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Abstract. Pythagorean fuzzy sets (PFS) can better express and handle
the uncertainty information and has the more lager representation space.
Hence, the reasonable and effective method to measure the uncertainty of
PFS can better analyze information. From the view of Dempster-Shafer evi-
dence theory, hesitancy degree can include the two focal elements (member-
ship, non-membership). Hence, considering the number of focal elements
for hesitancy degree to measure uncertainty is important. In addition, the
difference between membership and non-membership degree plays an es-
sential role in uncertainty measure. From the above views, the paper pro-
posed the new uncertainty measure. Based on the new uncertainty mea-
sure, cross entropy and divergence of PFS can be presented. In addition,
some numerical examples are used to explain the proposed methods by
comparing other methods. Finally, the proposed divergence can be used in

pattern recognition to verify its effectiveness.
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1. Introduction

Expressing information plays an essential role in knowledge representation.
There are a lot of methodologies, such as Dempster-Shafer evidence theory [1,2],
fuzzy sets [3] and other methodologies [4,5]. In those methodologies, fuzzy sets
can handle the fuzziness information and have become the important method-
ology in decision-making and control. With the development of fuzzy sets,
Atanassov proposed the intuitonistic fuzzy sets which can consider the mem-
bership, non-membership and hesitancy degree of information and is the gen-
eralization of fuzzy sets [6]. Yager expanded the intuitonistic fuzzy sets into the
Pythagorean theme to propose Pythagorean fuzzy sets [7]. Pythagorean fuzzy
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sets (PFS) have the lager representation space than intuitonistic fuzzy sets and
became the important math tool to handle uncertain information [8,9].

Due the strong space representation of PFS, how to measure the uncertainty
of PFS is interesting. Thao and Smarandache proposed the new fuzzy entropy
of PFS by exploiting the concept of probability [10]. Peng. et al proposed fuzzy
Information Measures [11]. Xiao and Ding proposed the divergence by consid-
ering Jensen-Shannon divergence[12]. Yang.et al proposed the fuzzy entropy of
PFS [13]. Uncertainty measure of PFS should consider all aspects of information,
including membership, non-membership and hesitancy degree. Moreover, two
PFSs with the same uncertainty of membership, non-membership and hesitancy
degree maybe quite different. In other words, the difference between member-
ship and non-membership degree should also be considered to measure the dis-
tribution of fuzziness [14]. Although there are various methods, they can not
fully consider the uncertainty of PFS. Hence, how to measure the uncertainty of
PFS is also an open issue.

Based on the above discussion, the paper proposed the new uncertainty
measure which can consider all aspects of information as possible. Firstly, form
the view of Dempster-Shafer evidence theory, the hesitant information can in-
clude the membership and non membership information which means there are
two focal elements. Hence, the new uncertainty measure considers the num-
ber of focal elements. Secondly, the difference between membership and non-
membership degree is computed by the score function. Based on the new un-
certainty measure, the paper proposed the cross entropy and divergence of PFS.
Moreover, some numerical examples can be used to explain the reasonableness
of proposed methods by comparing with other methods. Finally ,the new diver-
gence can be applied to the pattern recognition to verify the effectiveness.

The structures of this article are as follows. The preliminaries of PFS and
divergence are introduced in section 2. The new uncertainty measure, cross en-
tropy and divergence of PFS are proposed in Section 3. Section 4 introduces the
method of pattern recognition. In section 5, the paper can be concluded.

2. Preliminaries
In this section, we briefly recall some essential concepts of PFS and divergence.
2.1. Pythagorean Fuzzy sets

Definition 2.1. ( Pythagorean fuzzy sets)

Let ® = {A1,Ay,- -+, An} be a universe of discourse, a Pythagorean fuzzy set A in
© can be defined [7]:

A={{Aiua(Ai),va(i)) [ Ai € O} 1)

where 0 <u 4 (A;) <1land 0 < vy (A;) <1, which represent the membership
degree and non-membership degree respectively and should satisfy u 4 ()\i)2 +
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va (A ) <1. Bes1des, the hesitancy degree can be written as follows h4(A;) =
¢ 1- 2404 (M) 71

2.2. Jensen—Shannon divergence

Definition 2.2. ( Jensen—Shannon divergence measure)
There are two probability distributions A = {ay,ay,--- ,a,} and B = {by,ba,--- ,bn }.
The Jensen—Shannon divergence between A and B is as follows [15]

1 A+B A+B A+B, 1 1
IS(A/B)—E[S(A T)+5(B T)] (T)_EH(A)_EH(B) )
where H(A) is the Shannon entropy.

3. The proposed method

This section mainly introduces the new uncertainty measure, cross entropy and
divergence of PFS.

