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Abstract. Fuzzy Subtractive Clustering (FSC) is a technique of fuzzy clustering 

where the cluster to be formed is unknown. The distance function in the FSC method 

has an important role in determining the number of points that have the most 
neighbors. Therefore, this study uses several distance functions. The results obtained 

indicate that the DBI results indicate that the Euclidean distance has a good cluster 

evaluation result in the number of clusters 4. Meanwhile, for the PC value the 
combination of the Minkowski Chebysev distance produces a good PC value in the 

number of clusters 2. 
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1. Introduction 

The classification method by applying the similarities between data in certain dataset 

is called clustering technique. The intention of this process is to determine certain pattern 

in the dataset by separating data into few number of clusters [1]. Clustering has basic 

concept where data in the same cluster will have high level of similarities and low level 

of similarities towards data in different cluster [2]. 

Clustering method which based on the classification with the application of fuzzy 

set membership degree is known as fuzzy clustering. The probability of the data to be 

included in one cluster is not absolute, which means data can be included as the member 

of one or more clusters [3]. 

Fuzzy subtractive clustering is one of the fuzzy clustering method where the cluster 

created through this method is still unidentified [4]. This method does not apply the 

membership matrix which initialized randomly [5]. The basic concept of this method is 

determining the cluster centroid through searching the data coordinate which have the 

most density and number of neighboring coordinates. The density of the coordinates 

which already selected as the cluster centroid will be reduced so that this coordinate will 

be ineligible to become the next cluster centroid. Then, algorithm will run again to 

measure the density and the number of neighboring coordinate in each data to be selected 

as the next cluster centroid. This iteration will be applied until all of the data in the dataset 

is tested [6]. 

There are already many research which studied FSC as its main topics. One previous 

research which worked by [7] applied FSC to classify Wavelet adaptive nerves to 

improve low-cost and high speed INS/GPS navigation system. Then, FSC was also used 
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by [8] to do grouping and is used by [9] to perform fuzzy-based classification. 

Furthermore, FSC also applied by [10] to do a classification of ad hoc mobile network 

based on the akaike information criteria and used by [11] to make predictions on the 

stock market. 

Fuzzy subtractive clustering method requires the distance similarity measurement to 

determine the number of coordinates which have the most neighboring dots. The most 

common applied distance parameter to determine the similarity measurement is 

Euclidean distance. Aside from Euclidean distance, Minkowski distance also had been 

applied by [12] to do an optimization. Furthermore, Hamming distance also had been 

applied by [13] to detect malware in android. In addition to that, Minkowski-Chebysev 

combination distance also had been worked on by [14] to do a classification with KNN, 

by [15] to do clustering with FCM on categorical data, and by [16] to do clustering with 

FCM by applying dimension reduction through PCA. Based on these statement, we 

decided to apply fuzzy subtractive clustering method with the application of few distance 

function parameter. Then, the results of the cluster evaluation are used to determine 

which cluster has good quality. 

2. Method 

The method applied in this research is Fuzzy Subtractive Clustering with the application 

of few distance functions, such as Euclidean distance, Minkowski distance, Hamming 

distance, and Minkowski-Chebysev combination distance. Data simulation applied in 

this research is worked through Phyton programming language. 

2.1.  Fuzzy Subtractive Clustering (FSC) 

Fuzzy Subtractive Clustering in literature [17] defined as one of the clustering method 

where the applied algorithm is considered as supervised algorithm. The number of cluster 

which will be created is initially unidentified, so it is necessary to do a radius simulation 

for acquiring the expected clusters. There are two comparison factors applied in FSC, 

which are accept ratio and reject ratio valued between 0 to 1. Accept ratio is the lower 

limit where certain data coordinates considered as cluster centroid candidate is allowed 

to be defined as cluster centroid. In the other hand, reject ratio is the upper limit where 

certain data coordinates considered as cluster centroid candidate is prohibited to be 

defined as cluster centroid. 

There are 3 criteria which can occur in FSC method, there are: 

� If ratio > accept ratio, then the data coordinate is accepted as new cluster 

centroid. 

� If reject ratio < ratio, then the data coordinate will be accepted as new cluster 

centroid only if this new data coordinate is located far enough with the other 

cluster centroid. This minimum distance requirement can be measured through 

the addition between the ratio and the closest distance of this data coordinate to 

other existing cluster centroid. If the result of the addition between the ratio and 

the closest distance of the data coordinate to other existing cluster centroid is < 

1, then this analyzed data coordinate will not be accepted as the new cluster 

centroid. This data coordinate also won’t be reconsidered to become the new 

cluster centroid (the potential value of this data will be set to 0). 
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� If ratio ≤ reject ratio, then there will be no another data coordinate which will 

be considered as the new cluster centroid. This means that the iteration process 

will be terminated. 

