
Feature Back-Tracking with Sparse Deep 
Belief Networks 

Chen QIAOa Jiajia LIa, Xuewu ZHANG 
b, Cheng ZHANG 

b, Wenfeng JING a,1 and 

Danglin YANGc 
a

 School of Mathematics and Statistics, Xi’an Jiaotong University, China 
b

 China Railway First Survey and Design Institute Group Co., Ltd, China 
c Suzhou Hanlin Information Technology Development Co., Ltd, China 

Abstract. To find a way of the interpretability of deep learning, in this paper, a 

features back-tracking (FBT) approach based on a sparse deep learning architecture 
is proposed. Firstly, for a deep belief network (DBN), both the Kullback-Leibler 

divergence of the hidden neurons and the  norm penalty on the connection weights 

are introduced. Thus, the sparse response mechanism as well as the sparse 

connection of the brain neurons can be simulated directly. That means the DBN can 

learn a sparse framework and an effective sparse data representation. On this basis, 
the feature back-tracking technique is put forward. For both the single nucleotide 

polymorphisms (SNPs) data and MNIST data, FBT has quite well performance on 
searching for the risk loci on the genes as well as the important sites of the digit data. 

It reveals that the proposed FBT method can pick out the essential features by deep 

learning architecture with quite high classification accuracy and data storage ability. 
Utilizing the sparse layer-wise feature learning to achieve key features from the 

original data, is an effective attempt to explore the profound mechanism of human 

brain and interpretability of deep learning.  

Keywords. Features back-tracking, Deep belief networks, Sparse learning, Markers 

selection 

1. Introduction 

With the quickly growing demand for revealing the intrinsic nature of things under the 

complex surface phenomena, and with the development of technology methods, high-

dimensional data emerge magically every day. To fully explore valuable information 

contained in such kind of data, models with strong expression ability are needed. As an 

effective learning approach, deep learning can learn the layer-wise nonlinear expression 

or features by greedy layer-by-layer training, thus to find out the complex information 

of the data. In the recent decade, deep learning research has been getting a flourishing 

development, and setting off a significant booming on various artificial intelligence 

domains. Its applications have also been extended to more application fields, like audio 

recognition, social network, automatic control, bioinformatics, etc. 

However, for deep learning, there still exist many intrinsic theoretical issues worth 

to be further clarified. Currently, most of the deep learning methods are used for layer-
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wise feature extraction and for classification purpose, and one typical issue is the 

interpretability of the deep learning framework. For interpretability, one of the most 

commonly used method is feature selection, which can effectively select important 

features from the original data containing a large number of features and eliminate 

irrelevant features [1]. With feature selection, the mechanism of recognizing different 

things by human brains can be explored, and the essential features which help to 

distinguish different data can be identified. With the direct interpretability of data, feature 

selection methods are widely applied in text classification, data mining, bioinformatics, 

computer vision, information retrieval, time series prediction, and so on. 

It should be noticed that most of the existing feature selection methods are based on 

shallow models. They are only performed on the original data directly. Searching for an 

approach to obtain the essential features of the data from the deep expression with 

layered structure, will be great helpful to obtain the essential features of the original data 

in a global and layer-wised way, and what is the most important, to obtain the 

interpretability of the deep learning framework. 

On the other hand, studies of the brain’s nervous system have shown that such 

system employs a highly sparse response mechanism. For each neuron, it has a topology 

that only some of the other neurons are connected to this neuron. The sparseness of this 

connection is the sparse structure of the network or sparse topology. It has been shown 

that there exist connection sparseness properties in the brain’s organizational structure 

[2-4]. The connection sparseness guarantees the high promotion ability of the human 

neural network system. Sparse connections are more able to provide high-quality storage 

capabilities and makes the deep network to have better generalization capabilities [2]. 

How to better simulate the sparseness of the human neuron system and improve the 

performance of the deep learning algorithm is a hot topic. At present, there are three main 

approaches to get the topology sparseness of a network, a.k.a., constructive algorithm 

[5], destructive algorithm [6] and regularization algorithm. For regularization algorithm, 

it is to solve the problem of constrained optimization problem, remove unnecessary 

connections and hidden neurons in the training process, and then reduce the complexity 

of the model (including the structure as well as the parameters). There are two ways of 

constraining, i.e., constraints on the connection weights of the network, and constraints 

on the response of hidden neurons or constraints on the relationship between the response 

of hidden neurons and the target output. The method of weighting constraints includes 

Gaussian regularizer, Laplace regularizer, weight elimination and soft weight sharing. 

