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Abstract. With the rapid development of underground engineering in China, more 
metro tunnels are being constructed, the mileage of subway tunnels is increasing, 

and the corresponding problems of tunnel structure diseases are becoming more 

prominent. At present, the treatment of tunnel structural diseases mainly relies on 
manual inspection and identification, and research on defects prediction is still 

lacking. Because of the complexity of the factors affecting tunnel structure diseases, 

it is difficult to analyze the causes and development trend of the diseases 
comprehensively by manual analysis. Fortunately, machine learning methods have 

gained popularity in classification and regression tasks in recent decades. Many 

algorithms, such as decision tree algorithms, the random forest algorithm, and 
XGBoost, have been applied in fields including finance, engineering, and 

transportation. This study aimed to analyze the prediction effect of machine learning 

models by feeding 68055 segment lining rings of six subway lines in a city. 
According to the disease records from 2014 to 2016 and the corresponding 

convergence and characteristic data, defect conditions in 2017 were predicted and 

compared with real defect conditions in 2017. The accuracy rates and F1 values of 
the predicted results were all above 80%. The prediction results can help tunnel 

maintenance departments and relevant government regulators make auxiliary 

decisions to control tunnel structure diseases, and can help them focus on the tunnel 
interval of severe diseases to clarify the development trend of tunnel disease.  

Keywords: Tunnel engineering, operational tunnel structure safety, tunnel structure 

disease prediction, machine learning 

1. Introduction 

With the rapid development of China’s economy and the continuous acceleration of 

urban construction, underground engineering is in a stage of rapid development, and the 

 
1Corresponding author: Lin Wang, SGIDI Engineering Consulting (Group) Co., Ltd, Shanghai 200093, 

China; E-mail: 1410024@tongji.edu.cn. 

Modern Management based on Big Data II and Machine Learning and Intelligent Systems III
A.J. Tallón-Ballesteros (Ed.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210263

329



corresponding tunnel construction is also increasing. Increased operation time, coupled 

with the influence of tunnel construction conditions, the surrounding tunnel environment, 

and other factors, have made various tunnel diseases more prominent, especially in soft 

soil areas, such as Shanghai, Hangzhou, and other cities in China. Owing to the 

particularity of soft soil, leakage, segment damage, cracks, and other situations are more 

significant. Serious tunnel structure damage can lead to severe accidents, thereby 

affecting the safe operation of the subway and seriously threatening the safety of life and 

property. 

However, tunnel structure safety is affected by many factors, such as geology, design, 

construction, and operation, and the causes of diseases are complex [1]. Yuan et al. 

defined a quantitative assessment of the service states of the structure in an operational 

tunnel and proposed a framework of assessment procedure. Previous studies on tunnel 

assessments mostly used data mining technology to evaluate the state of tunnel structure 

and put forward corresponding measures [2]. Alimoradi et al. proposed that an 

appropriately trained neural network could reliably predict weak geological zones in 

front of a tunnel face accurately [3]. Adoko et al. used Multivariate Adaptive Regression 

Spline (MARS) and ANN models to predict the diameter convergence of a high-speed 

railway tunnel in weak rock and concluded that MARS constitutes a reliable alternative 

to ANN in modeling geo-engineering problems [4]. Mahdevari et al. developed a 

dynamic model based on Support Vector Machines (SVMs) for the prediction of 

convergence in the tunnel, and got good results in situ measured ones [5]. Feng et al. 

proposed a Bayesian approach to improve time-dependent convergence predictions and 

the results showed that the proposed method could help improve the accuracy of 

predictions and reduce their uncertainty [6]. 

However, previous studies concerned with the deformation prediction of the ring 

segments such as convergence, and these studies lacked a forecast of the development 

trend of tunnel structure defects based on a large amount of engineering data. Unlike 

predicting the deformation in tunnels in previous studies, the paper first provided an idea 

for predicting defects and defect types using machine learning methods. At present, the 

tunnel maintenance department in China has accumulated a large amount of disease 

information according to regular tunnel inspection. Unfortunately, the use of the data is 

limited to basic inquiry and statistical work, so more intelligent methods are needed to 

predict the development trend of the disease. Accurately and efficiently predicting 

possible tunnel diseases has important engineering guiding significance to help tunnel 

maintenance departments determine the inspection scope and avoid major disasters. 

In this study, three machine learning methods, the decision tree, random forest, and 

XGBoost, were applied to the prediction of tunnel structure diseases to help the tunnel 

maintenance department understand the development trend of the disease and make 

timely decisions on prevention and control measures. 