2.2. Fuzzy Subtractive Clustering Algorithm 

� Determining the parameter value which will be applied, such as radius (r), 

squash factor (q), accept ratio (ar), and reject ratio (rr). 

� Transforming data into fuzzy number through this following equation [18]: 

 (1) 

Where a and b are the lowest and highest value from the data. 

� Determining the potential value of each coordinate  through 

this following equation: 

 (2) 

Where  is potential data i. 
� Measuring the maximum value on each iteration and the Ratio number (R) with 

this following equation: 

 

 (3) 

� Testing the appropriateness of the cluster centroid candidate with 3 criteria 

which already mentioned before. Specifically for condition 2, to determine 

whether the data coordinate is fit to be considered as cluster centroid or not, this 

following equation needs to be applied. 

 (4) 

  

With  and = the number of clusters.  is the distance between 

the coordinate of the cluster centroid candidate and the previous cluster centroid. 

 and are the cluster centroid candidate and the cluster centroid of k in 

variable of j. If  or , then . 

 

Where  is the closest distance between the cluster centroid candidate and 

other existing cluster centroid. If  , then the cluster centroid 

candidate is accepted as the new cluster centroid. While if jika 

, then the cluster centroid candidate is not allowed to be defined as 
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the new cluster centroid and will not be reconsidered to be the new cluster 

centroid (the potential value of this data will be set to 0) 

� When the new cluster centroid is acquired, the subtraction of the potential value 

of the data around the previous cluster centroid will be initiated through this 

following equation [17]: 

 
(5) 

  

 Data potential of -i in iteration of-t. 
 Data potential of -i in iteration of-(t-1). 

 Data potential of -k in iteration of-i. 
 Cluster centroid of -k in variable of –j. 
 Data -i in variable -j. 
 Radius. 

 Squash factor. 

� Measuring the value of sigma cluster on each variables by applying an equation as 

follows [17]: 

 (6) 

 Sigma in variable of-j. 

 The maximum value in variable -j. 

 The minimum value in variable -j. 
 

� Measuring the membership degree by applying equation (9) as follows: 

 
(7) 

Where  is the membership value of cluster k on data i and  is data of i on 

variable of j. 

2.3. Distance Function 

There are few distance function applied in this research which are:  

� Euclidean distance 

Euclidean distance is the most common and used distance. This distance is 

defined for x and y coordinate as [19]: 

 

 

 

(8) 
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Where xk and yk are the value of x and y on dimension n. This distance 

considered as the standard distance applied for fuzzy C-means clustering 

method. 

� Minkowski distance 

MInkowski distance is defined as [20]: 

 

 

 

(9) 

 
With p is the minkowski parameter. In Euclidean distance, . As for in 

Manhattan distance and Chebysev distance,  and ∞  respectively. 

The metric condition of this function is fulfilled as long as . 

 

� Hamming distance 

Hamming distance in [18] is defined as: 

 

 (10) 

With  and  are the value for dan  in  number of data.  

� Minkowski-Chebysev combination distance 

Minkowski-Chebysev combination distance is defined by [14], [16] as: 

 

 (11) 

With   and  are the weight, and  and  are the value of  and  in 

number of data. 

2.4. Cluster Evaluation 

Evaluation cluster is applied to measure how good the quality of the formed cluster 

centroid. The cluster evaluation methods applied in this research are described as: 

� Partition Coefficient (PC) 

This cluster evaluation is invented by [21] to evaluate the data membership 

value on each cluster. The higher the value of PC (close to 1) indicate that the 

quality of the formed cluster is better. The partition coefficient for this research 

is conducted through this following equation: 

 (12) 
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Where N is the number of research objects, K is the number of clusters, and  

is the membership degree in i with the cluster centroid j. 
 

� Davies Bouldin Index (DBI) 

Davies Bouldin Index (DBI) is one of the method to measure the cluster validity 

in clustering method. The objective of this method is to maximize the distance 

between clusters and minimize the distance between data in the same cluster. 

The formed cluster will have good quality of cluster if the DBI value is 

minimum or close to 0 [16]. The equation of this cluster evaluation method is 

defined as follows: 

 (13) 

 

 

With  

 (14) 

 

 (15) 

 

 (16) 

where: 

  the amount of data in the i-th cluster 

 center of cluster i 
 j cluster 

 data distance with cluster center 

 

3. Result and Discussion 

The data applied for the simulation in this research is a hypertension data taken from one 

of the health center in Yogyakarta. There are total of 100 data with 5 main variables, 

which are X1 (age), X2 (gender), X3 (systolic pressure), X4 (diastolic pressure), and X5 

(body weight). Clustering process with FSC will resulting in an output of few different 

formed clusters. The distance function applied in this research are Euclidean distance, 

Minkowski distance, Hamming distance, and Minkowski-Chebysev combination 

distance. The result of the dataset which transformed into fuzzy number is illustrated as 

follows: 

 

Table 1. Fuzzy number result 

     
0 0 0.4609 0.1289 0.4018 

0.3913 1 0.5516 0.4785 0.1468 
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0.5734 0 0.3775 0.2862 0.6813 

 

Next, the data in table 1 will be processed by FSC method. In this research, radius 

simulation is needed to determine how many clusters are able to be acquired. The 

simulation result from few number of radius is illustrated in table 2 below. 