3.1. The Proposed Uncertainty Measure

Definition 3.1. ( Uncertainty measure)
Let ® = {Ay,Ay, -+, Ay} be a universe of discourse, the PFSs in © are P(A;) =<
Ai,u(A;),v(A;) >. The uncertainty measure of PFSs is defined by

m(Ai)?

) ©)

m“

i Ai)2log (1j(Ai)?)) + 7(A;)*log(

where 11 (A;) = u(A), k2 (A7) = v(A), k3(A;)% = A2 = Ju (M) — v (M),
m(A))2 =1 —u(A;)* — v(A;)? In addition, 3 is explained by the power set of
Dempster-Shafer evidence theory which can be computed by 22 — 1.

Definition 3.2. ( Cross Entropy and Divergence)

There are two PFSs P and Q in ©, where P = {< Aq,u(Aq),0(Ay) >,---,<

/\n,u ()\n) ,U (/\n) >}, Q - {< /\1,“ (A]),U ()\1) >, ttty < )\n,u (/\n),v ()\n) >}.
The new cross entropy between P and Q is defined by

i=n j=3 1 3
NCEpp = K 2 ~log( + 7T 2. 1o 4)
PQ ; ]Z P] g Q]()\i> )) P( ) g( Q(Az)z)
The new divergence between P and Q is defined by
_15 nj=4 e 2kp;(A;)? 2Kgj(Ai)
K log ! +x 210 !
121]2 (A e (A7 + g (A2 0i(A) epi (M) + (A2
(5)

where x4(A;) = 7(A;). More importantly, the 0 can be regarded as the 1 -
101 if denominator is 0.
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3.2. Numerical examples

Some numerical examples are used to explain and discuss the proposed uncer-
tainty measure, cross entropy and divergence of PFS.

Example 1 Supposing there are two PFSs A =< x,0.45,0.75 >, B =<
x,0.55,0.80 >, the corresponding uncertainty measures are as follows.

Table 1. Uncertainty measure of Example 1

g0 g0 g0 £l UM
A 0.5486 0.4706 0.6400 0.3600 1.6133
B 0.5161 0.4953 0.6625 0.4727 1.2413

Obviously, B should have the smaller uncertainty than A. Because the infor-
mation of B is more certain due it has the lager membership and non member-
ship than A. From this view, it can be seen that proposed uncertainty measure
and E; is more reasonable than other methods. Besides, the UM can better ex-
press the difference between A and B than E;, which can show the effectiveness
of new certainty measure.

Example 2 There are some PFSs A =< x,0.45,0.75 >, B =< x,0.55,0.80 >,
C =< x,0.55,0.78 >, the corresponding divergences are as follows.

D124, B) =0.0352, D12/ (4,C) = 0.0225, DI121(B,C) = 0.0019
ND(A,B) = 0.0354, ND(A,C) = 0.0236, ND(B,C) = 0.0023

The D which is the divergence proposed by Xiao and ND show that B is
more similar with the C than A which is reasonable.

Example 3 Supposing there are two PFSs A =< x,0.5,x >, B =< x,0.4,y >.
The uncertainty, cross entropy and divergence of A, B can be discussed.

In this example, x can change from 0 to 0.8660, y can change from 0 to 0.9165.
The uncertainty, cross entropy and divergence of Example 3 are as Fig. 1.

N\

(@) (b) () (d)

Figure 1. The uncertainty measure, cross entropy and divergence of Example. 3. (a) uncertainty of
A, (b) uncertainty of B, (c) cross entropy, (d) divergence

(a) The uncertainty of A and B can be discussed. For A, there are some con-
ditions, as follows. (1) when x is about 0.3, the PFS is A =< x,0.5,0.3 >. In this
case, the hesitancy degree has the maximum value which has the maximum un-
certainty. (2) when x = 0.8660, the PFS is A =< x,0.5,0.8660 >. In this case, the
hesitancy degree is 0 which has the minimum uncertainty. Next, the uncertainty
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of B is analyzed. (1) when y = 0.581, the PFS is B =< x,0.4,0.581 >. There is
the maximum uncertainty. (2) when y = 0.9165, the PFS is B =< x,0.4,0.9165 >,
which has the minimum uncertainty.

