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Abstract. This paper presents an adaptive network model of the brain-gut axis and 

its related mechanisms that play major roles in the development of Parkinson’s 

Disease. Simulations gave useful insight into how the biological and mental 

pathways interact with each other. In addition, the model provides information on 

the different time spans that are taken into consideration within these processes.  
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1. Introduction 

Parkinson’s Disease (PD) is a systemic disease clinically defined by the degeneration of 
dopaminergic neurons in the brain. It has become the second most widespread 

neurodegenerative disorder in the world, expected to affect more than 10 million people 

worldwide by 2030 [1, 2]. α-synucleinopathy and motor impairment are two of the main 

signals of PD pathogenesis. They occur when 55% of the dopaminergic neurons are 
damaged in the substantia nigra, the area of the midbrain containing the nerve cells 

producing dopamine. Besides motor impairment, over time PD patients can show 

metabolic imbalance, with half of them experiencing constipation before the outset of 

other clinical features [3]. Recently, some studies have begun to explore the mechanisms 
that connect the gut and the brain. For example, changes in the composition of intestinal 

microbiota have been associated with neurological and neurodevelopmental disorders 

[4].  

In this paper, we will specifically focus on the influence of gut microbiota 
mechanisms on PD mechanisms, analyzing computationally how such processes take 

place. This computational analysis addressing the different processes at different time 

scales involved, was performed based on multi-order adaptive networks modeled by the 

concept of self-modeling network.  
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2. Background Literature 

The microbiota is composed by trillions of microorganisms living within our bodies. In 

the past decade, researchers have started to study it as one of the key regulators of the 

gut-brain axis, recognizing its important role for the central nervous system (CNS) [5]. 

The gut-brain axis is a bidirectional interaction, which integrates the cognitive and 
emotional centers of the brain with peripheral gastrointestinal mechanisms [3]. Recent 

studies on the gut-brain axis have revealed multiple ways the gut microbiota composition 

can affect people’s daily lives and disease outcomes. Multiple factors can affect the 

microbiota composition over time, including infections, antibiotic medications, 
environmental stressors, and host genetics [6]. For example, it has been found that the 

microbiota of a PD patient tends to be characterized by reduced carbohydrate 

fermentation and butyrate synthesis capacity, increased proteolytic fermentation and 

production of deleterious amino acid metabolites, including p-cresol and 
phenylacetylglutamine [7]. Further, PD patients’ microbiota shows reduced levels of 

fecal short-chain fatty acids that may generate alteration in the enteric nervous system, 

causing constipation in PD patients [8]. Evidence from laboratories’ investigation 

support the hypothesis of the connection between the complexity of gut microorganisms 
and PD pathogenesis [9–11].  

Figure 1 provides an overview of how the connection between gut and brain 

mechanisms may occur in PD pathogenesis.  

 

 

Figure 1. Model of gut-originating, inflammation-driven PD pathogenesis adopted from (4). 

An inflammatory trigger, for example, a toxin or the intake of antibiotics, can initiate 
an inflammatory response in the gut and contribute to developing bad gut microbiota. 

The gut microbial toxins may then trigger the production of an increased aggregation of 

α-synuclein (α-syn) protein in the enteric nervous system (ENS), which can be 

transmitted to the central nervous system (CNS) through the vagus nerve. The presence 
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of high aggregations of the α-synuclein protein (synucleinopathy) in the gut is the main 
manifestation of PD. Peripheral inflammation can then trigger a system inflammatory 

response, increasing the likelihood of neuroinflammation and accelerating the pace of 

neurodegeneration.   

In this context, some studies have started to investigate the use of probiotics for 
Parkison’s disease prevention or treatment [12]. The presence of probiotic bacteria favors 

a healthy gut environment by modulating the host immune response and balancing the 

intestinal microflora.  

Nutraceutical interventions aim to normalize the gut microbiome dysbiosis and 
improve biological outcomes in PD conditions. In this sense, regular intakes of probiotics 

can positively affect the gut microflora by increasing the presence of beneficial 

microorganisms [13]. Thus, the use of probiotics together with healthy diet habits can be 

seen as an adjuvant therapy to the use of standard PD medications, such as Levodopa. 
Brain cells in the substantia nigra within PD patients no longer produce the chemical 

dopamine, essential for brain neurons to communicate and control movement [14]. The 

chemical imbalance in PD causes physical symptoms such as resting tremors, stiffness, 

and slowness of movements, among others. Levodopa, a central nervous system agent, 
helps people with PD by replacing the chemical messenger dopamine [15]. It helps to 

alleviate the symptoms of PD by providing a supply of dopamine. It has to be noted, 

however, that Levodopa does not slow or reduce the progression of PD. Levodopa is an 

amino acid that is processed to dopamine in the brain. Today, Levodopa is the most 
effective drug used by PD patients [14].  

