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Abstract. QMV*-algebras were introduced in [1] as the extension of MV*-
algebras and quasi-MV algebras. In the present paper, the concepts of prime ide-
als are introduced into QMV*-algebras. First some related properties of QMV*-
algebras are listed. Second the properties of prime ideals of a QMV*-algebra are
investigated and the quotient algebra by a prime ideal is characterized. Finally,
maximal ideals of a QMV*-algebra are discussed.
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1. Introduction

Chang had introduced MV*-algebras in [2] for the purpose of providing a conve-
nient abstraction of the algebra defined on the real interval [−1,1], endowed with the
truncated addition ζ ⊕ υ = max{−1,min{1,ζ + υ}} and the negation −ζ , parallel-
ing similar work done for MV-algebras in [3]. In [4], the algebraic study of MV*-
algebras had been made by Lewin et al., and the logic L∗ as a natural extension of
Łukasiewicz logic was also investigated in [5]. On the other hand, quasi-MV alge-
bras deriving from quantum computation were introduced in [6] and they were an-
other generalization of MV-algebras. Since they were proposed, lots of properties of
quasi-MV algebras were investigated in [7–10] and their corresponding logics were dis-
cussed in [11]. In [6], a standard completeness theorem for a quasi-MV algebra was
shown: an equation holds in any quasi-MV algebra if and only if it holds in the stan-
dard quasi-MV algebra D. The standard quasi-MV algebra D whose universe is the set
C1 = {〈ζ ,υ〉 ∈ R×R | (1− 2ζ )2 + (1− 2υ)2 ≤ 1} is a subalgebra of the standard
quasi-MV algebra S and S is defined as follows: S = 〈[0,1]× [0,1];⊕,′ ,0,1〉 where
〈ζ ,υ〉⊕〈κ,λ 〉= 〈min{(1,ζ +κ), 1

2 〉, 〈ζ ,υ〉′ = 〈1−ζ ,1−υ〉, 0 = 〈0, 1
2 〉 and 1 = 〈1, 1

2 〉.
Notice that the universe of S is [0,1]× [0,1], it is natural to ask whether we can gen-

eralize it to [−1,1]× [−1,1]. What is the relationship between the new algebraic structure
and S? More general, whether we can generalize quasi-MV algebras similarly as MV*-
algebras extended MV-algebras. If we can, whether new algebraic structures can be ob-
tained by quasi-MV algebras? In order to solve these questions, we introduced QMV*-
algebras in [1] as an extension of quasi-MV algebras. Meanwhile, QMV*-algebras can
also be viewed as a generalization of MV*-algebras.

It is well-known that ideals, especially prime ideals, play an important part in study-
ing the algebraic structures. To take a closer look of QMV*-algebras, we introduce the
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notions of prime ideals into QMV*-algebras in the present paper. The properties of prime
ideals of a QMV*-algebra are investigated and the quotient algebra using a prime ideal
is characterized. The maximal ideals of a QMV*-algebra are also discussed. All results
obtained in this paper will generalize the known results in MV*-algebras and expand the
contents in quasi-MV algebras.

2. Preliminary

This section recalls some results of QMV*-algebras which will be used in what follows.

Definition 2.1. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be an algebra of type 〈2,1,0,0〉. If for any
ζ ,υ ∈ Γ, we define

ζ+ ∈ Γ with ζ+⊕0 = (ζ ⊕0)+ = 1⊕ ((−1)⊕ζ ),
ζ− ∈ Γ with ζ−⊕0 = (ζ ⊕0)− = (−1)⊕ (1⊕ζ ),
ζ 	υ = (ζ+⊕ (−(ζ+)⊕υ+)+)⊕ (ζ−⊕ (−(ζ−)⊕υ−)+),

and the following equations hold for any ζ ,υ ,κ ∈ Γ,
(QMV*1) ζ ⊕υ = υ⊕ζ ,
(QMV*2) (1⊕ζ )⊕ (υ⊕ (1⊕κ)) = ((1⊕ζ )⊕υ)⊕ (1⊕κ),
(QMV*3) (ζ ⊕1)⊕1 = 1,
(QMV*4) (ζ ⊕υ)⊕0 = ζ ⊕υ ,
(QMV*5) ζ ⊕υ = (ζ+⊕υ+)⊕ (ζ−⊕υ−),
(QMV*6) 0 =−0,
(QMV*7) ζ ⊕ (−ζ ) = 0,
(QMV*8) −(ζ ⊕υ) = (−ζ )⊕ (−υ),
(QMV*9) −(−ζ ) = ζ ,
(QMV*10) (−ζ ⊕ (ζ ⊕υ))+ =−(ζ+)⊕ (ζ+⊕υ+),
(QMV*11) ζ 	υ = υ 	ζ ,
(QMV*12) ζ 	 (υ 	κ) = (ζ 	υ)	κ ,
(QMV*13) ζ ⊕ (υ 	κ) = (ζ ⊕υ)	 (ζ ⊕κ),

then ΓΓΓ is called a quasi-MV* algebra (QMV*-algebra for short).