Among them, the most widely used is the Gaussian regularizer and the Laplace 

regularizer. They use the -norm or -norm of the connection weights as penalty 

functions, which are embedded in the original training process. These methods aim to 

achieve the sparse network topology by reducing the value of connective weights [7-9].  

Above methods only consider the sparsity of the connection. In this paper, we will 

consider both the architecture sparsity and the representation sparsity of the neurons in 

deep learning. This is an effective attempt to simulate the sparse topology structure of 

the brain networks. We will consider the Deep Belief Network (DBN) as the deep 

learning model, and introduce the penalty terms on neuronal sparse connections as well 

as on the response of neurons into the DBN training stage to improve the energy usage 

and generalization capabilities of the network. By introducing the -norm penalty on 

the connection weights and the Kullback-Leibler (KL) divergence of the hidden neurons 

into each layer of the stacked DBN, the sparse response of the hidden neurons and the 

sparse connections between different layers can be achieved together in the unsupervised 

training process. By such methods, the DBN can learn the fundamental weights and the 
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effective data representation in a sparse way. Above steps thus ensure the sparse 

architecture of the deep network, and thus improve the compression rate, generalization 

capacity and discriminative accuracy of the networks. 

Based on the sparse DBN network architecture, a novel feature selection method, 

i.e., the feature back-tracking approach based on sparse deep learning is proposed in this 

paper. Compared with the shallow feature selection methods, this method can understand 

the data in a global abstract perspective, thus find out the most crucial features of the 

data. Further, due to the sparsity and depth of network architecture, the important features 

of the data can be trace-back easily by the most discriminative abstract feature in the top 

layer, and an efficient implementation of the feature selection can be assured. 

By applying the proposed features back-tracking method based on sparse DBN to 

two datasets, we can get distinct understanding on them. Mutations in individual 

nucleotides at the genomic level can lead to DNA sequence diversity, which may lead to 

human genetic disease. We used the single nucleotide polymorphism data provided by 

American Mind Clinical Imaging Consortium (MCIC), which had a typical high 

dimension (12513 SNPs loci) small sample size data (208 samples, including 92 

schizophrenia patients and 116 healthy subjects), and there exists a large number of loci 

that are not associated with the disease. By applied the proposed features back-tracking 

method, 2973 pathogenic SNPs are selected from the raw SNPs data. Based on these risk 

loci, the diagnostic accuracy of the test data is . In addition, several of these risk 

loci and their corresponding genes have been shown of great correlation with the 

schizophrenia in biological explanations. On the other hand, when the method is applied 

to the MNIST dataset. Experimental results show that with high classification accuracy, 

the important pixels distinguishing different handwritten digits can be finally picked out. 

The results show that the features back-tracking approach can identify accurately the risk 

loci on the genes of the mental disease as well as the key pixels of the handwritten digits, 

and the proposed method can also deeply improve the storage capacity as well as the 

search speech. 

2. Unsupervised sparse learning of DBN 

A DBN is a generative graphical model, composed of multiple layers of hidden units. 

DBN is composed of several restricted Boltzmann machines (RBMs). An RBM contains 

two layers, namely, the visible input layer and the hidden layer.  

Let  be the visible units,  be the hidden 

units,  and  be the bias of the visible units 

and the hidden units respectively, and  with each  be the connection 

weight of  and .  is the joint configuration of the visible and hidden units. The 

energy of it is described in a compact form  

 

where . The joint probability distribution of state  is  

  (1) 
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in which  is the partition function. is the 

distribution of the observed data . The task of training an RBM is to maximizing , 

and thus to find a  

 

with . [10] proposed a faster learning using contrastive divergence 

(CD) to update the parameters: 

 

 

 

where  is the learning rate, and  is the operator of expectation with the corresponding 

distribution denoted by the subscript. 

