Fuzzy Systems and Data Mining VII
A.J. Tallón-Ballesteros (Ed.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210209

R-Calculus for Post Three-Valued Description Logic¹

Cungen CAO^a, Lanxi HU^{a,b,2} and Yuefei SUI^{a,b}

 ^a Key Laboratory of Intelligent Information Processing, Institute of Computing Technology Chinese Academy of Sciences, China
 ^b School of Computer Science and Technology University of Chinese Academy of Sciences, China

Abstract. R-calculus is a belief revision operator satisfying AGM postulates, and belief revision in ontology engineering is ontology revision, which based logic is description logics. In Post three-valued description logic, a tableau proof system \mathbf{T}_t will be given such that \mathbf{T}_t is sound and complete for t-satisfiability, and nonmonotonic, that is, a theory Δ is t-satisfiable if and only if Δ is deducible in \mathbf{T}_t . Based on the tableau proof system, an R-calculus \mathbf{R}_t will be given such that a configuration $\Delta | C(a)$ is reducible to $C(a), \Delta$ if and only if C(a) is t-satisfiable with Δ , if and only if reduction $\Delta | C(a) \Rightarrow C(a), \Delta$ is deducible in \mathbf{R}_t .

Keywords. Post three-valued logic, Belief revision, Tableau proof system, R-calculus, Concepts

1. Introduction

Belief revision is a topic of logic, computer science and philosophy. Given a knowledge base Δ and a formula *A* in a logic, *A* is enumerated into Δ if and only if *A* is consistent with Δ . AGM postulates [1] are a set of basic requirements a belief revision operator should satisfy. Belief revision in ontology engineering is ontology revision, which based logic is description logics. Traditional ontology revision is based on binary-valued description logics. We consider the three-valued description logics.

In many-valued logic [2][3], it is important to give an explanation of the truth-values other than the truth t and the falsity f. For example, in a three-valued logic [4], the third value m is interpreted as unknown or indeterminate, and the semantic definition of binary logical connectives are independent of m. Description logics [5] are different from traditional logics, because a concept seems natural to have different counterparts. For example, in three-valued description logics, an interpretation C^I of a concept C is decomposed into three parts: $(\oslash C)^I$, consisting of these elements taking truth-value t; $(\sim C)^I$, these taking m, and $(\lhd C)^I$, these taking f.

¹Supported by the National Key Research and Development Program of China(2017YFB1002300, 2017YFC1700300), National Natural Science Foundation of China (61702234), Beijing NOVA Program(Cross-discipline, Z191100001119014).

²Corresponding Author: Lanxi Hu,BEIJING,CHINA; E-mail: hulanxi17b@ict.ac.cn

R-calculus [6][7] is a belief revision operator satisfying AGM postulates, and a deduction system for enumerating a formula *A* into a consistent theory Δ to keep the theory A', Δ consistent (denoted by $\models_t \Delta | A \Rightarrow A', \Delta$, where $\Delta | A$ is called a configuration; $\Delta | A \Rightarrow A', \Delta$ is called a reduction, and A' is *A* if *A* is t-satisfiable with Δ and otherwise $A' = \lambda$, the empty string). A condition that there is a sound and complete R-calculus is that the based logic is decidable. Hence, there are sound and complete R-calculi for propositional logic [8], propositional modal logic [9], etc., and there is no such R-calculus for first-order logic.

Description logics are fragments of first-order logic, some of which are decidable and some are not. We consider one of many-valued description logics: Post three-valued description logics [10], where the logical language of Post logic contains a unary connective \sim , instead of \neg . For Post logic, there are sound and complete tableau proof systems, Gentzen deduction systems and deduction systems for many-placed sequents [3].

	_		\sim
t	f	t	f
m	m 1	m	t
f	t	f	m

For decidable description logics, a problem is to define the semantics of quantifier concept constructors. In binary ones, an element *a* belongs to an interpretation of concept $(\forall R.C)$ if for any element *b* with $(a,b) \in R^I, b \in C^I$; and an element *a* belongs to an interpretation of concept $\neg(\forall R.C)$ if for some element *b* with $(a,b) \in R^I, b \notin C^I$. Correspondingly, in Post three-valued description logic and an interpretation *I*, we define

• an element *a* belongs to the interpretation of concept $(\forall R.C)$ if for any element *b* with $(a,b) \in R^I, b \in C^I$;

• an element *a* belongs to the interpretation of concept ~ $(\forall R.C)$ if $a \notin (\forall R.C)^I$ and for any element *b* with $(a,b) \in (\oslash R \cup \sim R)^I, b \in (\oslash C \cup \sim C)^I$;

• an element *a* belongs to the interpretation of concept $\triangleleft(\forall R.C)$ if there is an element *b* such that $(a,b) \in (\oslash R \cup \sim R)^I$ and $b \in (\lhd C)^I$.

