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Abstract. This short note aims to make some modification for improving the results
presented in [1]. A. Ghodousian et al. discussed the resolution of a system of max-
Dubois-Prade fuzzy relation equations based on their proposed index sets J;, i € 1.
It is found that not every e € E = J; X J2 X -+ X Jp,, corresponds to a solution. To
overcome this flaw, we modify the expression of the index sets, denoted by J;~,
i € 1. Based on the modified index sets, resolution of the max-Dubois-Prade fuzzy
relation equations becomes easier, regarding the computational cost.
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1. Introduction

In a recent paper [1], A. Ghodousian et al. studied the nonlinear optimization problem
subject to a system of max-Dubois-Prade fuzzy relation equations as follows

min f(x)
st. Apx = b, ey
xe [0, 1)

Denote the index sets I = {1,2,--- ;m} and J = {1,2,--- ,n}. In above the fuzzy relation
equations system

Agx=b, @

A = (aij)mxn € [0,1]™" represents a fuzzy matrix, while b = (b;)mx1 € [0,1]" is a m-
dimensional fuzzy vector. The max-Dubois-Prade composition ¢ is defined as
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Xy

m, Vx,y € [0, 1], 3)

(P()C,y) = TgP(xay) =

where y € (0,1) is some fixed parameter. Notice that T,(x,y) = min{x,y} and
T} p(x,y) = xy. That is to say, when y = 0, the composition ¢ = T3, becomes “min”,
while y =0, ¢ = T}}, turns out to be “product” composition. The authors first presented
the resolution of the constraint, i.e. system (2). Based on the properties of the solution
set of (2), they further applied the genetic algorithm to search an approximate optimal
solution of problem (1). After carefully examination, we found that some of the result in
[1] could be improved, for making it always true for the general case.

Searching all the solutions of a fuzzy relation system, including equations system or
inequalities system, is an lasting research topic [2]-[6]. In the resolution of a fuzzy rela-
tion system, the composition plays important role. The composition has been extended
from the initial max-min operator to the general max-t-norm one. Recently, fuzzy relation
systems with addition-min [4]-[6] or max-Dubois-Prade [1,7] were also investigated. E-
specially, the solution set of consistent fuzzy relation inequalities system with addition-
min composition is no longer non-convex, but convex [4]. Moreover, the number of it-
s minimal solutions (when non-unique) are no longer finite, but infinite [4]. However,
resolution of all its solutions remains an open problem [5].

When applying the fuzzy relation system in some application field, the relevant op-
timization problem might be dealt. S.-C. Fang and G. Li first introduced the optimization
problem minimizing a linear function with fuzzy relation equations constraint [8]. There
are much research focusing on such a topic [8]-[11]. The Branch-and-Bounded approach
is one of the most applied resolution methods. However, it is no longer suit for optimiza-
tion problem with addition-min composition [10,11,12]. For fuzzy relation programming
with general nonlinear objective function, the generic algorithm is an common method to
search its approximate optimal solution [1,7,13,14]. Computation complexity and accu-
racy are important criterions for evaluation of a generic algorithm. Other specific fuzzy
relation nonlinear programming problems could be handled according to their special
objective functions and structure of the feasible regions [15]-[20].