Obviously, any MV*-algebra ΛΛΛ = 〈Λ;⊕,−,0,1〉 is a QMV*-algebra. Conversely, if
ζ ⊕ 0 = ζ holds in a QMV*-algebra ΓΓΓ, then it is immediate to see that ΓΓΓ is an MV*-
algebra.

On a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉, we can define some operations on Γ by
ζ 
 υ = −((−ζ )	 (−υ)), ζ � υ = ζ ⊕ (−υ) and |ζ | = ζ 	 (−ζ ) for any ζ ,υ ∈ Γ.
We also define a relation ζ ≤ υ by ζ 	υ = υ ⊕ 0, or equivalently, ζ 
υ = ζ ⊕ 0. It is
obvious to see that the relation ≤ is reflexivity and transitivity. For any ζ ∈ Γ, if 0 ≤ ζ ,
then the element ζ is called non-negative and if ζ ≤ 0, then the element ζ is called
non-positive. We know that a QMV*-algebra does not satisfy the associativity of ⊕ in
general. However, if ζ and κ are either non-negative or non-positive, then the equality
(ζ ⊕υ)⊕κ = ζ ⊕ (υ⊕κ) always holds, we call it restricted associativity in this case.

Proposition 2.1. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then for any
ζ ,υ ,κ,λ ∈ Γ, we have

(1) ζ ⊕υ = (ζ ⊕0)⊕υ = ζ ⊕ (υ⊕0) = (ζ ⊕0)⊕ (υ⊕0),
(2) ζ 
υ = (ζ 
υ)⊕0 = (ζ ⊕0)
υ = ζ 
 (υ⊕0) = (ζ ⊕0)
 (υ⊕0),
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(3) κ� (ζ 	υ) = (κ�ζ )
 (κ�υ) and κ� (ζ 
υ) = (κ�ζ )	 (κ�υ),
(4) (ζ 	υ)�κ = (ζ �κ)	 (υ�κ) and (ζ 
υ)�κ = (ζ �κ)
 (υ�κ),
(5) ζ 	ζ = ζ ⊕0 = ζ 
ζ ,
(6) 1⊕0 = 1 and 1⊕1 = 1,
(7) 0+ = 0 = 0−,
(8) (−ζ )+⊕0 =−(ζ−)⊕0,
(9) ζ ⊕0 = (ζ ⊕0)+⊕ (ζ ⊕0)−,
(10) ζ 	0 = ζ+⊕0 and ζ 
0 = ζ−⊕0,
(11) ζ− ≤ 0≤ ζ+,
(12) −1≤ ζ ≤ 1 and 0≤ |ζ | ≤ 1,
(13) ζ ⊕0≤ ζ ≤ ζ ⊕0,
(14) ζ 
υ ≤ ζ ≤ ζ 	υ ,
(15) If ζ ≤ υ , then ζ+ ≤ υ+, ζ− ≤ υ− and −υ ≤−ζ ,
(16) If ζ ≤ υ and κ ≤ λ , then ζ ⊕κ ≤ υ⊕λ , ζ 	κ ≤ υ 	λ and ζ 
κ ≤ υ 
λ ,
(17) If ζ ≤ 0, then ζ ⊕0 = ζ−⊕0 and ζ+⊕0 = 0,

if 0≤ ζ , then ζ ⊕0 = ζ+⊕0 and ζ−⊕0 = 0,
(18) ζ ≤ υ iff 0≤ υ�ζ ,
(19) If ζ = υ , then υ�ζ = 0, if υ�ζ = 0, then ζ ⊕0 = υ⊕0,
(20) (ζ ⊕υ+)�υ+ ≤ ζ ≤ (ζ �υ+)⊕υ+,
(21) |ζ | ≤ κ iff −κ ≤ ζ ≤ κ .

Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra and /0 �= Λ⊆ Γ. We denote the set |Λ|=
{|λ | | λ ∈Λ} and define an operation ¬ on |Λ| by ¬|λ |= 1�|λ | for any |λ | ∈ |Λ|. Below
we will discuss the structure of |Γ|.

Lemma 2.1. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then |Γ| is closed under oper-
ations ⊕ and ¬.
Proof. For any |ζ |, |υ | ∈ |Γ|, then |ζ |, |υ | ∈ Γ and we have |ζ |⊕ |υ | ∈ Γ, so ||ζ |⊕ |υ || ∈
|Γ|. Since 0≤ |ζ |⊕|υ | by Proposition 2.1(12),(16), we have−(|ζ |⊕|υ |)≤ 0, it turns out
that ||ζ |⊕ |υ ||= (|ζ |⊕ |υ |)	 (−(|ζ |⊕ |υ |)) = (|ζ |⊕ |υ |)⊕0 = |ζ |⊕ |υ |, so |ζ |⊕ |υ | ∈
|Γ|. For any |ζ | ∈ |Γ|, then |ζ | ∈ Γ, it follows that ¬|ζ | = 1� |ζ | ∈ Γ, so |¬|ζ || ∈ |Γ|.
Since |ζ | ≤ 1, we have −1 ≤ −|ζ |, it turns out that 0 ≤ 1� |ζ | = ¬|ζ |, so |¬|ζ || =
(¬|ζ |)	 (−(¬|ζ |)) = (¬|ζ |)⊕0 = ¬|ζ |. Hence ¬|ζ | ∈ |Γ|.