A theory (a set of statements) Δ is t-satisfiable if there is an interpretation I such that for any statement $C(a) \in \Delta$, $(C(a))^I \neq t$. We will give a tableau proof system \mathbf{T}_t for t-satisfiability, which is sound, complete and nonmonotonic.

Based on the tableau proof system \mathbf{T}_t , we construct an R-calculus \mathbf{R}_t for $\Delta | A \Rightarrow A', \Delta$. \mathbf{R}_t is shown to be sound and complete, that is,

$$\models_{t} \Delta | A \Rightarrow A, \Delta \text{ iff } \Delta | A \Rightarrow A, \Delta \text{ is provable in } \mathbf{R}_{t}.$$

Because $\models_t \Delta | A \Rightarrow \Delta$ iff $\not\models_t \Delta | A \Rightarrow A, \Delta$, we have

$$\models_{\mathsf{t}} \Delta | A \Rightarrow \Delta \text{ iff } \mathbf{R}_{\mathsf{t}} \not\vdash \Delta | A \Rightarrow \Delta.$$

This paper is organized as follows: The next section defines the logical language and the semantics of Post three-valued description logic; the third section gives a tableau proof system for the description logic and shows soundness and completeness theorems; the fourth section gives an R-calculus for t-satisfiability, and the last section concludes the whole paper.

2. Post three-valued description logic

Let $L_3 = ({t,m,f}, \emptyset, \sim, \prec, \cap, \cup)$ be an algebraical structure, where

	\oslash	\sim	\triangleleft	\cap	tmf	U	tmf
t	t	f	m	t	tmf	t	ttt
m	m	t	f	m	m m f	m	tmm
f	f	m	t	f	fff	f	tmf

The logical language of Post three-valued description logic contains the following symbols:

- atomic concepts: $A_0, A_1, ...;$
- roles: $R_0, R_1, ...;$
- concept constructors: $\oslash, \sim, \lhd, \sqcap, \sqcup, \forall$.

Concepts are defined inductively as follows:

$$C ::= A | \oslash C | \sim C | \lhd C | C_1 \sqcap C_2 | C_1 \sqcup C_2 | \forall R.C,$$

where A is an atomic concept, and R is a role.

Statements are defined as follows:

$$\varphi ::= C(a) |R(a,b)| \oslash \varphi| \sim \varphi | \lhd \varphi.$$

A model M is a pair (U, I), where U is a non-empty set, and I is an interpretation such that

• for any atomic concept $A, I(A) : U \to L_3$;

 \circ for any role $R, I(R) : U^2 \to \mathbf{L}_3$.

Given an atomic concept *A* and a role *R*, we define concepts $\oslash A$, $\sim A$, $\triangleleft A$ and roles $\oslash R$, $\sim R$, $\triangleleft R$ as follows: for any $x \in U$,

A(x)	$\oslash A(x)$	$\sim A(x)$	$\triangleleft A(x)$	R(x,y)	$\oslash R(x,y)$	$\sim R(x,y)$	$\lhd R(x,y)$
t	t	f	m	t	t	f	m
m	m	t	f	m	m	t	f
f	f	m	t	f	f	m	t

The interpretation C^{I} of a concept C is a function from U to L₃ such that for any $x \in U$,

$$C^{I}(x) = \begin{cases} I(A)(x) & \text{if } C = A \\ *(C^{I})(x) & \text{if } C = *C_{1} \\ C_{1}^{I}(x) \cap C_{2}^{I}(x) & \text{if } C = C_{1} \sqcap C_{2} \\ C_{1}^{I}(x) \cup C_{2}^{I}(x) & \text{if } C = C_{1} \sqcup C_{2} \\ \min\{\max\{I(\sim R)(x,y), I(\lhd R)(x,y), C_{1}^{I}(y)\} : y \in U\} \text{ if } C = \forall R.C_{1}, \end{cases}$$

where $* \in \{ \oslash, \sim, \lhd \}$. Therefore, $C^{I}(x) = t^{3}$ if

³In syntax, we use $\neg, \land, \rightarrow, \forall, \exists$ to denote the logical connectives and quantifiers; and in semantics we use $\sim, \&, \Rightarrow, \mathbf{A}, \mathbf{E}$ to denote the corresponding connectives and quantifiers.