2. Methodology 

2.1. Decision Tree 

Decision tree is a machine learning prediction model that represents a mapping 

relationship between features and target values. It is a decision analysis method that is 

used to obtain the expected probability so as to evaluate risk and judge its feasibility by 

forming a decision tree based on the known probability of various situations. There are 
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several decision tree algorithms, including Iterative Dichotomiser 3 (ID3), C4.5 and 

Classification and Regression Tree (CART) [7-9]. Its basic principle is as follows. 

For data feature vectors , 1, ,n
ix R i l� � ,l,  and a label vector ly R�  , a decision tree 

recursively partitions the feature space, such that the samples with the same labels or 

similar target values are grouped together. A node, m, can be represented by Qm with Nm 

samples and Qm is the subset of the whole dataset. For each candidate split, ( , )mj t� � , 

consisting of a feature, j, and threshold, tm, partition the data into ( )left
mQ �  and ( )right

mQ �  

subsets, which are calculated as follows: 

( ) {( )| }leftQ x,y x tm mj� � ��                            (1) 

  ( ) {( )| }rightQ x,y x tm mj� � �                           (2) 

If a target is a classification outcome taking on values 0,1,...,K-1 for node m, we can 

calculate mkp (equation (3)) as the proportion of class k observations in node m. Specially, 

function I(y=k) in equation (3) is called the Indicator function, which can be calculated 

as in equation (4). 

1 ( )p N I y kmmk y Qm
� ��

�                            (3) 

1
( )

0

if y k
I y k

if y k

�
	


	�

�
� �

�
                            (4) 

Subsequently, common measures of impurity (loss function), including ‘Gini index’ 

in equation (5) and ‘Entropy’ in equation (6) [10], are calculated as follows: 

( ) (1 )H Q p pm mk mkk
� �                             (5) 

( ) log( )H Q p pm mk mkk
��                            (6) 

Then, the quality of a candidate split of node m can be computed using the loss 

function (equation (7)) [10]. 

( , ) ( ( )) ( ( ))
left rightN Nleft rightm mG Q H Q H Qm m mN Nm m

� � �� �               (7) 

Finally, choose proper parameters to minimize the loss function in equation (8), and 

recurse for subsets ( )left
mQ ��  and ( )right

mQ ��   until the node cannot be split or the given 

maximum depth is reached. 
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 argmin ( , )G Qm� ��
� �                              (8) 

The sketch map of a decision tree is shown in Figure 1. For a given dataset, it can 

be recursively split into ‘tree’ as the sketch map. 

 

Figure 1. Sketch map of a decision tree. 

2.2. Random Forest 

Random forest [11,12] is an ensemble method that combines several base estimators to 

improve accuracy and stability over a single estimator. Furthermore, the random forest 

algorithm builds several estimators independently and averages their predictions, which 

is called the bagging method and can reduce the variance of a base estimator by 

introducing randomization into its construction procedure [13,14,15]. In this study, 

CART was used as the base estimator, and “Gini” was used as the loss function. 

The process of the random forest algorithm is as follows. Firstly, extract m training 

samples from the original data set using the Bootstrap method; n sub training sets are 

obtained by carrying out put-back sampling n times. Secondly, select p attributes from m 

attributes on each training set to generate n CART decision trees. Thirdly, n CART 

decision trees are formed into a random forest. For the classification problem, the 

majority voting method is adopted, and the final classification result is determined by 

voting according to the classifier of n trees. 

2.3. XGBoost 

XGBoost is also an ensemble method that combines several base estimators [16]. 

However, unlike the random forest algorithm and bagging methods, XGBoost is a 

boosting method, and the base estimators are built sequentially to reduce the bias of the 

combined estimators. 

The regularized objective function is as follows: 
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             (9) 

Here, is a differentiable convex loss function that measures the difference between 

the prediction, , and the target, . The second term, , penalizes the complexity of 

the model, which can help avoid over-fitting. Each  corresponds to an independent 

tree structure. 

When we predict the i-th instance at the t-th iteration, the prediction can be written 

as: 

                                         (10) 

Then, we minimize the following objective: 

                          (11) 

Second-order approximation can be used to quickly optimize the objective above. 

Then, we can get the following objective: 

            (12) 

where  and  are first- and second-order gradient statistics on the loss function. 

Obviously, the regularization term is introduced to control the complexity of the 

model and avoid over-fitting, and we can define the objective function as needed. 

3. Model Construction and Application 

In this study, data of 68,055 segment lining rings of six subway lines in a city were fed 

into the machine learning models mentioned above. According to defects records from 

2014 to 2016 and corresponding convergence and characteristic data, defects conditions 

in 2017 were predicted and compared with real defects conditions in 2017 to analyze the 

prediction effect of the models. 