Proposition 2.2. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then |ΓΓΓ|= 〈|Γ|;⊕,¬,0〉 is
an MV-algebra. Moreover, the relation ≤ restricted on |Γ| is partial-ordering.
Proof. We only need to check the condition: ¬(¬|ζ |⊕ |υ |)⊕|υ | = ¬(¬|υ |⊕ |ζ |)⊕|ζ |
for any |ζ |, |υ | ∈ |Γ|. Since ¬(¬|υ | ⊕ |ζ |)⊕ |ζ | = (1� ((1� |υ |)⊕ |ζ |))⊕ |ζ | = (1⊕
((−1⊕|υ |)⊕ (−|ζ |)))⊕|ζ |= (1⊕ (−1⊕ (−|ζ |⊕|υ |)))⊕|ζ |= (−|ζ |⊕|υ |)+⊕|ζ | by
restricted associativity and |ζ |	|υ |= (|ζ |+⊕(−(|ζ |+)⊕|υ |+)+)⊕(|ζ |−⊕(−(|ζ |−)⊕
|υ |−)+) = |ζ | ⊕ (−|ζ | ⊕ |υ |)+ by Proposition 2.1(12),(17), we have ¬(¬|υ | ⊕ |ζ |)⊕
|ζ |= |ζ |	 |υ |. Similarly, we can show ¬(¬|ζ |⊕ |υ |)⊕|υ |= |υ |	 |ζ |. Since |ζ |	 |υ |=
|υ | 	 |ζ |, we get ¬(¬|ζ |⊕ |υ |)⊕|υ | = ¬(¬|υ |⊕ |ζ |)⊕|ζ |. Moreover, if |ζ | ≤ |υ | and
|υ | ≤ |ζ |, then |ζ |	|υ |= |υ |⊕0= |υ | and |ζ |	|υ |= |ζ |⊕0= |ζ |, it turns out that |ζ |=
|υ |, so the relation ≤ restricted on |Γ| is antisymmetry. Hence the relation ≤ restricted
on |Γ| is partial-ordering.
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Definition 2.2. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. The set /0 �= L ⊆ Γ is
called an ideal of ΓΓΓ, if L satisfies: (I1) If ζ ,υ ∈ L, then ζ �υ ∈ L; (I2) If ζ ∈ L, then
ζ+ ∈ L; (I3) If ζ ,κ ∈ L and υ ∈ Γ with ζ ≤ υ ≤ κ , then υ ∈ L.

Proposition 2.3. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra and L be an ideal of ΓΓΓ.
Then we have

(1) 0 ∈ L, (5) If ζ ∈ L, then |ζ | ∈ L,
(2) If ζ ∈ L, then −ζ ∈ L, (6) If ζ �υ ∈ L and υ ∈ L, then ζ ∈ L,
(3) If ζ ,υ ∈ L, then ζ ⊕υ ∈ L, (7) If ζ �υ ∈ L and υ�κ ∈ L, then ζ �κ ∈ L.
(4) If ζ ,υ ∈ L, then ζ 	υ ∈ L,

Proposition 2.4. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. If L is an ideal of ΓΓΓ, then
(I3) is equivalent to the following: (I3′) If ζ ∈ L and υ ∈ Γ with |υ | ≤ ζ , then υ ∈ L.
Proof. (I3)⇒(I3′) If ζ ∈ L and υ ∈ Γ with |υ | ≤ ζ , then−ζ ∈ L using Proposition 2.3(2)
and −ζ ≤ υ ≤ ζ by Proposition 2.1(21). Thus we have υ ∈ L by (I3).

(I3′)⇒(I3) If ζ ,κ ∈ L and υ ∈ Γ with ζ ≤ υ ≤ κ , then |ζ |, |κ| ∈ L using Proposition
2.3(5). Since ζ ≤ υ ≤ κ , we have −κ ≤ −υ ≤ −ζ by Proposition 2.1(15) and then
|υ |= υ	(−υ)≤ κ	(−ζ )≤ |κ|	 |ζ | by Proposition 2.1(16),(14). Because |ζ |, |κ| ∈ L,
we have |κ|	 |ζ | ∈ L by Proposition 2.3(4). Thus υ ∈ L by (I3′).

Recall that an ideal L of an MV-algebra ΛΛΛ = 〈Λ;⊕,¬,0〉 is a non-empty subset of Λ
satisfying: (1) 0 ∈ L; (2) If ζ ,υ ∈ L, then ζ ⊕υ ∈ L; (3) If ζ ∈ L and υ ∈ Λ with υ ≤ ζ ,
then υ ∈ L.

Proposition 2.5. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. If L is an ideal of ΓΓΓ, then
|L| is an ideal of |ΓΓΓ|.
Proof. Since 0∈ L, we have 0= |0| ∈ |L|. If |ζ |, |υ | ∈ |L|, then ζ ,υ ∈ L and then |ζ |, |υ | ∈
L by Proposition 2.3(5), so |ζ | ⊕ |υ | ∈ L by Proposition 2.3(3). Since 0 ≤ |ζ | ⊕ |υ | by
Proposition 2.1(12),(16), we obtain |ζ |⊕ |υ |= ||ζ |⊕ |υ || ∈ |L|. If |ζ | ∈ |L| and |υ | ∈ |Γ|
with |υ | ≤ |ζ |, then |ζ | ∈ L and then υ ∈ L by Proposition 2.4, so |υ | ∈ |L|. Hence |L| is
an ideal of |ΓΓΓ|.

Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. For any /0 �= Λ ⊆ Γ, we define 〈Λ〉 =
⋂{L | Λ⊆ L and L is any ideal of ΓΓΓ}. Then 〈Λ〉 is the least ideal of ΓΓΓ which contains the
set Λ and is called the ideal generated by Λ. For any ζ ∈ Γ, denote 0 · ζ = 0, 1 · ζ = ζ
and n ·ζ = (n−1) ·ζ ⊕ζ for some integer n≥ 2.

Proposition 2.6. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra and /0 �= Λ ⊆ Γ. Then
〈Λ〉= {ζ ∈ Γ | |ζ | ≤ |λ1|⊕ |λ2|⊕ · · ·⊕ |λn|, where λ1,λ2, · · · ,λn ∈ Λ}.
Proposition 2.7. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. IfL is an ideal of ΓΓΓ and
λ ∈ Γ \L, then we have 〈L∪{λ}〉 = {ζ ∈ Γ | |ζ | ≤ |υ | ⊕ n · |λ |, where υ ∈ L and for
some integer n≥ 1}.

Given that L is an ideal of ΓΓΓ = 〈Γ;⊕,−,0,1〉. For any ζ ∈ Γ, we denote the equiva-
lence class of ζ with respect to L by ζ/L = {υ ∈ Γ|υ�ζ ∈ L} and Γ/L = {ζ/L|ζ ∈ Γ}.
For any ζ/L,υ/L ∈ Γ/L, we define (ζ/L)⊕L (υ/L) = (ζ ⊕υ)/L, −L(ζ/L) = (−ζ )/L
and (ζ/L) 	L (υ/L) = (ζ 	 υ)/L, then ΓΓΓ/L = 〈Γ/L;⊕L,−L,0/L,1/L〉 is a QMV*-
algebra.
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Proposition 2.8. Let L be an ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. Then the
quotient algebra ΓΓΓ/L is an MV*-algebra.
Proof. We only check the condition: (ζ/L)⊕L (0/L) = ζ/L for any ζ/L ∈ Γ/L. Since
ζ/L ∈ Γ/L, we have (ζ/L)⊕L (0/L) = (ζ ⊕ 0)/L = ζ/L. Indeed, υ ∈ (ζ ⊕ 0)/L iff
υ� (ζ ⊕0) ∈ L iff υ�ζ ∈ L iff υ ∈ ζ/L by Proposition 2.1(1). Hence ΓΓΓ/L is an MV*-
algebra.

Definition 2.3. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 and ΛΛΛ = 〈Λ;⊕,−,0,1〉 be QMV*-algebras. A
function φ : Γ→ Λ is called a QMV*-homomorphism, if for any ζ ,υ ∈ Γ, we have: (1)
φ(0) = 0; (2) φ(1) = 1; (3) φ(ζ ⊕υ) = φ(ζ )⊕φ(υ); (4) φ(−ζ ) =−φ(ζ ).

Proposition 2.9. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 and ΛΛΛ = 〈Λ;⊕,−,0,1〉 be QMV*-algebras
and φ : Γ→ Λ be a homomorphism. For any ζ ,υ ∈ Γ, then

(1) φ(ζ �υ) = φ(ζ )�φ(υ), (5) φ(ζ 
υ) = φ(ζ )
φ(υ),
(2) φ(ζ+⊕0) = (φ(ζ ))+⊕0, (6) φ(|ζ |) = |φ(ζ )|,
(3) φ(ζ−⊕0) = (φ(ζ ))−⊕0, (7) If ζ ≤ υ , then φ(ζ )≤ φ(υ).
(4) φ(ζ 	υ) = φ(ζ )	φ(υ),

Lemma 2.2. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 and ΛΛΛ = 〈Λ;⊕,−,0,1〉 be QMV*-algebras and
φ : Γ→ Λ be a homomorphism. If φ(ζ ) = φ(υ), then ζ �υ ∈ ker(φ) = {κ ∈ Γ|φ(κ) =
0}. Conversely, if ζ �υ ∈ ker(φ), then φ(ζ )⊕0 = φ(υ)⊕0.

Proposition 2.10. [1] Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 and ΛΛΛ = 〈Λ;⊕,−,0,1〉 be QMV*-algebras
and φ : Γ→ Λ be a homomorphism. If L is an ideal of ΛΛΛ, then φ−1(L) is an ideal of ΓΓΓ.

Suppose that L is an ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. We define a func-
tion φL : Γ→ Γ/L by φL(ζ ) = ζ/L for any ζ ∈ Γ. Then φL is the epimorphism, we call
it natural homomorphism. Moreover, we have the following results.