 $\begin{cases} \mathbf{A} y \in U(I(\oslash R)(x,y) = \mathbf{t} \Rightarrow C_1^{\mathrm{I}}(\mathbf{y}) = \mathbf{t}) & \text{if } C(x) = (\oslash \forall R.C_1)(x) \\ \mathbf{A} y \in U(I(\oslash R \cup \sim R)(x,y) = \mathbf{t} \Rightarrow (\oslash C_1 \sqcup \sim C_1)^{\mathrm{I}}(\mathbf{y}) = \mathbf{t}) \\ \& \mathbf{E} y \in U(I(\oslash R \cup \sim R)(x,y) = \mathbf{t} \& (\sim C_1)(\mathbf{y}) = \mathbf{t}) & \text{if } C(x) = (\sim \forall R.C_1)(x) \\ \mathbf{E} y \in U(I(\oslash R \cup \sim R)(x,y) = \mathbf{t} \& (\lhd C_1)(\mathbf{y}) = \mathbf{t}) & \text{if } C(x) = (\lhd \forall R.C_1)(x). \end{cases}$

A theory Δ is t-valid, denoted by $\models^{t} \Delta$, if for any interpretation *I*, there is a statement $\varphi \in \Delta$ such that $(\varphi)^{I} = t$; and Δ is t-satisfiable, denoted by $\models_{t} \Delta$, if there is an interpretation *I* such that for each statement $\varphi \in \Delta$, $(\varphi)^{I} \neq t$.

Proposition 2.1. For any concept *C* and interpretation *I*, and for any $x \in U$, $C^{I}(x) \cup (\sim C)^{I}(x) \cup (\lhd C)^{I}(x) = t$.

3. Nonmonotonic tableau proof system

Define

$$\begin{array}{l} incon(\Delta) \text{ iff } \mathbf{E}p(p,\sim p, \lhd p \in \Delta) \\ con(\Delta) \text{ iff } \neg \mathbf{E}p(p,\sim p, \lhd p \in \Delta) \end{array}$$

Proposition 3.1. Let Δ be a set of literals. Δ is t-satisfiable iff con(Δ).

Nonmonotonic tableau proof system T_t contains the following axioms and deduction rules: let *a* be a constant.

• Axioms:

$$\frac{\operatorname{con}(\Delta)}{\Delta} \; (\mathtt{A}_{\mathtt{t}})$$

where Δ is a set of literals.

• Deduction rules for modalities:

$$\frac{f(*_1,*_2)C_1(a),\Delta}{*_1*_2C_1(a),\Delta}(*_1*_2)$$

where $*_1, *_2 \in \{\lambda, \sim, \triangleleft\}$ and $f(*_1, *_2)$ is defined as follows:

$$\begin{array}{c|c} f(*_1,*_2) \oslash \sim \lhd \\ \hline \oslash & \oslash \sim \lhd \\ \sim & \sim \lhd \oslash \\ \lhd & \lhd \oslash \sim \end{array}$$

• Deduction rules for logical connectives:

$$\begin{array}{c} \left\{ \begin{array}{c} \oslash C_{1}(a), \Delta \\ (\oslash C_{2}(a), \Delta \\ (\oslash C_{1} \square C_{2})(a), \Delta \end{array} \right. (\oslash \square) & \left[\begin{array}{c} \oslash C_{1}(a), \Delta \\ (\oslash C_{2}(a), \Delta \\ (\oslash C_{1} \square C_{2})(a), \Delta \end{array} \right] \left((\oslash \square) \\ (\oslash C_{1} \square C_{2})(a), \Delta \end{array} \right] \left((\oslash \square) \\ (\oslash (\Box \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\oslash (\Box \square C_{2})(a), \Delta \\ (\oslash (\Box \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\oslash (\Box \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1} \square C_{2})(a), \Delta \\ (\oslash (\Box \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\supset C_{1}(a), \Delta \\ (\oslash (C_{1} \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1} \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1} \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1} \square C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(\Box C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \\ (\oslash (C_{1}(\Box C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(\Box C_{2})(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\oslash (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\frown (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\bigcirc C_{1}(a), \Delta \\ (\bigcirc (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(a), \Delta \\ (\frown (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(a), \Delta \\ (\frown (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(a), \Delta \\ (\frown (C_{1}(C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(C_{1}(a), \Delta \end{array} \right) \left\{ \begin{array}{c} (\frown (C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}(C_{1}($$

where *d* is a constant, *c* is a new constant, and $\frac{\begin{cases} \delta_1 \\ \delta_2 \end{cases}}{\delta}$ means that δ_1 implies δ and δ_2

implies δ ; and $\underbrace{\begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}}_{S}$ means that δ_1 and δ_2 imply δ .