The optimization problem with a linear objective function and a group of max-
product fuzzy relation equation constraints was first studied by J. Loetamonphong and
S.-C. Fang [21]. The imitated the resolution approach presented in [8]. In recent years,
the fuzzy relation inequalities system with max-product composition was further applied
to the foodstuff management in a given city [20,22,23] and the wireless communica-
tion station system [24,25,26]. The linear objective function was replaced by a nonlin-
ear one [22,23,24,25]. Obviously, the resolution method presented in [21] was no longer
effective for those nonlinear fuzzy relation optimization problems [22,23,24,25]. J. Qiu
et al. further investigated the fuzzy relation optimization problem with a bi-level objec-
tive function [26]. Fuzzy relation inequality with addition-min composition was another
challenging researching topic. As pointed out in [4], in most cases, a system of addition-
min fuzzy relation inequalities has an infinite number of minimal solutions. As we know,
there is no efficient method for obtaining all the minimal solutions till now. Hence, one
is not able to find its complete solution set. However, searching some specific solution-
s of the addition-min fuzzy relation inequalities is interesting and achievable. Several
resolution method were proposed for the optimization problem with a linear objective
function and the addition-min fuzzy relation inequality constraints [10,11,27]. For de-
creasing the network congestion in the P2P file sharing system, X. Yang et al. [12,28,29]
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further established and investigated the corresponding min-max programming subjec-
t to the addition-min fuzzy relation inequalities system. Moreover, the relevant multi-
ple objective optimization problem was also studied, which allowed the system manager
to consider three objectives (system congestion, cost, and penalty) simultaneously [30].
Besides, some other issues with respect to the addition-min fuzzy relation inequalities
system were introduced and investigated [31,32].

The contribution and novelty of this work are summarized as follows.

(i) Point out the drawbacks of the existing work [1].

The following Theorem 2 and its relevant assertion are adopted from [1] (see pages
169-170 in [1]).

® Theorem 2. Syv (A,b) = | [X(e),X].

bp ecE
® As a consequence, it turns out that X is the unique maximum solution and X (e)’
(e € E) are the minimal solutions ofSTgP (A, D). Moreover, we have the following

corollary that is directly resulted from Theorem 2.

We have found that the results in the above “Theorem 2" and its relevant assertion
might be incorrect.

(i1) Give the reason causing the above drawbacks.

In fact, X (¢) might not be a feasible solution of problem (1). In other words, it is pos-
sible that X (e) ¢ STgP (A,b). This is the reason causing the above-presented drawbacks.

IfX(e) ¢ STZP (A,b) holds, then X (e) is not a solution of system (2). As a consequence,

the result that Sy (A,b) = LEJE[X(e)7Y}, in Theorem 2, is invalid. In addition, X () is not
e

a minimal solution of Sr1, (A,D).

(iii) Make some corresponding corrections.

In this work, we have made some modifications to the index sets Jy,J»,--- ,J,, and
the Definition 4 in [1]. The modified index sets are denoted by Ji~,J5,---,J,,. After
these modifications, it has been further proved that for any e € E= =J” xJ5 x--- X J,,
it holds that X(e) € STgP (A,D). Consequently, the corresponding results in the above
theorem and assertion turn out to be correct.

We organized our paper as follows. Section 2 provides some necessary preliminaries
on the max-Dubois-Prade fuzzy relation equations. The main results of this paper are set
in Section 2, including three parts: Phenomenon, Reason and Correction. Section 4 is the
simple conclusion.

2. Preliminaries

In this section we recall some concepts and results which are presented in [1].
The max-Dubois-Prade fuzzy relation equations (2) could be written as

(p(ai;bi) = (p(ai17x1> V(p(ai27-x2) ARE \/(P<ainaxn) = bi7 le Ia

ainj

where (P(aij,xj) = max{a;j,x;,y}"

Let

Sp1 (A,b) = {x € [0,1]"Agx = b}
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be the complete solution set of system (2). Denote the solution set of the ith equation of
system (2), i.e.

o(ait,x1)V @Q(ain,x2) V-V @(ain,xn) = bi, 4

by STgP (ai,b;), for all i € I. Then it is clear that

Spy (A.b) =[S (aibi). 5)

il
Definition 1. For each i € I, we define the following index sets

JH ={j€J:a;j>bjand y > a;;},

1

J-1’2:{je]:aij>biand}/§aij},

1

g2 :{jeJ:aiijiandbi#O}’

1

J.2=2:{j€j;aij:bi:0},

1

LetJ; = Ji]’] LJJil’2 UJI.Z’1 UJiz"z. Additionally we set

bi .l
ZTj ] GJZ ; vbi . Jl’l
b; e J? a S
=" TE and wy={n el (©)
max{b;,y} jeJ, S 20 22
0 ek 1 JEJT U
.] l" )

Lemma 1. Leti € L If j ¢ J;, then Tjp(aij,x;) < by, ¥x; € [0, 1].