Lemma 2.3. Let L be an ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. If φL : Γ→ Γ/L
is the natural homomorphism and υ ∈ ζ/L for any ζ ∈ Γ, then υ/L = ζ/L.
Proof. For any κ ∈ υ/L, then κ �υ ∈ L. Since υ ∈ ζ/L, we have υ � ζ ∈ L, it turns
out that κ�ζ ∈ L by Proposition 2.3(7), so κ ∈ ζ/L which means that υ/L⊆ ζ/L. For
any κ ∈ ζ/L, then κ � ζ ∈ L. Since υ ∈ ζ/L, we have υ � ζ ∈ L and then ζ �υ ∈ L
by Proposition 2.3(2), it turns out κ�υ ∈ L, so κ ∈ υ/L which means that ζ/L⊆ υ/L.
Hence υ/L = ζ/L.

Proposition 2.11. Let L be an ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉 and φL : Γ→
Γ/L be the natural homomorphism. Then φL(L) = {0/L} and L = ker(φL).
Proof. It is evident that {0/L} is an ideal of ΓΓΓ/L. Now we verify that φL(L) = {0/L}. For
any υ/L ∈ φL(L), there exists ζ ∈ L with υ/L = φL(ζ ) = ζ/L. Since υ ∈ υ/L = ζ/L,
we have υ � ζ ∈ L and then υ ∈ L by Proposition 2.3(6), it turns out that υ � 0 ∈ L, so
υ ∈ 0/L and then υ/L= 0/L by Lemma 2.3. Hence φL(L)⊆{0/L}. Conversely, since φL
is a natural homomorphism and 0 ∈ L, we have 0/L = φL(0) ∈ φL(L), so {0/L} ⊆ φL(L).
Hence φL(L) = {0/L}. For any υ ∈ ker(φL), then φL(υ) = 0/L, we have υ �0 ∈ L and
then υ ∈ L, so ker(φL)⊆ L. Note that L⊆ ker(φL), we have L = ker(φL).

Proposition 2.12. Let L be an ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. Then the
mapping T �→ φL(T ) is a bijection correspondence between the set of ideals of ΓΓΓ con-
taining L and the set of ideals of the quotient algebra ΓΓΓ/L.
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Proof. Suppose that T is an ideal of ΓΓΓ with L ⊆ T . For any ζ/L,υ/L ∈ φL(T ), then
there are κ,τ ∈ T such that ζ/L = φL(κ) and υ/L = φL(τ), we have (ζ/L)� (υ/L) =
φL(κ)� φL(τ) = φL(κ � τ) ∈ φL(T ). Moreover, because (ζ/L)+ = (ζ/L)+⊕ 0/L and
κ+ ∈ T , we get (ζ/L)+ = (φL(κ))+⊕0/L = φL(κ+⊕0) ∈ φL(T ). For any ζ/L,λ/L ∈
φL(T ) and υ/L ∈ Γ/L with ζ/L ≤ υ/L ≤ λ/L, then there exist κ,ω ∈ T and τ ∈ Γ
such that ζ/L = φL(κ), υ/L = φL(τ) and λ/L = φL(ω). Since φL(κ)≤ φL(τ)≤ φL(ω),
we have φL(κ) = φL(κ)
 φL(τ) = φL(κ 
 τ) and φL(ω) = φL(τ)	 φL(ω) = φL(τ 	ω)
by Proposition 2.9(4),(5), it turns out (κ 
 τ)� κ ∈ ker(φL) = L and (τ 	ω)�ω ∈
ker(φL) = L using Proposition 2.11. Notice that κ,ω ∈ T and L⊆ T , we have κ 
 τ ∈ T
and τ 	ω ∈ T by Proposition 2.3(6). Since κ 
 τ ≤ τ ≤ τ 	ω by Proposition 2.1(14)
and T is an ideal of ΓΓΓ, we have τ ∈ T and then υ/L = φL(τ) ∈ φL(T ). Hence φL(T ) is
an ideal of ΓΓΓ/L. For any ζ ∈ T , we have ζ ∈ φL

−1(φL(ζ )) ⊆ φL
−1(φL(T )). Then T ⊆

φL
−1(φL(T )). Conversely, for any ζ ∈ φL

−1(φL(T )), we have φL(ζ ) ∈ φL(T ), then there
is υ ∈ T such that ζ/L = φL(υ) = υ/L, it follows that ζ �υ ∈ L⊆ T . Note that υ ∈ T ,
we have ζ ∈ T by Proposition 2.3(6), so φL

−1(φL(T )) ⊆ T . Hence T = φL
−1(φL(T )).

Now, for any ideal T ′ of ΓΓΓ/L, we have φL
−1(T ′) is an ideal of ΓΓΓ by Proposition 2.10.

Meanwhile, since L = ker(φL) = φL
−1(0/L) ⊆ φL

−1(T ′), we have L ⊆ φL
−1(T ′). For

any υ ∈ φL(φL
−1(T ′)), then there exists ζ ∈ φL

−1(T ′) such that υ = φL(ζ ) ∈ T ′, so
φL(φL

−1(T ′))⊆ T ′. Conversely, for any υ ∈ T ′ ⊆ Γ/L, since φL is surjective, there exists
ζ ∈ Γ such that υ = φL(ζ ), we have ζ ∈ φL

−1(T ′) and then υ = φL(ζ ) ∈ φL(φL
−1(T ′)),

so T ′ ⊆ φL(φL
−1(T ′)). Hence φL(φL

−1(T ′)) = T ′.

