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Abstract. R-calculus is a belief revision operator satisfying AGM postulates, and
belief revision in ontology engineering is ontology revision, which based logic is
description logics. In Post three-valued description logic, a tableau proof system T+,
will be given such that Ty, is sound and complete for t-satisfiability, and nonmono-
tonic, that is, a theory A is t-satisfiable if and only if A is deducible in Ty. Based on
the tableau proof system, an R-calculus Ry will be given such that a configuration
A|C(a) is reducible to C(a), A if and only if C(a) is t-satisfiable with A, if and only
if reduction A|C(a) = C(a), A is deducible in R.
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1. Introduction

Belief revision is a topic of logic, computer science and philosophy. Given a knowledge
base A and a formula A in a logic, A is enumerated into A if and only if A is consistent with
A. AGM postulates [1] are a set of basic requirements a belief revision operator should
satisfy. Belief revision in ontology engineering is ontology revision, which based logic
is description logics. Traditional ontology revision is based on binary-valued description
logics. We consider the three-valued description logics.

In many-valued logic [2][3], it is important to give an explanation of the truth-values
other than the truth t and the falsity £. For example, in a three-valued logic [4], the
third value m is interpreted as unknown or indeterminate, and the semantic definition
of binary logical connectives are independent of m. Description logics [5] are different
from traditional logics, because a concept seems natural to have different counterparts.
For example, in three-valued description logics, an interpretation C’ of a concept C is
decomposed into three parts: (0C)!, consisting of these elements taking truth-value t;
(~ C)!, these taking m, and (<IC)’, these taking f.
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R-calculus [6][7] is a belief revision operator satisfying AGM postulates, and a
deduction system for enumerating a formula A into a consistent theory A to keep the
theory A’,A consistent (denoted by =, A|[A = A’,A, where AJA is called a configura-
tion; A|JA = A’ A is called a reduction, and A’ is A if A is t-satisfiable with A and oth-
erwise A’ = A, the empty string). A condition that there is a sound and complete R-
calculus is that the based logic is decidable. Hence, there are sound and complete R-
calculi for propositional logic [8], propositional modal logic [9], etc., and there is no
such R-calculus for first-order logic.

Description logics are fragments of first-order logic, some of which are decidable
and some are not. We consider one of many-valued description logics: Post three-valued
description logics [10], where the logical language of Post logic contains a unary connec-
tive ~, instead of —. For Post logic, there are sound and complete tableau proof systems,
Gentzen deduction systems and deduction systems for many-placed sequents [3].

t|f t|f
m{m mlt
fit fim

For decidable description logics, a problem is to define the semantics of quantifier
concept constructors. In binary ones, an element a belongs to an interpretation of con-
cept (VR.C) if for any element b with (a,b) € R',b € C!; and an element a belongs to an
interpretation of concept =(VR.C) if for some element b with (a,b) € R!,b & C!. Corre-
spondingly, in Post three-valued description logic and an interpretation /, we define

e an element a belongs to the interpretation of concept (VR.C) if for any element b
with (a,b) € RI,b € C;

e an element a belongs to the interpretation of concept ~ (VR.C) if a ¢ (VR.C)! and
for any element b with (a,b) € (0RU ~ R)!,b € (0CU ~ C)';

e an element a belongs to the interpretation of concept <I(VR.C) if there is an ele-
ment b such that (a,b) € (0RU ~ R)! and b € (<C)’.

A theory (a set of statements) A is t-satisfiable if there is an interpretation / such
that for any statement C(a) € A, (C(a))! # t. We will give a tableau proof system Ty, for
t-satisfiability, which is sound, complete and nonmonotonic.