Definition 3.2. A theory Δ is provable in \mathbf{T}_t , denoted by $\vdash_t \Delta$, if there is a sequence $\{\Delta_1, ..., \Delta_n\}$ of theories such that $\Delta_n = \Delta$, and for each $1 \le i \le n, \Delta_i$ is either an axiom or deduced from the previous theories by one of the deduction rules in \mathbf{T}_t .

Theorem 3.3. For any theory Δ , $\models_t \Delta$ iff $\vdash_t \Delta$.

Because $\models^{t} \Delta$ if and only if $\not\models_{t} \Delta$, we have the following

Corollary 3.4. For any theory Δ , $\models^{t} \Delta$ iff $\not\vdash_{t} \Delta$.

4. R-calculus

Intuitively, a statement $\oslash(C_1 \sqcap C_2)(a)$ is enumerable into Δ to preserve the t-satisfiability of Δ , if either $\oslash C_1(a)$ or $\oslash C_2(a)$ is enumerable into Δ ; and $\oslash(C_1 \sqcup C_2)(a)$ is enumerable into Δ if $\oslash C_1(a)$ is enumerable into Δ and $\oslash C_2(a)$ is enumerable into $\Delta \cup \{\oslash C_1(a)\}$.

Statement ~ $(C_1 \sqcap C_2)(a)$ is enumerable into Δ , if (1) either ~ $C_1(a)$ or ~ $C_2(a)$ is enumerable into Δ ; (2) either $\oslash C_1(a)$ or ~ $C_2(a)$ is enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$, and (3) either ~ $C_1(a)$ or $\oslash C_2(a)$ is enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a), (\oslash C_1 \sqcap \sim C_2)(a)\}$; and statement ~ $(C_1 \sqcup C_2)(a)$ is enumerable into Δ , if (4) either ~ $C_1(a)$ or ~ $C_2(a)$ is enumerable into Δ ; (5) either $\lhd C_1(a)$ or ~ $C_2(a)$ is enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$; (6) either ~ $C_1(a)$ or $\lhd C_2(a)$ is enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$, (6) either ~ $C_1(a)$ or $\lhd C_2(a)$ is enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$.

Statement $\triangleleft (C_1 \sqcap C_2)(a)$ is enumerable into Δ if $\triangleleft C_1(a)$ is enumerable into Δ , and $\triangleleft C_2(a)$ is enumerable into $\Delta \cup \{ \triangleleft C_1(a) \}$; and $\triangleleft (C_1 \sqcup C_2)(a)$ is enumerable into Δ if either $\triangleleft C_1(a)$ or $\triangleleft C_2(a)$ is enumerable into Δ .

A statement $\oslash(C_1 \sqcap C_2)(a)$ is not enumerable into Δ , if $\oslash C_1(a)$ and $\oslash C_2(a)$ are not enumerable into Δ ; and $\oslash(C_1 \sqcup C_2)(a)$ is not enumerable into Δ if either $\oslash C_1(a)$ is not enumerable into Δ , or $\oslash C_2(a)$ is not enumerable into $\Delta \cup \{\oslash C_1(a)\}$.

Statement ~ $(C_1 \sqcap C_2)(a)$ is not enumerable into Δ if either (1) ~ $C_1(a)$ and ~ $C_2(a)$ are not enumerable into Δ , or (2) $\oslash C_1(a)$ and ~ $C_2(a)$ are not enumerable into $\Delta \cup \{(\sim$

 $C_1 \sqcap \sim C_2(a)$ }, or (3) $\sim C_1(a)$ and $\oslash C_2(a)$ are not enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a), (\oslash C_1 \sqcap \sim C_2)(a)\}$; and statement $\sim (C_1 \sqcup C_2)(a)$ is not enumerable into Δ , if either (4) $\sim C_1(a)$ and $\sim C_2(a)$ are not enumerable into Δ , or (5) $\lhd C_1(a)$ and $\sim C_2(a)$ are not enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$, or (6) $\sim C_1(a)$ and $\lhd C_2(a)$ are not enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$, or (6) $\sim C_1(a)$ and $\lhd C_2(a)$ are not enumerable into $\Delta \cup \{(\sim C_1 \sqcap \sim C_2)(a)\}$.