3. Prime ideals and maximal ideals of QMV*-algebras

In this section, we introduce prime ideals and maximal ideals of a QMV*-algebra and
investigate their related properties.

In any QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉, an ideal L of ΓΓΓ is prime if L is proper (i.e.,
L �= Γ) and for any ζ ∈ Γ, either ζ+ ∈ L or ζ− ∈ L.

Proposition 3.1. Let L be a proper ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. Then L
is prime iff the quotient algebra ΓΓΓ/L is totally ordered.
Proof. Suppose that L is a prime ideal of ΓΓΓ. For any ζ ,υ ∈ Γ, then we have (ζ �υ)+ ∈ L
or (ζ �υ)− ∈ L. If (ζ �υ)− ∈ L, then (υ�ζ )+ =−(ζ �υ)− ∈ L by Proposition 2.1(8)
and Proposition 2.3(2). Since (ζ 	υ)�υ = (ζ �υ)	(υ�υ) = (ζ �υ)	0 = (ζ �υ)+
and (ζ 	υ)�ζ = (ζ�ζ )	(υ�ζ ) = 0	(υ�ζ ) = (υ�ζ )+ by Proposition 2.1(4),(10),
we have (ζ 	υ)�υ ∈ L or (ζ 	υ)�ζ ∈ L, it follows that ((ζ/L)	 (υ/L))� (υ/L) =
((ζ 	 υ)� υ)/L = 0/L or ((ζ/L)	 (υ/L))� (ζ/L) = ((ζ 	 υ)� ζ )/L = 0/L. Note
that ΓΓΓ/L is an MV*-algebra, we have (ζ/L)	 (υ/L) = υ/L or (ζ/L)	 (υ/L) = ζ/L
by Proposition 2.1(19), so ζ/L ≤ υ/L or υ/L ≤ ζ/L. Hence ΓΓΓ/L is totally ordered.
Conversely, if the algebra ΓΓΓ/L is totally ordered, then we have ζ/L ≤ υ/L or υ/L ≤
ζ/L for any ζ/L,υ/L ∈ Γ/L, it follows that (ζ 	 υ)/L = υ/L or (ζ 	 υ)/L = ζ/L,
so ((ζ 	υ)�υ)/L = 0/L or ((ζ 	υ)� ζ )/L = 0/L by Proposition 2.1(19) and then
(ζ 	υ)�υ ∈ L or (ζ 	υ)�ζ ∈ L by Proposition 2.11. Since (ζ�υ)+ = (ζ 	υ)�υ and
(υ�ζ )+ = (ζ 	υ)�ζ , we have (ζ�υ)+ ∈ L or (υ�ζ )+ ∈ L. Hence for any ζ ∈ Γ, we
have ζ+⊕0 = (ζ �0)+ ∈ L or ζ−⊕0 =−(0�ζ )+ ∈ L. Since ζ+⊕0≤ ζ+ ≤ ζ+⊕0
and ζ− ⊕ 0 ≤ ζ− ≤ ζ− ⊕ 0 by Proposition 2.1(13), we have ζ+ ∈ L or ζ− ∈ L. So the
ideal L of ΓΓΓ is prime.
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Proposition 3.2. Let V be a prime ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. Then
the set of all ideals of ΓΓΓ/V with respect to the inclusion is totally ordered.
Proof. It is easy to get that the set of all ideals of ΓΓΓ/V with respect to the inclu-
sion is partial order. If it is not totally ordered, we may suppose that L,T are ide-
als of ΓΓΓ/V such that L � T and T � L. So there exist ζ/V,υ/V ∈ Γ/V such that
ζ/V ∈ T\L and υ/V ∈ L\T . Since ΓΓΓ/V is totally ordered by Proposition 3.1, we have
ζ/V ≤ υ/V or υ/V ≤ ζ/V , it turns out that |ζ/V | ≤ |υ/V | or |υ/V | ≤ |ζ/V |. In-
deed, if 0/V ≤ ζ/V ≤ υ/V , then −(ζ/V ) ≤ 0/V ≤ ζ/V and −(υ/V ) ≤ 0/V ≤ υ/V ,
we have |ζ/V | = (ζ/V )	 (−(ζ/V )) = (ζ/V )⊕ (0/V ) = ζ/V and |υ/V | = (υ/V )	
(−(υ/V ))= υ/V , so |ζ/V | ≤ |υ/V |. If ζ/V ≤ υ/V ≤ 0/V , then ζ/V ≤ 0/V ≤−(ζ/V ),
υ/V ≤ 0/V ≤ −(υ/V ) and 0/V ≤ −(υ/V ) ≤ −(ζ/V ), we have |ζ/V | = (ζ/V ) 	
(−(ζ/V )) = (−(ζ/V ))⊕(0/V ) =−(ζ/V ) and |υ/V |= (υ/V )	(−(υ/V )) =−(υ/V ),
so |υ/V | ≤ |ζ/V |. If ζ/V ≤ 0/V ≤ υ/V , then we have −(υ/V ) ≤ 0/V ≤ −(ζ/V ), so
|ζ/V | = (ζ/V )	 (−(ζ/V )) = −(ζ/V ) and |υ/V | = (υ/V )	 (−(υ/V )) = υ/V . Since
ΓΓΓ/V is totally ordered and −(ζ/V ),υ/V ∈ Γ/V , we have 0/V ≤ −(ζ/V ) ≤ υ/V or
0/V ≤ υ/V ≤ −(ζ/V ), so |ζ/V | ≤ |υ/V | or |υ/V | ≤ |ζ/V |. The case of υ/V ≤ ζ/V
can be proved similarly. If |ζ/V | ≤ |υ/V |, since υ/V ∈ L, we have |υ/V | ∈ L by Propo-
sition 2.3(5) and then ζ/V ∈ L by Proposition 2.4. Likewise, if |υ/V | ≤ |ζ/V |, since
ζ/V ∈ T , we have |ζ/V | ∈ T and then υ/V ∈ T . This is a contradiction with ζ/V /∈ L
and υ/V /∈ T . Hence the set of all ideals of ΓΓΓ/V with respect to the inclusion is totally
ordered.