To learn the structured network of each RBM, which helps to improve the 

interpretability of the network, sparse regularization can be utilized [7-9, 11-13]. Thus, 

some sparse regularization terms are introduced here obtain the sparsity of connections 

as well as the response of the neurons. The Kullback-Leibler (KL) divergence on the 

hidden neurons is used to achieve the response sparsity, and the -norm is used on the 

connection weights to obtain the connective sparsity. We also add the -norm on the 

connection weights to limit their increasing bounds. The improved objective function of 

the sparse RBM is given by 

                     (2) 

In which the KL divergence,  is the relative 

entropy between the two random variables with the mean  and the mean .  is a 

sparse parameter.  is the average activation probability 

of the -neuron in the hidden layer with  samples,  is the node numbers of the 

current visual layer,  is the parameter to control the bound of ,  and  denote the 

penalty coefficients of the KL divergence and -norm respectively.      

      The following is the deviation of the KL divergence. 
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here . 

Thus, the parameters of the unsupervised sparse RBM can be updated by 

 

                                               (3) 

                                                                               (4) 

   (5) 

According to the above updating formula and combined with the CD sampling 

process, a sparse RBM and a stacked sparse DBN can be obtained. 

3. Features back-tracking approach based on sparse DBN 

For deep networks, the connections between two layers are on duty to encode the 

memories. The larger connection strength can describe the stronger relationship of the 

corresponding two layers. At the same time, the larger the difference of the response 

values of neurons between the two kinds of different data, the higher the discriminant 

ability of the current neurons. The two facts can be combined with the obtained sparse 

DBN to search for the most contributed features of the data in a back-tracking way. 

The following process is the features back-tracking based on sparse DBN. Firstly, a 

stacked DBN with sparse architecture and sparse representation is trained by Eq. (3)-(5). 

Then, the learned DBN can be fine-tuned by back-propagation (BP) algorithm. 

Furthermore, the features back-tracking method is performed top-down to select key 

features by 

                                            (6) 

Where  is the connection between visible unit  and hidden unit  of the current RBM, 

 and  are given thresholds,  is the mean value of the -th class on the hidden unit 

, and  is the unit numbers of the hidden layer. Model (6) is on two aspects. One is the 

larger the absolute value of , the higher the influence of the -th visible unit on the -

th hidden unit. The other one is that the larger the difference of the response values 

between the two classes, the higher the discriminant ability of the current hidden unit. 

Finally, the very essential features of the data can be obtained in a back-tracking way. 

Each selected feature has a high probability to cause the output and make the prediction 

decision. The features back-tracking (FBT) approach on sparse DBN is described in 

Algorithm 1. 
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Algorithm 1. The FBT method on sparse DBN
Input: , , ,  
Ensure:  

For  
 

End For 
Return:  

where  is the layer numbers of the DBN,  is the connecting weight between the 

-th layer and the -th layer,  and  are thresholds and set  contains the 

selected positions of the -th layer. By back-tracking method, finally, achieved, 

which the essential features from the data which contribute most to the final prediction. 

4. Results on the SNPs data of Schizophrenia 

The rapid development of genomic techniques improves the study of the relationship 

between mental diseases (such as schizophrenia (SZ)) and genes. Single nucleotide 

polymorphism (SNP) data of SZ patients is a type of genomic data resulting from genome 

wide association study. Each SNP is a gene sequence variation occurring commonly 

within a population, in which a single nucleotide - A, T, C or G - in the genome differs 

between paired chromosomes. The SNPs data is one typical high-dimensional data. In 

addition, it is extremely complex, and simple linear models have not yielded the hoped-

for benefits. Many studies have investigated the crucial genes associated with SZ [14-

17]. In this section, we utilize the features back-tracking method with sparse DBN to find 

the distinct loci of the SNPs sequence, based on which the potential risk SNPs of SZ 

from healthy controls can be better sought out. 

The data collection was conducted by the Mind Clinical Imaging Consortium. The 

SNPs data contains 208 subjects including 92 schizophrenia patients and 116 healthy 

controls. Each SNP was represented by three numbers, 0 for  (no minor allele), 1 for 

 (one minor allele) and 2 for  (two minor alleles). The dimension for each 

sample is 12513. 