Lemma 2. Suppose thati €l and j € J;.
(a) Xj > Uij iﬁCTYP<a,‘j,xj') > b;.
(b) xj < l,'j WTDP(LIU,X/) < b;.
(¢) Lij < xj < wij iff Tpp(aij xj) = bi.
Lemma 3. Forafixedic I, STgp (ai,bi) # 0 if and only if J; # 0.

Definition 2. Suppose that i € I and STgp (ai,b;) # 0 (hence, J; # 0@ from Lemma 3). Let

i =[(%)1,(&Ri)2,-+,(£)a] € [0,1]" where the components are defined as follows:
R ui; ke,
k= VkelJ. 7
(Xl)k {l k ¢ Ji, ( )

Also, for each j € J;, we define X;(j) = [¥i(j)1,%i(j)2,- - ,%i(j)n] € [0,1]" such that

L lij k=,
‘ _ VkelJ. 8
%i(J)k {0 otherwise, N
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The solution set of the ith single fuzzy relation equation (4) could be characterized
as below.

Theorem 1. Leri € I. IfSTgP (ai,b;) # 0, then STgp (ai,b;) = jgf,- (X (J), %]
According to Theorem 1, £; is the unique maximum solution of STgP(ai,bi), while
Xi(j)’s (j € J;) are the minimal solutions.

Definition 3. Let £; (i € I) be the unique maximum solution of Srg,, (ai,b;). We define
X = min#;.

icl
Definition 4. Let e : I — J; so that e(i) = j € J;, Vi € I. Let E be the set of all vectors
e. For the sake of convenience, we represent each e € E as an m-dimensional vector
e = [jhjz, s ,jm] in which jk = e(k).

Definition 5. Lete = [, j2, -, jm] € E. We define X(e) = [X(e)1,X(e)2, -+ ,X(e)n] €
[O, 1]", where X(e)j = maxig{i,-(e(i))j} = max,-g{)?,-(ji)j}, V] e J.
Theorem 2. S,y (A,b) = U [X(e),X].
bp ecE
Theorem 2 gives the complete characterization of the solution set of system (2). It
follows from Theorem 2 that X is the unique maximum solution (if it is consistent), “and
X(e) (e € E) are the minimal solutions of STgp (A,D)” [1]. Moreover, the consistency of

system (2) could be checked by the feasibility of X, according to the following Corollary
1.

Corollary 1. (first necessary and sufficient condition) STgP (A,b) # 0 if and only if X €
STg,, (A,D).

3. Main result

In this section, we will show that some results presented in Ref. [1] are invalid for some
specific cases regarding the system of max-Dubois-Prade fuzzy relation equations. In
order to make sure the results valid for all cases, we point out the causing reason and
further make some modifications of the definitions in [1].

3.1. Phenomenon: X (e) might not be a (minimal) solution for some specific e € E

As mention above, it was pointed out in [1] that the vectors {X(e) : e € E} are the mini-
mal solutions of system (2), i.e. X(e) € STgP (A,b), Ve € E. However it is found that this
assertion is uncorrect in some specific case. In other words, there might exit some e € E,
such that X (e) is not a solution of (2).

Now we declare our assertions as follows:

(i) It is possible that X (e) ¢ STgp (A,D) for some e € E.

(ii) Even if X (e) € STgP (A,b) holds for some e € E, the solution X (e) might not be
a minimal solution of system (2).

We take the example from [1] to support our above-mentioned assertions.
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Example 1. [1] Consider the problem below with Dubois-Prade t-norm

0.90.40.60.70.4 0.4 0.7
0.50.10.20.30.50.2 0.5
0.20.80.40.40.60.9| px= |0.6], )
0.90.70.30.80.80.5 0.8

0 0.40.2020.10.7 0.4

where @ (x,y) = T35 (x,y) = maoosy e y=0.5).