Proposition 3.3. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then we have:
(1) Any proper ideal of ΓΓΓ containing a prime ideal is prime.
(2) The set of all ideals of ΓΓΓ containing a prime ideal is totally ordered by the

inclusion.
Proof. (1) Suppose that L is a proper ideal of ΓΓΓ and a prime ideal V of ΓΓΓ with V ⊆ L. For
any ζ ∈ Γ, we have ζ+ ∈V or ζ− ∈V , it follows that ζ+ ∈ L or ζ− ∈ L. So L is prime.

(2) Suppose that V is a prime ideal of ΓΓΓ. Then the set of all ideals of ΓΓΓ/V with
respect to the inclusion is totally ordered from Proposition 3.2. Hence we get that the set
of all ideals containing V is totally ordered by Proposition 2.12.

Lemma 3.1. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then for any ζ ∈ Γ and some
integers n,m≥ 1, we have (n ·ζ+)
 (m · (−ζ )+) = 0.
Proof. First, we prove ζ+
(−ζ )+ = 0 for any ζ ∈Γ. Since 0≤ ζ+
(−ζ )+, we have 0

(ζ+
 (−ζ )+) = 0⊕0 = 0. Based on Proposition 2.1(20),(4),(8),(9),(10), we have ζ+

(−ζ )+ ≤ ((ζ+
 (−ζ )+)� (−ζ )+)⊕ (−ζ )+ = ((ζ+� (−ζ )+)
0)⊕ (−ζ )+ = ((ζ+⊕
ζ−)
0)⊕(−ζ )+ = (ζ 
0)⊕(−ζ )+ = ζ−⊕(−(ζ−))= 0, so (ζ+
(−ζ )+)
0=(ζ+

(−ζ )+)⊕0 = ζ+
 (−ζ )+, then ζ+
 (−ζ )+ = 0. Assume ((n−1) ·ζ+)
 (−ζ )+ = 0
for any ζ ∈ Γ and some integer n≥ 2. Then ζ+⊕0 = (((n−1) ·ζ+)
 (−ζ )+)⊕ζ+ =
(n ·ζ+)
 ((−ζ )+⊕ζ+) by Proposition 2.1(4), so ζ+
 (−ζ )+ = ((n ·ζ+)
 ((−ζ )+⊕
ζ+))
 (−ζ )+ = (n · ζ+)
 (((−ζ )+⊕ ζ+)
 (−ζ )+) = (n · ζ+)
 ((−ζ )+⊕ 0) = (n ·
ζ+)
 (−ζ )+, it turns out that (n ·ζ+)
 (−ζ )+ = 0. Moreover, just like the previous, we
verify that (n · ζ+)
 (m · (−ζ )+) = 0 for any ζ ∈ Γ and some integers n,m ≥ 1. Since
(n ·ζ+)
(−ζ )+ = 0, we suppose that (n ·ζ+)
((m−1) ·(−ζ )+) = 0 for any ζ ∈ Γ and
some integer m≥ 2, then we can conclude that (n ·ζ+)
 (m · (−ζ )+) = 0 by induction.
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Proposition 3.4. Let L be a proper ideal of a QMV*-algebra ΓΓΓ= 〈Γ;⊕,−,0,1〉. If λ /∈ L,
then there is a prime ideal V satisfying L⊆V and λ /∈V .
Proof. By Zorn’s Lemma we know that there is an ideal V satisfying L ⊆V and is max-
imal with the property λ /∈ V . If V is not a prime ideal of ΓΓΓ, then assume ζ+ /∈ V and
ζ− /∈ V for any ζ ∈ Γ. Define V1 = 〈V ∪{ζ+}〉 and V2 = 〈V ∪{ζ−}〉. Since V � V1,
V �V2 and V is maximal with the property λ /∈V , we have λ ∈V1∩V2, then there exist
υ ,κ ∈V and some integers n,m≥ 1 with |λ | ≤ |υ |⊕(n · |ζ+|) and |λ | ≤ |κ|⊕(m · |ζ−|),
so |λ | ≤ |υ | ⊕ (n · ζ+) and |λ | ≤ |κ| ⊕ (m · (−ζ )+) by Proposition 2.1(8). Denote
τ = |υ | 	 |κ|. Then τ ∈ V and we have |λ | ≤ τ ⊕ (n · ζ+) and |λ | ≤ τ ⊕ (m · (−ζ )+),
it follows that |λ | ≤ (τ ⊕ (n · ζ+))
 (τ ⊕ (m · (−ζ )+)) by Proposition 2.1(16), thus we
have |λ | ≤ τ⊕ ((n ·ζ+)
 (m · (−ζ )+)) = τ⊕0 by Lemma 3.1, so |λ | ≤ τ . Because V is
an ideal of ΓΓΓ and τ ∈ V , we have λ ∈ V by Proposition 2.4, this is a contradiction with
λ /∈V . Hence ζ+ ∈V or ζ− ∈V and then V is prime.