To deal with the SNP data which are coded by 0, 1 or 2, in each RBM, they are 

transformed into binary sequences first. Here, the visible units , and 

  is an -dim vector with each . For 

every sample, the SNP sequence is denoted as  with each   ( , 

) is defined as  

 

Then by using the unsupervised sparse learning method in Section 2, the DBN with 

sparse architecture and sparse representation can be achieved with training data. 

Additionally, based on the features back-tracking algorithm with sparse DBN, the risk 

SNPs loci of SZ can be selected. 

The sparse DBN used here contains 5 layers, including a visible layer, three hidden 

layers and a decision layer. The sample size of the training data is 168, and the sample 
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size of the testing data is 40. The number of three hidden layers we used for training the 

sparse DBN is 1000, 500, 200 respectively. The learning rate is 0.1 and the penalty rate 

is 0.0002.  

The training procedure of sparse DBN and the following features back-tracking 

process are randomly performed 50 times. Simultaneously, based on the feature back-

tracking method with sparse DBN, we use the training data to achieve the risk loci, and 

from the testing samples with the selected risk loci we get the average classification. The 

performs for the testing data before and after the feature back-tracking method are shown 

in Table 1. Where Dim refers to the dimension of the data, ACA is the average 

classification accuracy, and SCR is the space compression rate. 

Table 1. Results before and after back-tracking of SNPs data 

 Dim ACA SCR 
Raw Testing Data 12513*3 0.9867 1.0000 

Testing Data with Selected Risk Loci 2973 0.9856 0.0792 

From the selected 2973 risk loci, there exist several SNPs that have been shown with 

great correlations with schizophrenia. Table 2 lists 10 typical SNPs among them. 

Table 2. 10 typical selected risk loci by the feature back-tracking method 

 

 

 

 
 

By http://www.genecards.org/, we can find that some genes in Table 2. have strong 

correlation with schizophrenia, such as NRG1, GRIK4, GRID1, PIP4K2A. In addition, 

GRIN2B and CNTNAP2 are related with mental retardation and neuroscience, GRIN2B 

is related with epileptic encephalopathy and protein-protein interactions at synapses, 

HAAO is present in the central nervous system, and CACNB4 is related with epilepsy. 

Table 1 as well as Table 2 sustain the validation of the feature back-tracking method 

with sparse DBN when it is applied on the SNPs data. Firstly, the data with the selected 

loci nearly keep the same high classification accuracy as presented in [18]. Further, the 

selected risk loci can get a space saving rate about  with a classification accuracy 

around , that means, nearly all of the distinguishable loci of schizophrenia from the 

raw data have been chosen correctly. What is the most important, several selected loci 

have been shown owning strong correlation with schizophrenia by biological explanation. 

5. Results on MNIST data 

The MNIST data contains 60,000 examples as the training set, and 10,000 examples as 

the test set [19]. It has 10 types handwritten digits, i.e., from 0 to 9. Each one has 784 

pixels. We use the proposed FBT method to achieve key pixels of different digits.  

The DBN contains 5 layers. Let  be a threshold of key 

features/sites selection with layer  for digit , in which  is a coefficient and 

SNPs Genes SNPs Genes
rs10102965 NRG1 rs1110144 CNTNAP2 

rs11607732 GRIK4 rs6586002 GRID1 

rs11013103 PIP4K2A rs2765993 PIP4K2A 

rs2098469 GRIN2B rs220573 GRIN2B 

rs111888901 HAAO rs6433777 CACNB4 
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,  and 

.  and are the dimension of the original data and that of the 

selected pixels respectively. and  are the classification accuracy of the testing 

data and the selected key pixels of the testing data respectively. space saving 

rate, i.e., . AVG-  and AVG- denote the average classification 

accuracy of the testing data and the testing data with selected sites respectively. AVG-

 denotes the average number of the selected sites, and AVG-  is the average space 

saving rate. The performance of the proposed method on all two kinds, all three kinds, 

and all ten kinds of digits are shown in Table 3. 