(b) The cross entropy of A, B (NCE(A,B)) can be discussed as Fig. 1(c). (1)
when y = 0.4, the Ap = 0, the change of cross entropy can be shown in Fig. 2(a).
It is obvious that there is the minimum cross entropy when x = 0.5. (2) when
x = 0.5, the A4 = 0. In this case, the change of cross entropy can be shown in
Fig.2(b). It can be seen that the change of cross entropy is symmetric about 0.5.

(@) (b) (@ (d)

Figure 2. The cross entropy of Example. 3. (a) y = 0.4, (b) x = 0.5.The divergence of Example. 3. (a)
x=0.5,(b) x=0.3.

(c) The divergence of A and B can be discussed, as shown in Fig. 1(d). (1)
whenx=0.5,y=04, A=<x,05,0,5>, B=<x,04,0.4 >. In this case, A4 =0,
Ap = 0. Hence, the score function can not express the difference between A and
B. However, hesitancy degree can help us distinguish the difference. (2) Fig. 2(c)
and (d) discussed the change of divergence with y when x = 0.5 and x = 0.3.
When y = 0.4, the divergence of x = 0.5 is more than x = 0.3, which reflects the
importance of score function.

4. Application

This section introduced the method of pattern recognition based on the proposed
divergence to explain its effectiveness.

4.1. Method of pattern recognition based on proposed method

Problem Statement : There are some patterns P = {py, p2, -, Pm} Which can
be expressed by PFS p; = {x;, uj(x;),vj(x;) }. Given n samples S = {s1, 82, -+, 5 }
which can be expressed by PFSs s; = {x;, pt+(x;),v¢(x;) }. The samples should be
recognised to the certain pattern. The specific steps are as follows.

Step 1: Compute the distance between samples and patterns

The distance can be computed by using the view of Xiao [12], as follows.

dir(x;) = \/ S L ND(pj, st)

Step 2 : Determine the minimum value of distance
There are some distances between every sample and all patterns. The mini-
mum distance can be determined as

D(pes)=, D (pys)
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Step 3 : Obtain the results of recognition
The sample can be classified as the pattern with minimum distance.

St < Pa
4.2. Application of medical diagnosis

Medical diagnosis can be used to explain the proposed pattern recognition

which can be introduced simply. There are four patients P = {p1, p2, P3, Pa}

with the five symptoms S = {s1 : Temperature,s, : Headache,s3 : Stomachpain,sy :

Cough,ss: Chestpain}. The possible diagnosis D = {d : Viral fever,dy: Malaria,d3:
Typhoid,dy : Stomachproblem,ds : Chestproblem}. The more related information

can be obtained in [12]. The results of medical diagnosis by using proposed

method are as Tab. 2.

Table 2. The results of pattern recognition

Dy Dy Ds Dy Ds Results
p1 0.3055 0.2501 0.3885 0.4776 0.5337 D,
p2 0.4388 0.5223 0.4178 0.1864 0.4734 Dy
p3 0.3878 0.4223 0.3888 0.4797 0.5068 Ds
P2 0.3296 0.4030 0.4528 0.4519 0.5466 D4

To further explore the reasonableness and effectiveness of proposed method,
there are some comparisons with other methods as Tab. 3. It can be seen that the
results of proposed method are similar to those of most methods which proves
the proposed method is practical in dealing with medical diagnosis.

Table 3. The results of different methods

Own10)| Deetal 17] Szmidtetal 18] Weietal. 1] Mondaletal 29 Xiaol12] Proposed
P D, D, D, D, D, D, D,
p2 Dy Dy Dy Dy Dy Dy Dy
p3 D3 D, D3 D3 D3 D3 D3
ps| Do Dy Dy Dy Dy Dy Dy

5. Conclusion

In Pythagorean fuzzy sets (PFS), how to measure uncertainty is important and
an open issue. PFS can include the membership, non-membership and hesitancy
degree. Hence considering them comprehensively can help us better analyze
the uncertainty of PFS. The paper proposed the uncertainty measure of PFS by
considering the membership, non-membership, hesitancy degree and difference
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between membership and non-membership degree. Besides, from the view of
Demspter-Shafer evidence theory, the number of focal elements of hesitancy in-
formation which can include the membership and non-membership information
is considered. Based on the proposed uncertainty measure, the cross entropy and
divergence of PFS can be also presented. In addition, the new uncertainty mea-
sure can be compared with the other methods, which shows the new uncertainty
measure can better reflect the difference between PFSs and is reasonable. Finally,
the medical diagnosis can be applied to the method of proposed the pattern
recognition based on the new divergence. The results are used to compare with
other methods to verify reasonableness and effectiveness of the new method.
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