3.1. Data Preprocessing 

In machine learning field, the data determines the upper limit of machine learning, and 

the algorithm is just as close to that limit as possible. Thus, the selection of features is 

very important for machine learning models. Fortunately, although tunnel structure 

defects are affected by multiple factors, we can get the features base on engineering 

experience.  

Combined with engineering experience, various factors including convergence, 

buried depth, initial convergence, PS value and sensitivity value of the soil layer, 

geological division, hydrogeological division, cover condition and open time were 

determined and corresponding data were collected (as shown in Table 1, Table 2, and 

Table 3). 
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Table 1. Sample data of tunnel segments’ time-invariant features.  

ring_id 263517 260196 260012 148570 321966 9535 207927 

ps_value 0.4679 0.7598 0.599 0.6995 0.5012 0.5677 1.6795 

buried_depth(m) 8.103 8.655 6.714 14.201 9.071 11.842 24.258 

init_convergence(m) 0.0200 0.0183 0.0276 0.0256 0.0347 0.034 0.0280 

Sensitivity_value 4.4738 1.9422 2.0805 4.3165 2.5142 2.5011 1.9164 

open_time(year) 1993 1993 1993 2010 2007 2010 2013 

Relationships _with_bypass A E A E E E E 

cover_condition road road park water yard road buiding 

geological_division ⅠA ⅡB ⅡB ⅡA ⅢAE ⅢBE ⅢB 

hydrogeological_ 

division 
first fourth fourth third seventh fifth sixth 

Table 2. Sample data of tunnel segments with diseases. 

Ring number Defect types Discovery date of defect 

263517 leakage 2014 

263517 leakage 2017 

263518 leakage 2014 

263518 leakage 2017 

263592 leakage 2014 

263736 cracking 2017 

264061 leakage 2014 

264064 leakage 2015 

264139  spalling 2014 

264139 spalling 2016 

264139 leakage 2016 

Table 3. Sample data of tunnel segments’ time-variant features (inner diameter and deformation against inner 

diameter). 

Ring number Measure time Inner diameter(m) Deformation(m) 

263517 2014 5.55417 0.05417 

263517 2015 5.55218 0.05218 

263517 2016 5.5514 0.0514 

263517 2017 5.5595 0.0595 

263518 2014 5.55417 0.05417 

263518 2015 5.55218 0.05218 

263518 2016 5.5514 0.0514 

263518 2017 5.5595 0.0595 

263521 2014 5.54813 0.04813 

263521 2015 5.54602 0.04602 

263521 2016 5.547 0.047 

263521 2017 5.5467 0.0467 
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Before training machine learning models, the data need to be preprocessed, and 

continuous variables need to be normalized. Normalization refers to limiting features’ 

data within the range of 0 to 1. The calculation is as follows: 

i min

max min

X -X
X = 

X -X
                             (13) 

where iX denotes structural feature data before normalization, maxX , minX denote 

the maximum and minimum values of the feature, respectively; and X  denotes the 

normalized structural feature data. 

Categorical variables are processed with One-Hot Encoding. One-Hot Encoding 

uses 0 and 1 to represent parameters and N status for a state code. For example, tunnel 

segment lining rings in the geological division zone can be divided into four district, and 

the first district can be expressed as [1,0,0,0] and the second district can be expressed as 

[0,1,0,0], the third district and fourth district can be expressed as the same way. 

In the paper, convergence, buried depth, initial convergence, open time, PS value 

and sensitivity value of the soil layer were calculated as continuous variables and 

geological division, hydrogeological division, cover condition were calculated as 

categorical variables. 

3.2. Model Training and Evaluation 

After data processing, the data were divided into a training set (data from 2014–2016) 

and test set (data from 2017). Then the training set was fed into Decision Tree model, 

Random Forest model and XGBoost model for training and the test set was used for 

evaluating the models. Additionally, we used the module called GridSearchCV [17] from 

scikit-learn to tune the hyper-parameters of the three machine learning models. 

Model evaluation generally includes accuracy rate, recall rate, and F1 value in 

classification tasks. The confusion matrix has the following four markers in binary 

classification in Table 4. True Positive (TP) means predicting a positive sample as a 

positive sample; False Negative (FN) means predicting a positive sample as a negative 

sample; False Positive (FP) means predicting a negative sample as a positive sample; and 

True Negative (TN) means predicting a negative sample as a negative sample. 

Table 4. Four markers in binary classification results. 