Table 3. Average performance with FBT 

Types of digits AVG- AVG- AVG- AVG-SR 
2 0.9976 0.9893 61 0.92 

3 0.9975 0.9807 131 0.83 

10 0.9607 0.9563 289 0.63 

Table 3 shows that by the features back-tacking method combining with sparse DBN, 

the key pixels identifying different digits can be selected successfully. With only part of 

the pixels, high recognition accuracy rates can still be well kept. For some cases, the 

identification accuracy is even improved with the picked pixels. For example, the 

classification accuracy of digit 1 and digit 2 rises from  to  (see, Table 4 

and Figure 1), the classification accuracy of digits 0, 1 and 3 increases to  (see 

Table 5 and Figure 2). The results show that the method can recognize the key positions 

to distinguish the digits. 

Table 4. Results before and after pixel selection of digits 1 and 2 

DIGIT SR 
1 784 146 0.9974 0.9522 0.81 

2 784 31 0.9961 1 0.96 

 
Figure 1. Original images and distinguishable images of digits 1 and 2 

Table 5. Results before and after pixel selection of digits 0, 1 and 3 

DIGIT SR 
0 784 124 0.9990 0.9801 0.84 

1 784 126 0.9982 1 0.84 

3 784 122 1 0.9814 0.84 
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Figure 2. Original images and distinguishable images of digits 0, 1 and 3 

Table 3 reveals the average space saving rate for all two kinds of digits is , 

namely, the number of picked pixels over the data dimension is only 8 . Meanwhile, 

the average classification accuracy is nearly . The average compression ratio of all 

three types digits is about , with an average classification accuracy over . For 

all ten kinds of digits, it also keeps quite high accuracy and spatial storage capacity. 

We also tested the performance of one typical feature method, namely, Lasso on two 

kinds, three kinds, and all ten kinds of digits. Compared with the results obtained by 

Lasso, the proposed FBT method shows very good performance. For two kinds of digits, 

the AVG-  and AVG-  obtained by Lasso are 82 and 0.9142 respectively. While, 

those indexes obtained by FBT are 61 and 0.9893 respectively. For three kinds of digits, 

the AVG-  and AVG-  obtained by Lasso are 133 and 0.7620 respectively, and for 

FBT, the AVG-  and AVG-  are 131 and 0.9807. For all ten kinds of digits, the 

AVG-  and AVG-  obtained by Lasso are 213 and 0.6969 respectively, while the 

AVG-  and AVG-  obtained by FBT are 289 and 0.9563. Compared with FBT, we 

can find that although the AVG-  obtained by the two methods are similar, FBT can 

keep quite higher classification accuracy with the selected pixels.  

It usually considers MNIST data as a kind of data owning low dimensional structure. 

Recently, some dimensionality reduction techniques are applied to explore the lower 

dimensional subspace of it. While, there is no way to map high-dimensional data into 

low dimension and preserve all the structures of the raw data, so all the approaches try 

to make trade-offs, i.e., sacrificing one property to preserve another. It should be noticed 

that most of them are based on feature abstraction. For example, Principal Component 

Analysis was utilized in [20] to preserve its linear structure. In [21-24], multi-

dimensional scaling and t-Distributed Stochastic Neighbor Embedding were applied to 

preserve its global geometry or topology structure. Deep learning approach was applied 

to extract its latent features [11]. Genetic algorithm was carried out to find the feature 

subsets [25]. Compared with the above methods, the deep learning approach is not a 

shallow method to find the key features, and it is no longer only a feature abstraction 

approach. It can directly pick out the distinct pixels of the MNIST digits from a deep 

layer network with a good performance of the saving ability in storage space, and it 

improves the classification accuracy of those in [25,26].  

6. Conclusion 

The interpretability of deep learning framework is quite crucial for further understanding 

and applying of it. Feature back-tracking method based on sparse DBN architecture 
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provides a way for solving this issue. By simulating the sparse response of neurons for 

external stimulus and the sparse connection mechanism in brain system, the 

corresponding regularization items on the hidden neurons and the connection weights 

are introduced in the network learning process. Thereby, we can reduce the networks’ 

complexity and enhance the generalization ability. By exploring the correspondence of 

the connections and response differences of neurons of the sparse DBN, the features 

back-tracking method is proposed. This method has shown quite well performance of 

removing irrelevant features and reducing the difficulty and complexity of learning tasks, 

especially in searching for risk loci of schizophrenia and picking out the intrinsic pixels 

of different digits.  
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