 

Table 2. The cluster resulf for each distance function 

Distance Radius Number of formed 
cluster 

Time 

   1.07 2 0.47 

Euclidean 0.83 3 0.57 

 0.67 4 
 

0.71 

 1.55 2 0.42 

Minkowski 1.25 3 0.63 
 1.02 4 

 

0.90 

 0.97 2 0.39 
Hamming 0.79 3 0.62 

 0.72 4 

 

0.85 

 1.6 2 0.43 

Minkowski-chebysev 1.31 3 0.66 

 1.12 4 0.78 

 

The application of Euclidean distance resulting in the creation of 2 clusters with radius 

1.07, 3 clusters with radius 0.83, and 4 clusters with radius 0.63. In Minkowski distance, 

there are 2 clusters, 3 clusters, and 4 clusters formed with the radius 1.55, 1.25, and 1.02 

respectively. As for Hamming distance, there are 2 clusters, 3 clusters, and 4 clusters 

formed with the radius 0.97, 0.79, and 0.72 respectively. Lastly, the application of 

Minkowski-Chebysev combination distance resulting in the formation of 2 clusters, 3 

clusters, and 4 clusters with the radius 1.6, 1.31, and 1.12 respectively. 

Running time for each distance has a different time. Based on Table 2, in general the 

Euclidean distance has less running time than the other distances. This can be seen in the 

number of clusters 3 and 4 at the Euclidean distance each takes 0.57 and 0.71. 

Furthermore, all of the cluster which already formed through the distance function are 

evaluated through the application of Partition Coefficient (PC) and Davies Boulding 

Index (DBI). This evaluation process is necessary to observe which cluster can be 

considered as high quality cluster. The output value of PC and DBI evaluation process 

can be observed in Figure 1 to Figure 3. 
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Figure 1. PC and DBI value comparison for 2 formed clusters. 

Figure 1 illustrate the comparison between the PC and DBI value for 2 formed clusters 

in each distance function. Based on the figure 1 above, the PC value for Euclidean 

distance, Minkowski distance, Hamming distance, and Minkowski-Chebysev distance 

are 0.5987, 0.5804, 0.5369, and 0.6135 respectively. While the DBI value for each 

distance function are 0.0193, 0.9786, 0.0804, and 0.9621 respectively. 

 

 

Figure 2. PC and DBI value comparison for 3 formed clusters. 

Comparison of the PC and DBI value for 3 formed clusters in each of the distance 

function is depicted in figure 3. The PC value in the application of Euclidean distance, 

Minkowski distance, Hamming distance, and Minkowski-Chebysev distance are 0.5008, 

0.4778, 0.4801, and 0.5319. As for the DBI value in these four distance function are 

0.0024, 0.9786, 0.9524, and 0.5234 respectively. 
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Figure 3. PC and DBI value comparison for 4 formed clusters. 

Figure 3 shows the comparison of PC and DBI value for 4 formed cluster in each of the 

distance function. The PC value in the application of Euclidean distance is 0.5351, 

Minkowski distance is 0.3182, Hamming distance is 0.5473, and Minkowski-Chebysv 

distance is 0.4867. Furthermore, the DBI value for Euclidean distance, Minkowski 

distance, Hamming distance, and Minkowski-Chebysev distance are 0.0014, 0.5472, 

0.8006, and 0.5086 respectively. 

In this study, the proposed method will produce clusters with different radius for each 

distance used. The radius values must be simulated one by one to get the desired number 

of clusters. 

4. Conclusions 

This research provides the study on the application of Fuzzy Subtractive Clustering 

which implemented on 4 different distance function, Euclidean distance, Minkowski 

distance, Hamming distance, and Minkowski-Chebysev distance. The acquired clusters 

then evaluated through the application of Partition Coefficient (PC) method and Davies 

Bouldin Index (DBI) method. In this research, the DBI result in the application of 

Euclidean distance provides good cluster evaluation value for the 4 formed clusters with 

DBI 0.0014. This conclusion is suitable with the criteria in DBI where the lower the DBI 

value (close to 0), the better the quality of the formed cluster. From the PC cluster 

evaluation, the best quality cluster created in the application of Minkowski-Chebysev 

distance for the two formed clusters with 0.06135 PC value. This conclusion also based 

on the criteria where the higher the PC value (close to 1), the better the quality of the 

formed cluster. In future research, it can be done by simulating at another distance with 

several data sets. 
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