By simple computation, it could be obtained that J; = {1,4}, J, = {1,5}, J53 =
{2,5,6}, Js = {1,4,5}, Js = {2,6}. Maximum solutions of the equations in system (9)
are

=10.7,1,1,1,1,1],

=[1,1,1,1,1,1],

=11,0.6,1,1,1,0.6],
x4—[08,1,1717171]
[1,1,1,1,1,0.4],

respectively. On the other hand, all the minimal solutions are as

%(1) =[0.7,0,0,0,0,0], % (4) = [0,0,0,0.7,0,0],
%(1) =[0.5,0,0,0,0,0], %:(5) = [0,0,0,0,0.5,0],
%3(2) =[0,0.6,0,0,0,0], #3(5) = [0,0,0,0,0.6,0], %3(6) = [0,0,0,0,0,0.6],
%4(1) =[0.8,0,0,0,0,0], #4(4) = [0,0,0,0.8,0,0], %(5) = [0,0,0,0,0.8,0],
X5(2) = ], ¥5(6) = | ]

%5(2) = [0,0.5,0,0,0,0], ¥5(6) = [0,0,0,0,0,0.4].

Basedon &; (i = 1,2,---,5), it is easy to find the maximum solution of system (9), i.e.

X=% AN AE5=1[0.7,0.6,1,1,1,0.4].

By Definition 4, |E| = |J;| X |J2| x -+ x |J5| =2 x 2 x 3 x 3 x 2 =72. As a consequence,
the authors said “we have 72 solutions X (e) associated to 72 vectors ¢” in [1].
In fact, this statement is incorrect. For example, take e; = [1,1,2,1,2] € E, then

we have X(e1) =¥ (1) VX2 (1) VX3(2) V(1) VE5(2) = [0.8,0.6,0,0,0,0]. Substituting
X(ey) in system (9), it is found that the first equation doesn’t hold. Hence X (e;) is not a

solution of (9).

Moreover, take e; = [4,1,5,5,2] € E. Even though the corresponding vector X (e3) =
[0.5,0.5,0,0.7,0.8,0] is a solution of (9), it is not a minimal solution. It is easy to check
that x = [0,0.5,0,0.7,0.8,0] is also a solution of (9). But it holds that x < X(e;) and

x#X(ez). O

Next we will explain the reason causing the above conflict and provide some neces-
sary modification to improve the results in [1].
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3.2. Reason: it is possible that X (e) ¢ X

What is the reason causing the non-membership relation X (e) ¢ STJP (A,b)?
In fact, whether X (e) belongs to Sy1, (A,b) is determined by availability of the in-

equality that X (e) < X. Furthermore, we provide the following Theorem 3 to show the
necessary and sufficient condition that ensures the vector X () to be a solution of (2), for
agivene € E.

Lemma 4. A vector x € [0,1]" is a solution of system (2), if and only if for any i € I,
a;j@x; holds for all j € J and a;j; @x;, holds for some j; € J.

Proof. The proof is trivial. ]

Theorem 3. Lete € E. Then X (e) € STgP (A,D) if and only if X (e) < X.

Proof. Since X is the maximum solution, X (e) € Srr (A,b) = X(e) <X is straight-
<

is
forward. Next we just verify the contrast implication. Assume that X (¢) < X for some

e € E. We have to prove that X (e) € STgP(A,b).

Take arbitrary i € 1.
(i) By Lemma 4, X ¢ STgp (A,b) implies that a;;¢X j < b;, Vj € J. On the other hand,

the assumption that X (¢) < X indicates X (e); < X, Vj € J. Due to the monotonicity of
the operator ¢, we have

aijpX(e); < ajjoX; < b;,Vjel.

(ii) Suppose e = [j1, j2, -+ , jm]- By Definition 5, X (¢) = \/ %(jx). Thus

kel
=\ %) ji = %) j- (10)
kel
According to (8), it holds that
Xi(Ji)ji = lij- (11)
Since j; € J;, it follows from (7) that
Xji = (A& = NG < (R1) = wij- (12)
kel kel
Combining (10), (11) and (12), we have
lijy = %i(Ji)j; < X(e)j; < Xj; < uyj,. (13)

According to Lemma 2, it holds that a;;, X (e) j, = b;.
By Lemma 4, the above-proved (i) and (ii) contribute to X (e) € STZP (A,b). |
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3.3. Correction: modification of the index set J;

In this subsection we aim to make some modification for improving the results in [1]. To
make the above-mention assertion presented in [1] correct, we just need to modified the
index set J; used in Definition 4.