Statement $\triangleleft (C_1 \sqcap C_2)(a)$ is not enumerable into Δ if either $\triangleleft C_1(a)$ is not enumerable into Δ or $\triangleleft C_2(a)$ is not enumerable into $\Delta \cup \{ \triangleleft C_1(a) \}$; and $\triangleleft (C_1 \sqcup C_2)(a)$ is not enumerable into Δ if $\triangleleft C_1(a)$ and $\triangleleft C_2(a)$ is not enumerable into Δ .

Given a theory Δ and a statement φ , we use Δ to revise φ and obtain φ', Δ , denoted by

$$\Delta | \varphi \Rightarrow \varphi', \Delta,$$

if

$$\varphi' = \begin{cases} \varphi \text{ if } \Delta \text{ is t-satisfiable with } \varphi \\ \lambda \text{ otherwise.} \end{cases}$$

R-calculus \mathbf{R}_t consists of the following axioms and deduction rules:

• Axioms:

$$\frac{\vdash_{\mathtt{t}} \Delta \! \Rightarrow \! \vdash_{\mathtt{t}} l, \Delta}{\Delta | l \! \Rightarrow \! l, \Delta} (\mathscr{A}_{\mathtt{t}})$$

• Deduction rules for modalities:

$$\frac{\Delta | f(*_1, *_2)C_1(a) \Rightarrow f(*_1, *_2)C_1(a), \Delta}{\Delta | *_1 *_2 C_1(a) \Rightarrow *_1 *_2 C_1(a), \Delta} (*_1 *_2)$$

• Deduction rules for logical connectives:

$$\begin{array}{l} \underbrace{ \left\{ \begin{array}{l} \Delta \mid \oslash C_{1}(a) \Rightarrow \oslash C_{1}(a), \Delta \\ \Delta \mid \oslash C_{2}(a) \Rightarrow \oslash C_{2}(a), \Delta \\ \hline \Delta \mid \oslash (C_{1} \sqcap C_{2})(a) \Rightarrow \oslash (C_{1} \sqcap C_{2})(a), \Delta \\ & \underbrace{ \left[\begin{array}{l} \Delta \mid \oslash C_{1}(a) \Rightarrow \oslash C_{1}(a), \Delta \\ \Delta, \oslash C_{1}(a) \mid \oslash C_{2}(a) \Rightarrow \oslash C_{1}(a), \oslash C_{2}(a), \Delta \\ \hline \Delta \mid \oslash (C_{1} \sqcup C_{2})(a) \Rightarrow \oslash (C_{1} \sqcup C_{2})(a), \Delta \\ \hline \Delta \mid \oslash (C_{1} \sqcup C_{2})(a) \Rightarrow \oslash (C_{1} \sqcup C_{2})(a), \Delta \\ & \underbrace{ \left\{ \begin{array}{l} \Delta \mid \sim R(a, c) \Rightarrow \sim R(a, c), \Delta \\ \Delta \mid \oslash R(a, c) \Rightarrow \oslash R(a, c), \Delta \\ \Delta \mid \oslash C_{1}(c) \Rightarrow \oslash C_{1}(c), \Delta \\ \hline \Delta \mid \oslash (\forall R. C_{1})(a) \Rightarrow \oslash (\forall R. C_{1})(a), \Delta \end{array} \right\} } (\bigotimes \forall) \end{array} \right. \end{array} \right.$$

where $X = (\sim C_1 \sqcap \sim C_2)(a), Y = (\oslash C_1 \sqcap \sim C_2)(a), Z = (\lhd C_1 \sqcap \sim C_2)(a)$, and