Based on the tableau proof system Ty, we construct an R-calculus Ry for AJA =
A’ A. Ry is shown to be sound and complete, that is,

. AJA = A, Aiff A|A = A, Ais provable in Ry.
Because =y A|[A = Aiff P~ A|JA = A, A, we have
E: AJA= Aiff Ry AJA = A
This paper is organized as follows: The next section defines the logical language
and the semantics of Post three-valued description logic; the third section gives a tableau
proof system for the description logic and shows soundness and completeness theorems;

the fourth section gives an R-calculus for t-satisfiability, and the last section concludes
the whole paper.
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2. Post three-valued description logic
Let L3 = ({t,m,£},®,~,<1,N,U) be an algebraical structure, where
©~< Ntmf Utmf
tlt £fm titmf tjttt

mmtf mmmf mtmm
flfmt f|fff fltmf

The logical language of Post three-valued description logic contains the following
symbols:

e atomic concepts: Ag,Aq,...;

e roles: Ry, Ry, ...;

e concept constructors: @, ~, <1, LI, V.

Concepts are defined inductively as follows:

CII=A| ®C| NC| <IC|C1 |_|C2|C1 UCQ‘VR.C,

where A is an atomic concept, and R is a role.
Statements are defined as follows:

¢ ::=C(a)|R(a,b)| @ ¢| ~ 0| < @.

A model M is a pair (U,I), where U is a non-empty set, and / is an interpretation
such that

o for any atomic concept A,I(A) : U — Ls;

o for any role R,I(R) : U? — Lg.

Given an atomic concept A and a role R, we define concepts ©A, ~ A, <A and roles
@R, ~ R, <IR as follows: for any x € U,

A(x)| QA (x) ~ A(x) <A(x) R(x,y)|2R(x,y) ~ R(x,y) <R(x,y)
t t f m t t f m
m m t f m m t f
f f m t f f m t

The interpretation C! of a concept C is a function from U to L3 such that for any
xeuU,

I(A)(x) ifC=A

#(Ch (x) if C = «C
C'(x) = { Cl(x)NCh(x) ifC=CNc

Cl(x)uCh(x) ifC=CuUC,

min{max{I(~ R)(x,y),I(<IR)(x,y),Cl(y)} : y € U} if C=VR.C,

where * € {@,~, <}.
Therefore, C! (x) = t3 if

3In syntax, we use —, A,—,V, 3 to denote the logical connectives and quantifiers; and in semantics we use
~,&,=,A,E to denote the corresponding connectives and quantifiers.



374 C. Cao et al. / R-Calculus for Post Three-Valued Description Logic

AyeU(I(2R)(x,y)=t=Ci(y)=1t) if C(x) = (OVR.Cy)(x)
Ay e U(I(QRU~R)(x,y) =t = (@Cll_l Ci)iy) =1t)

&Ey € U(I(2RU ~ R)(x,y) = t&(~ C1)(y) = t) if C(x) = (~VR.Cy)(x)
Ey € U(I(QRU ~ R)(x,y) = t&(<C1)(y) = t) if C(x) = (<VR.Cy) (x).

A theory A is t-valid, denoted by ="* A, if for any interpretation /, there is a state-
ment @ € A such that (¢)! = t; and A is t-satisfiable, denoted by |=; A, if there is an
interpretation 7 such that for each statement @ € A, (¢)! # t.

Proposition 2.1. For any concept C and interpretation I, and for any x € U, C!(x) U

(~ O (x)u(<C)(x) =t.

3. Nonmonotonic tableau proof system

Define

incon(A) iff Ep(p,~ p,<ip € A)
con(A) iff =Ep(p,~ p,<Ip € A)

Proposition 3.1. Let A be a set of literals. A is t-satisfiable iff con(A).

Nonmonotonic tableau proof system T, contains the following axioms and deduc-
tion rules: let a be a constant.

o Axioms:

where A is a set of literals.
e Deduction rules for modalities:

f(*1,%2)Ci(a),A

x1 % C1(a),A (x142)

where #*1,%3 € {A,~, <1} and f(*],*y) is defined as follows:

o Deduction rules for logical connectives:
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- [~ R(a,d),A
oCy(a),A oCi(a),A
{@Cz(a),A (@n) |oCa),a  (ou) ZIES;)”Z)’A (V)
o(C1NCy)(a),A o(CiuG)(a),A 6W
[ [ ~Ci(a),A [ [ ~Ci(a),A
{ ~Co(a),A { ~C>(a),A ;g(?ﬁz?)AA
{@Cl(a),A {<1C1(a),A ~C11(d)7 A
~G@a () | \~G@a (~u) | Tl ()
{NCl(a),A {NCl(a),A {Ncl(L)’A
L @Cz(a),A L <C2(a),A W
~(C1NC)(a),A ~(C UG (a),A '(1 )’
[<Cy(a),A ACi(a), A oL
Saa  n {Saoa @ {chfﬁ)’A)’A (<)
<(C1NG)(a),A A(CUG)(a),A :