Predict (column) / label (row) Positive Negative 

Positive TP FP 

Negative FN TN 

The precision rate is the ratio of the correct prediction among predicted positive 

samples. It can be calculated as follows: 

TPPrecision
TP FP

�
�

                              (14) 

The recall rate is the ratio of the correct prediction among positive label samples. It 

can be calculated as: 
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TPRecall
TP FN

�
�

                                (15) 

The F1 value is the comprehensive evaluation of precision rate and recall rate. It is 

the harmonic average value of the two values, and its calculation is as follows: 

2* *
1

Precision RecallF
Precision Recall

�
�

                           (16) 

Receiver operating characteristic curve (ROC curve) is another way to evaluate 

machine learning model. For a ROC curve of machine learning model, x axis denotes the 

False Positive rate and y axis denotes the True Positive rate. As the False Positive rate is 

only related to negative samples and the True Positive rate is only related to positive 

samples, ROC curve doesn’t change as the class distribution (the ratio of the positive 

samples and the negative samples) changes, that is, it is very suitable for evaluating 

models of imbalance dataset. AUC is the area under ROC curve and it shows the quality 

of a classifier. 

3.3. Results and Discussion 

As most of the tunnel segment lining rings were free of disease, the accuracy could not 

truly reflect the effect of the model. Therefore, we randomly selected a subset of 

instances with no defect to match the number of instances with defects to reduce the 

imbalance of the dataset and used four indexes, accuracy, precision, recall, and F1 values, 

to comprehensively evaluate the effect of the model. We compared the real condition of 

tunnel segment defects with the predicted condition to generate the confusion matrix 

(Figures 2–4), which represents the effect of the models. We also plotted the ROC curves 

of the three models and the corresponding AUC values were calculated in the Figure 5.  

In this study, the segment lining rings’ diseases were set as positive samples. In 

Figures 2–4, the horizontal axis denotes the label of predicted value, and the ordinate 

denotes the label of true value, in which 0 means no disease and 1 means disease. As the 

evaluation values in Table 5 show, the training model worked well. The results of the 

three models were very close, and all demonstrated quite accurate predictions on the 

tunnel diseases; the accuracy rates were all above 90%, and the F1 values were all above 

80%. As we can see, we have got high accuracy rate and the models still leave room for 

improvement according to the results of recall rate. From ROC curves and AUC values 

in Figure 5, we can see that all models got high AUC values which means the algorithms 

we used are robust though the dataset is imbalanced. Furthermore, we can see that 

XGBoost model and Random Forest model are better than Decision Tree model as the 

ensemble learning methods are superior to a single estimator. 
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Table 5. Evaluation indexes of the machine learning models. 

Algorithms Accuracy Precision Recall F1 value 

Decision tree 93% 98.4% 74% 83% 

Random forest 93% 98.4% 69.5% 81% 

XGBoost 93% 99.8% 69% 81.4% 

 

Figure 2. Prediction results of Decision Tree model of binary classification (confusion matrix). 

 

Figure 3. Prediction results of Random Forest model of binary classification (confusion matrix). 
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Figure 4. Prediction results of the XGBoost model of binary classification (confusion matrix). 

 

Figure 5. ROC curve and AUC values of the three models. 
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4. Conclusion 

Given the complexity of the influencing factors of metro tunnel structural diseases, the 

study used three machine learning methods to predict the occurrence of the defects in 

metro tunnels. Through the three models, we predicted tunnel structural defects and 

obtained satisfactory results. The accuracy rates were all above 90%, and the F1 values 

were all above 80%. It is important to note that it is nearly impossible to achieve 

completely accurate prediction using machine learning methods. Furthermore, ROC 

curve of the three models were plotted and AUC values were calculated. The AUC values 

of XGBoost model, Random Forest model, Decision Tree model are 0.94,0.93 and 0.87 

respectively which means that the algorithms we chose are robust for imbalanced 

engineering data. Overall, our proposed method can be useful to aid tunnel maintenance 

departments owing to the high prediction accuracy rate. 

The prediction results can provide auxiliary decision-making assistance for tunnel 

maintenance departments and relevant government regulatory departments to prevent 

and control tunnel structural diseases and focus on tunnel sections where serious diseases 

may occur so as to further clarify the development trend of tunnel diseases. This study 

provides a new idea for the prediction of tunnel disease, but the current research can only 

give the probability of the occurrence of the disease (binary classification). Subsequent 

research can be extended to the prediction of the occurrence of the disease (multiple 

classification) and its probability, which will provide more accurate auxiliary guidance 

for tunnel maintenance and supervision authorities. 
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