Corollary 3.1. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then any proper ideal of ΓΓΓ
is an intersection of prime ideals.
Proof. Suppose that T is a proper ideal of ΓΓΓ. Denote Φ =

⋂
i∈I{Vi |Vi is any prime ideal

of ΓΓΓ and T ⊆ Vi}. Then we have T ⊆ Φ. Below we verify that Φ ⊆ T . If not, then there
exists ζ ∈ Φ \ T . Since ζ /∈ T , there exists a prime ideal V with T ⊆ V and ζ /∈ V by
Proposition 3.4, so ζ /∈Φ, this is a contradiction with ζ ∈Φ.

In any QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉, an ideal T of ΓΓΓ is maximal if it is proper
and for any ideal L of ΓΓΓ with T � L, then L = Γ.

Proposition 3.5. Let T be a proper ideal of a QMV*-algebra ΓΓΓ = 〈Γ;⊕,−,0,1〉. Then
the following conditions are equivalent:

(1) T is a maximal ideal of ΓΓΓ,
(2) For any ζ ∈ Γ, ζ /∈ T iff 1� (n · |ζ |) ∈ T for some integer n≥ 1.

Proof. (1) ⇒ (2) Suppose that T is a maximal ideal of ΓΓΓ. Then for any ζ /∈ T , we have
T � 〈T ∪{ζ}〉. Because T is maximal, we get 〈T ∪{ζ}〉 = Γ and then |υ |⊕n · |ζ | = 1
for some υ ∈ T and n ≥ 1. Since 0 ≤ n · |ζ | ≤ 1, we have n · |ζ | = (n · |ζ |)+ and then
|1� (n · |ζ |)|= 1� (n · |ζ |) = (|υ |⊕n · |ζ |)� (n · |ζ |)≤ |υ | by Proposition 2.1(17),(20).
Because υ ∈ T , we have |υ | ∈ T and then 1�(n · |ζ |)∈ T by Proposition 2.4. Conversely,
let 1� (n · |ζ |) ∈ T for some integer n≥ 1. If ζ ∈ T , then |ζ | ∈ T and then n · |ζ | ∈ T by
Proposition 2.3(5),(3), so 1 = (1� (n · |ζ |))⊕ (n · |ζ |) ∈ T which is a contradiction with
T is proper.

(2)⇒ (1) Suppose that L is an ideal of ΓΓΓ and T � L. Then for any ζ ∈ L\T , we have
1� (n · |ζ |) ∈ T for some integer n≥ 1. Since ζ ∈ L, we have |ζ | ∈ L and then n · |ζ | ∈ L,
so 1 = (1� (n · |ζ |))⊕ (n · |ζ |) ∈ L which means that L = Γ. Hence T is maximal.

Proposition 3.6. Let ΓΓΓ = 〈Γ;⊕,−,0,1〉 be a QMV*-algebra. Then any proper ideal of
ΓΓΓ is contained in a maximal ideal.
Proof. Denote I (Γ) the ordered set of all proper ideals in ΓΓΓ. Since the union of any chain
of proper ideals is a proper ideal, we conclude that any chain of elements in I (Γ) has
an upper bound in I (Γ). Hence for any proper ideal T ∈I (Γ), there exists a maximal
element L ∈I (Γ) by Zorn’s Lemma, i.e., L is a maximal ideal of ΓΓΓ such that T ⊆ L.

Proposition 3.7. Let ΓΓΓ= 〈Γ;⊕,−,0,1〉 be a QMV*-algebra and T be any maximal ideal
of ΓΓΓ. Then T is also a prime ideal.
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Proof. Assume that T is a maximal ideal of ΓΓΓ which is not a prime ideal of ΓΓΓ. Then there
is ζ ∈ Γ such that ζ+ /∈ T and ζ− /∈ T , so we have a prime ideal V such that T ⊆V and
ζ+ /∈ V by Proposition 3.4. However, because V is a prime ideal of ΓΓΓ and ζ+ /∈ V , we
obtain ζ− ∈ V , which means that T � V , this is a contradiction with the maximality of
T . Thus T is a prime ideal of ΓΓΓ.

4. Conclusion

In the present paper, the ideals of QMV*-algebras are investigated. We mainly study the
properties of prime ideals and maximal ideals. It is known that filters are dual notions
of ideals in MV-algebras. However, the correspondence between filters and ideals in
QMV*-algebras is different from the case in MV-algebras. Hence we will focus on the
filters of QMV*-algebras and characterize the prime filters in the future.
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