J(VR.C1)(a),A

01
where d is a constant, ¢ is a new constant, and | 6, means that §; implies 6 and &
)

4l
implies J; and J& means that ; and &, imply O.
)

Definition 3.2. A theory A is provable in Ty, denoted by I A, if there is a sequence
{Ay,...,A,} of theories such that A, = A, and for each 1 <i < n, A, is either an axiom or
deduced from the previous theories by one of the deduction rules in T;.

Theorem 3.3. For any theory A, = Aiff ¢ A.

Because =" A if and only if }£, A, we have the following

Corollary 3.4. For any theory A, =* Aiff 1/, A.

4. R-calculus

Intuitively, a statement @(C; MC>)(a) is enumerable into A to preserve the t-satisfiability
of A, if either @C; (a) or @C;(a) is enumerable into A; and @(C; LC;)(a) is enumerable
into A if @Cj(a) is enumerable into A and @C»(a) is enumerable into AU{@C|(a)}.

Statement ~ (C; M Cy)(a) is enumerable into A, if (1) either ~ Cji(a) or ~ Ca(a)
is enumerable into A; (2) either @Cj(a) or ~ Cy(a) is enumerable into AU {(~
CiM~ Cy)(a)}, and (3) either ~ Ci(a) or @C»(a) is enumerable into AU {(~ CiM ~
Gy)(a), (@CM ~ Cy)(a)}; and statement ~ (C; LU Cy)(a) is enumerable into A, if (4) ei-
ther ~ Ci(a) or ~ Cz(a) is enumerable into A; (5) either <Cj(a) or ~ Cz(a) is enu-
merable into AU{(~ C;M ~ C3)(a)}, (6) either ~ C|(a) or <Cz(a) is enumerable into
AU{(~CiN~ G)(a),(<CiMN~Cp)(a)}.

Statement <1(C; MC,)(a) is enumerable into A if <IC| (@) is enumerable into A, and
<1Cy(a) is enumerable into AU{<IC(a)}; and <(Cy LICz)(a) is enumerable into A if
either <Cj(a) or <IC;(a) is enumerable into A.

A statement ©(C; M Cy)(a) is not enumerable into A, if @Cj(a) and @C»(a) are not
enumerable into A; and ©(Cj UC,)(a) is not enumerable into A if either @Cj(a) is not
enumerable into A, or ©@C(a) is not enumerable into AU {@Cj(a)}.

Statement ~ (C; M C,)(a) is not enumerable into A if either (1) ~ Cj(a) and ~ Cy(a)
are not enumerable into A, or (2) @C(a) and ~ C,(a) are not enumerable into AU {(~
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CiMN ~ G)(a)}, or 3) ~ Ci(a) and @Cy(a) are not enumerable into AU {(~ CjM ~
G2)(a),(@C1MN ~ C3)(a)}; and statement ~ (C; LICz)(a) is not enumerable into A, if
either (4) ~ Cj(a) and ~ Cy(a) are not enumerable into A, or (5) <Cy(a) and ~ C»(a)
are not enumerable into AU {(~ CiM ~ C;)(a)}, or (6) ~ Ci(a) and <1C;(a) are not
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enumerable into AU {(~ CiM ~ C3)(a), (<C1M ~ C2)(a)}.

Statement <1(C; M C;)(a) is not enumerable into A if either <Cj(a) is not enumer-
able into A or <IC;(a) is not enumerable into AU {<1Cj(a)}; and <(C; UCy)(a) is not

enumerable into A if <C (a) and <IC>(a) is not enumerable into A.

by

if

and

Given a theory A and a statement @, we use A to revise ¢ and obtain ¢’, A, denoted

Alp=¢',A,

;| @if Ais t-satisfiable with ¢
? =\ A otherwise.

