights initialization at the beginning of each trial and the stochastic nature of the train-
ing process. These fluctuations indicate that loss reaches different local minima, and
CNN learned to extract different features, which have varying degrees of generalization.
This, in turn, indicates the unrepresentativeness of the training dataset.

Table 2 shows that CNN reaches high accuracy on the validation dataset. However,
classification accuracy on test dataset is low. Similar results were observed in [8,15],
where cross-validation by bearing instance had been used with Paderborn university
dataset. The test accuracy drop is most likely due to the unrepresentativeness of the train-
ing dataset. The modes of naturally occurring defects would be very diverse. Hence, the
training dataset should contain many samples of different damaged bearings to ensure
that the CNN can learn to extract the most representative features. The folds 3 and 4
outstand among the others and achieve accuracy of 81.93% and 80.32%, respectively.
This indicates that with these combinations of training and test data, the neural network

Table 2. CNN accuracy

Type Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Val. mean 99.27 99.31 99.08 98.01 99.67 99.07
Val. std 0.39 0.36 0.36 0.64 0.16 0.38
Test mean 60.70 28.57 81.93 80.32 37.83 57.87
Test std 6.93 5.73 4.64 7.99 4.92 6.04
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is able to learn to extract features that describe well those bearings on which the neural
network was tested. With an increase in the number of bearings in the training dataset,
the accuracy of the CNN will increase and reach a level suitable in practice.

3.2. CNN performance evaluation on edge device

The CNN had been deployed to the Kendryte K210 edge AI device to evaluate its per-
formance. After CNN compilation to KModel format by nncase compiler, the CNN con-
sumes 17 580 bytes of storage and 81 920 bytes of working memory. The measured
CNN inference time was 7987 us with a standard deviation of 3 us. Taking into account
that the input size of CNN is 128x128 and the sampling frequency of the input signal is
64 kHz, one input sample covers a 256 ms time slice, which is more than 30 times larger
than CNN inference time. This enables vibration signal processing and fault diagnosis in
real-time with a large margin. However, additional computation resources would be used
to acquire the vibration signal, normalize it and handle the result of processing.

Comparing the results with obtained earlier [1], the number of FLOPS increases
from 3.3 MFLOPS to 5.6 MFLOPS, while inference time decrease from 212 to 8 ms
and the ratio of the incoming data flow intensity to the time of its processing becomes
50 times greater. The performance gain is due to the use of the hardware acceleration of
convolution. We profile CNN inference time layer-by-layer (see Table 3). The operation
names are taken from the nncase interpreter. The KPUConv2D layer includes a sequence
of convolution, batch normalization, activation, and pooling layers.

The KPUConv2D operation is hardware accelerated and therefore consumes less
than 10% of the total inference time, despite the fact that it includes more than 99% of
the computations. Half of the inference time is spent loading data into the hardware ac-
celeration unit. Unloading data from the hardware acceleration unit also takes additional
time, which is included in the last KPUConv2D operation. The quantization and dequan-
tization operations are necessary because the hardware acceleration unit operates with
numbers in the uint8 format, while the information at the input and output of the neural
network is represented by float32 numbers. These operations take about 30% of the total
inference time. The total inference time summed up from the layer-by-layer profile is
about 3 ms less than the measured neural network interpreter invocation time. Appar-
ently, this time is spent on auxiliary operations, such as data copying between buffers,
DMA and interrupts setting up. This implies that for small neural networks, auxiliary
operations take up most of the inference time, and the number of convolution operations
does not increase the inference time that much as when executing on the CPU.

The KPUConv2D operation on the hardware accelerator of Kendryte K210 is per-
formed in unsigned integers to increase performance. The quantization of weights and
activations can lead to problems with the inference accuracy of the neural network. The
test data of one fold were processed on the Kendryte K210 by obtained CNN to assess
the accuracy after deployment. Results showed a slight decrease in accuracy of about
1%. However, this degradation of accuracy is negligible compared to misclassification
on the test dataset, which is observed even at the stage of training the CNN.
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Table 3. CNN architecture and time profiling

Layer Output Shape Parameters Operation Time, us

Input (128, 128, 1) Quantize 1397
KPUUpload 2598

KPUConv2D (64, 64, 2) Filters, Pooling 2, 2x2 KPUConv2D 25
KPUConv2D (64, 64, 2) Filters, Pooling 2, – KPUConv2D 19
KPUConv2D (64, 64, 2) Filters, Pooling 2, – KPUConv2D 18
KPUConv2D (64, 64, 2) Filters, Pooling 2, – KPUConv2D 18
KPUConv2D (64, 64, 2) Filters, Pooling 2, – KPUConv2D 18
KPUConv2D (32, 32, 4) Filters, Pooling 4, 2x2 KPUConv2D 21
KPUConv2D (32, 32, 4) Filters, Pooling 4, – KPUConv2D 18
KPUConv2D (32, 32, 4) Filters, Pooling 4, – KPUConv2D 19
KPUConv2D (32, 32, 4) Filters, Pooling 4, – KPUConv2D 18
KPUConv2D (16, 16, 8) Filters, Pooling 8, 2x2 KPUConv2D 21
KPUConv2D (16, 16, 8) Filters, Pooling 8, – KPUConv2D 19
KPUConv2D (16, 16, 8) Filters, Pooling 8, – KPUConv2D 20
KPUConv2D (8, 8, 16) Filters, Pooling 16, 2x2 KPUConv2D 23
KPUConv2D (8, 8, 16) Filters, Pooling 16, – KPUConv2D 191
Average Pooling Layer (1, 1, 16) Dequantize 50

Reduce 547
Dropout (16) Dropout rate 30%
Dense (3) Activation Softmax MatMul 14

Reduce 12
Binary 17
Quantize 10
TableLookup1D 10
Dequantize 9
Reduce 11
Binary 15

Total 5138

4. Conclusion

This paper considered opportunities of the edge analytics for fault diagnostics in indus-
trial rotary machinery based on CNN methods. We propose a CNN architecture that ad-
dresses the hardware features of the edge AI device and ensures efficient use of hard-
ware resources. We show that low-capacity edge AI devices are able to perform real-
time CNN-based sensor data analysis in industrial monitoring tasks. We evaluated the
proposed CNN accuracy in environment close to real industrial monitoring. Basically,
we observed the unsatisfactory accuracy of CNN for practical use. The suggested option
for better accuracy is increasing the number of faulty and healthy bearings in the train-
ing dataset. Therefore, with the development of Industrial Internet and Big Data larger
datasets should be collected for particular machinery equipment.
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