$$\begin{split} & \left[\begin{array}{c} \Delta | \lhd C_1(a) \Rightarrow \lhd C_1(a), \Delta \\ \Delta, \lhd C_1(a) | \lhd C_2(a) \Rightarrow \lhd C_2(a), \lhd C_1(a), \Delta \\ \hline \Delta | \lhd (C_1 \sqcap C_2)(a) \Rightarrow \lhd (C_1 \sqcap C_2)(a), \Delta \\ & \left\{ \begin{array}{c} \Delta | \lhd C_1(a) \Rightarrow \lhd C_1(a), \Delta \\ \Delta | \lhd C_2(a) \Rightarrow \lhd C_2(a), \Delta \\ \hline \Delta | \lhd (C_1 \sqcup C_2)(a) \Rightarrow \lhd (C_1 \sqcup C_2)(a), \Delta \\ \hline \Delta | \lhd (C_1 \sqcup C_2)(a) \Rightarrow \lhd (C_1 \sqcup C_2)(a), \Delta \\ & \left\{ \begin{array}{c} \left[\Delta | \oslash R(a, d) \Rightarrow \oslash R(a, d), \Delta \\ \Delta, \oslash R(a, d) | \sim \sim R(a, d), \oslash R(a, d), \Delta \\ \hline \Delta | \lhd C_1(d) \Rightarrow \lhd C_1(d), \Delta \\ \hline \Delta | \lhd (\forall R.C_1)(a) \Rightarrow \lhd (\forall R.C_1)(a), \Delta \\ \end{array} \right \right] \end{split} (\forall R.C_1)(a) \Rightarrow \lhd (\forall R.C_1)(a), \Delta \end{split}$$

where d is a constant and c is a new constant.

Definition 4.1. A reduction $\Delta | C(a) \Rightarrow C(a), \Delta$ is provable in \mathbf{R}_{t} , denoted by $\vdash_{t} \Delta | C(a) \Rightarrow C(a), \Delta$, if there is a sequence $\{\delta_{1}, ..., \delta_{n}\}$ of reductions such that $\delta_{n} = \Delta | C(a) \Rightarrow C(a), \Delta$, and for each $1 \le i \le n, \delta_{i}$ is either an axiom or deduced from the previous theories by one of the deduction rules in \mathbf{R}_{t} .

Theorem 4.2. For any theory Δ and statement C(a), $\models_{t} \Delta | C(a) \Rightarrow C(a), \Delta$ iff $\vdash_{t} \Delta | C(a) \Rightarrow C(a), \Delta$.

Because $\models_{t} \Delta | C(a) \Rightarrow \Delta$ if and only if $\not\models_{t} \Delta | C(a) \Rightarrow C(a), \Delta$, we have the following **Corollary 4.3**. For any theory Δ and statement C(a), $\models_{t} \Delta | C(a) \Rightarrow \Delta$ iff $\not\models_{t} \Delta | C(a) \Rightarrow C(a), \Delta$.

5. Conclusions

This paper gave an R-calculus \mathbf{R}_t for t-satisfiability in Post three-valued description logic, which is sound and complete. Similarly there are R-calculi \mathbf{R}_m and \mathbf{R}_f for m-satisfiability and f-satisfiability, respectively, and there are transformations between $\mathbf{R}_t, \mathbf{R}_m$ and \mathbf{R}_f , just as transformations between $\mathbf{T}_t, \mathbf{T}_m$ and \mathbf{T}_f .

References

- [1] Alchourrón CE, Gärdenfors P, Makinson D. On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic.1985;50:510-30.
- [2] Urquhart A. Basic many-valued logic. In: D. Gabbay, F. Guenthner, editors. Handbook of Philosophical Logic 2 (2nd edition). Dordrecht: Kluwer.2001:p.249-95.
- [3] Zach R. Proof theory of finite-valued logics, Technical Report TUW-NDARRAY185.2-Z.1-93. Wien: Institut Für Computersprachen, Technische Universität Wien.1993.
- [4] Avron A. Natural 3-valued logics: Characterization and proof theory. Journal of Symbolic Logic.1991;56:276-94.
- [5] Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF. The Description Logic Handbook: Theory, Implementation, Applications. Cambridge:Cambridge University Press.2003.
- [6] Rademaker A. A Proof Theory for Description Logics, SpringerBriefs in Computer Science. London:Springer.2012.
- [7] Li W. R-calculus: an inference system for belief revision. The Computer Journal.2007;50:378-90.
- [8] Li W, Sui Y. The Sound and Complete R-Calculi With Respect To Pseudo-Revision and Pre-Revision. International Journal of Intelligence Science. 2013;3:110-17.
- [9] Fermé E, Hansson SO. AGM 25 years, twenty-five years of research in belief change. Journal of Philosophical Logic. 2011;40:295-331.
- [10] Post EL. Determination of all closed systems of truth tables. Bulletin American Mathematical Society. 1920;26:437.