For arbitrary i € I, let

Jo={jeJll; <X;}. (14)

It is clear that J;- C J;, Vi € I. Moreover, it is possible that J;~ # J;, e.g. J3 and J are
not equal to J3 and Jy, respectively, in Example 2.

We replace J; in Definition 4 by J;~ in (14). Then the Definition 4 turns out to be
Definition 4’ as below.
Definition 4. Let e : I — J;~ sothate(i) = j € J;-, Vi € I. Let E= be the set of all vectors
e. For the sake of convenience, we represent each ¢ € E~ as an m-dimensional vector
e=[j1,j2,"**, jm] in which ji = e(k).

The set E~ could be simply viewed as
E= =J7 xJy x---xJ,,. 15)

Based on the modified Definition 4°, we further provide a theorem to illustrate the cor-
rection.

Theorem 4. Let e = [, jo,  *, jm] € E=, where E= is as defined in Definition 4°. Then
the corresponding vector

X(e) = [X(e)1,X ()2, X(e)u] = [\ ()1, \/ i), -+, \ i)l =\ i)
il il il iel

is a solution of system (2), i.e. X (e) € STgp (A,D).

Proof. According to Definition 5, X (e) = %1 (j1) VX2(j2) V- -+ VX (jm)- By (8), for ar-
bitrary i € I, there exits at most one nonzero component in the vector ¥;(j;). If there ex-
ists, the unique non-zero component is indeed the jith component, i.e. X;(j;)j = lij; # 0.
Notice that X j = 0 for all j € J. Moreover, since j; € J;, it follows from (14) that
%i(ji)j, = lij; < Xj,- As a result, we have X;(j;) < X. Due to the arbitrariness of i, we

further get X (e) = %1 (ji1) VX2 (j2) V- VEu(jm) < X. According to Theorem 3, X (e) is
a solution of system (2) O

Example 2. Continue to discuss the system (9) in Example 1, based on the modified
Definition 4°.

According to (14), we get
Jr ={1,4},J; ={1,5},J5 ={2,5},J; ={4,5},J7 ={2,6}. (16)

Hence, the cardinality of E~ is
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E=| =J7 xJ5 x - xJ5 =25 =32,

That is to say, there are 32 solutions corresponding the 32 vectors e in E~. These 32
solutions could be represented by

{X(e)lec E7}.

Recall that in Ref. [1], one should compute 72 vectors based on E. But by our modified
set E~, we just need to compute 32 ones. It is much easier to compute the solution set of
system (9). O

4. Conclusion

Max-Dubois-Prade fuzzy relation equations system with parameter 7y and its correspond-
ing optimization problem were recently investigated in [1]. For characterizing the solu-
tion set of system (2), the authors constructed the index set £ = J; X J X --- X J,,, and
asserted that all vectors in {X(e) : e € E} are minimal solutions. However, it is found
that X (e) might not be a solution for some specific e € E. In order to make every vector
X (e) be a solution of the corresponding fuzzy relation system, we modify the index set
E to E= =J xJ; x---xJ, . Moreover, we have verified that for each e € E~, the
corresponding vector X (e) is a solution of system (2). Finding the solution set based on
E~ should be easier than that based on E.

The limitation of this study and Ref. [1] is that the proposed resolution algorithm is
only able to find an approximate (optimal) solution of the relevant optimization problem,
but not an exact solution. Moreover, Ref. [1] hasn’t explained the influence of the param-
eter Y to the resolution process or results. In our future works, there are some interesting
researching topics, including but not limited to (i) the influence of the parameter v, (ii)
the sensitivity analysis with respect to A or/and b; (iii) the optimization problems subject
to other kinds of fuzzy relation systems; (iv) the potential industrial applications of the
fuzzy relation optimization problems.
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