R-calculus R consists of the following axioms and deduction rules:
e Axioms:

Fe A=F A

All=1,A ()

e Deduction rules for modalities:

Alf(*1,%2)C1(a) = f(*1,%2)C1(a), A
A| *1 *2C1 (a) = *] *2C1 (a),A

(*1%2)

e Deduction rules for logical connectives:

{A\ @Ci(a) = oCi(a),A
Al Cy(a) = @Cy(a),A (en)

Al (CiNC)(a) = o(CiMCy)(a),A
|:A| @Cl(a) = oCi (a),A
A,0C1(a)| @ Ca(a) = @C)(a),@Ca(a),A (2L)
A‘ @ (Cl HCQ)(a) = @(Cl UCz)(a),A
{A| ~R(a,c) =~ R(a,c),

~ R(a,c),A
A|<IR(a,c) = <R(a,c),A
AloCi(c) = @Ci(c),A
Al® (VR.C1)(a) = O(VR.Cy)(a),A

(@V)
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{ Ci(a) =~ Ci(a),A
(a) =~ Ca(a),A
{A X|®C1(a) = 0Ci(a),X,A
AX|~C2(0)2>~C2( ),X,A (Nl_l)

AX,Y|~Ci(a) =~ Ci(a),X,Y,A
{AX Y0 C(a) = @Cs(a),X,Y,A
~ (Ci11G)(a) =~ (C111G)(a),A
{ | C[(d) :>NC1(L1),A
Al ~C2(a) :>~C2(a),A
{A X‘ ch( )= <C(a ),X,A
BX|~Cola) >~ Cola X (v
{sz\ Ci(a) =~ Ci(a),X,Z,A
AX,Z| <1Cy(a) = <Ca(a), X, Z,A
A‘ ~ (C1 UCQ) =~ (Cl LlCz)(a)
{ {A\QR(a7c):><1R( c),A

A,<IR(a,c)|@Ci(c) = <R(a,c),0Ci(c)A

A, <R(a,c),@Ci(c)| ~Ci(c) =~ Ci(c),<R(a,c),@Ci (c)A

{ {A\@R(a,d) = QR(a,d),A (~V)
A,©R(a,d)| ~ R(a,d) =~ R(a,d),oR(a,d),A
A~ Ci(d) =~ Ci(d),A

Al ~ (YR.Cy)(a) =~ (VR.C1)(a),A

where X = (~ CiM ~ C2)(a),Y = (@CiM ~ C)(a),Z = (AC M ~ C3)(a), and

{A\qcl(a) = <Cy(a),A
A, <IC1(a)| <Ca(a) = <G (a), <ICy (a),A (<)
Al < (C1 WCZ)( ) = <1(C1 WCZ)((J)
{A\ch( a) = <Ci(a),A
Al <Go(a) = <G (a), A
Al<Q(CrUG)(a) = A(C1UG)(a),A
{ {A|®R(a,d):>@R(a,d),A

(<u)

A,@R(a,d)| ~ R(a,d) =~ R(a,d),oR(a,d),A
Al QCi(d) = <Ci(d),A
Al < (VR.Cy)(a) = <(VR.Cy)(a),A

(<v)

where d is a constant and ¢ is a new constant.

Definition 4.1. A reduction A|C(a) = C(a),A is provable in R, denoted by
Fi A|C(a) = C(a),A, if there is a sequence {9y, ...,0,} of reductions such that &, =
A|C(a) = C(a),A, and for each 1 < i < n,§; is either an axiom or deduced from the
previous theories by one of the deduction rules in Ry.

Theorem 4.2. For any theory A and statement C(a), = A|C(a) = C(a),Aiff
A|C(a) = C(a),A.

Because = A|C(a) = Aif and only if |4 A|C(a) = C(a),A, we have the following

Corollary 4.3. For any theory A and statement C(a), =y A|C(a) = Aiff V4
A|C(a) = C(a),A.

5. Conclusions

This paper gave an R-calculus Ry for t-satisfiability in Post three-valued description
logic, which is sound and complete. Similarly there are R-calculi R, and R; for m-
satisfiability and f-satisfiability, respectively, and there are transformations between
R, R, and R¢, just as transformations between T+, T, and T.
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