3. Network-Oriented Modeling  

To describe and analyze the influence of gut microbiota mechanisms on PD mechanisms 

computationally, we used a network-oriented modeling approach as described in [16, 17].  
The introduced network model will model both the dynamics of the interaction 

processes within networks and of network evolution. Within PD we have processes that 

have very different time spans; some of the processes do occur on a daily basis (e.g., 

intake of fiber levels), whereas others only occur over the years (e.g., neurodegeneration). 
This type of model is declarative and characterized by connectivity characteristics, 

aggregation characteristics, and timing characteristics [17]: 

 

� Connectivity characteristics: connections from states X to Y, having connection 
weights ��X,Y specifying their strengths  

� Aggregation characteristics: each state Y has a combination function cY that 
specifies how impact from all incoming connections on Y is aggregated. Based on 

a list of basic combination functions bcfi (each with some parameters) provided by 

an available library, such a combination function can be specified by weights �i and 

parameters �  i,j for these basic combination functions bcfi 

� Timing characteristics: each state Y has a speed factor �Y specifying how fast Y 

changes 
Furthermore, these models can be conceptualized in the form of matrices or labeled 

graphs. These conceptual graphs illustrate states and their connections between them plus 

some labels. States have varying activation levels over time. Moreover, the concept of 

weights of a connection is used for the strengths of impact of one state on another one. 
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Finally, combination functions are used that represent the aggregation of multiple causal 
impacts on a state, and speed factors to represent the speed of change of a state, thus 

modeling the timing of the process. Next to matrices and labeled graphs, models can be 

formalized in a numeric format:  

 
Y(t+�t) = Y(t) + ��Y [cY(�X1,YX1(t), …, �Xk,YXk(t)) - Y(t)] �t     (1) 

 

Eq. (1) represents how the states 1 to  from which  gets incoming connections 

affects the activation level of Y. The effect of the combination function cY(..) on  is 

exerted gradually over time, depending on speed factor � . Eq. (1) are hidden in the 

software environment that can be used for simulation and analysis; see [17]. Within the 

above-mentioned software, more than 45 basic combination functions are included. The 
combination functions used in the present paper are presented in Table 1.  

Table 1. The basic combination functions from the library used in the presented model. 

 Notation  Formula Parameters 
Stepmod stepmod��,		(V)   0 if t mod ��  
 		, else 1 � repetition interval length, 		 step time 

Advanced  

logistic 

sum 
alogistic� ,�(V1, …,Vk) 

(1+e-στ) 
Steepness � > 0 

Excitability threshold � 

4.  Self-Modeling Networks for Adaptivity 

‘Network characteristics’ and ‘network states’ are by definition two distinct concepts for 

a network. Self-modeling networks are based on a self-model concept for part of their 
own network structure. A self-model represents certain network structure characteristics 

(e.g., connection weights or excitability thresholds) by network states. Hence self-models 

extend the states from the base level by additional states at a higher level, enabling 

adaptation of the network structure. This step is also called network reification. It is 
possible to create higher-order self-modeling levels, where network characteristics from 

one level are related to states from another level: second-order or higher-order adaptive 

networks [17]. 

In our scenario, self-modeling is added for those network characteristics that 
experience a change over time. Therefore, we end up with different levels of the model 

that interact with each other; a network model for the base network and its within-

network dynamics and a numerical model for the adaptivity of (some of) the network 

structure characteristics of the base network [17]. Self-modeling uses a network-oriented 
conceptualization similar to what was described above. 

 

� Connectivity self-model  
Self-model states WX,Y are used to represent connectivity characteristics, i.e., 

connection weights �X,Y  

� Aggregation self-model  
Self-model states Cj,Y are used to represent the first type of aggregation 

characteristics: combination function weights �j,Y . Self-model states Pi,j,Y are 

used to represent the second type of aggregation characteristics: combination 

function parameters �i,j,Y . 

� Timing self-model   
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Self-model states HY are used to represent timing characteristics: speed factors 

��Y  

 

In certain cases, the names using the letters W, C, P and H can be chosen in a 

different, more specific manner for example, T for excitability threshold parameter �.  

The self-modeling construction can be iterated so that second-order (or even higher-

order) adaptation can be modeled. An example of a second-order self-model state is a 

state HWX,Y that represents the speed factor (adaptation rate) � of (first-order) self-model 

state WX,Y. This type of self-model states can be used in an adaptive network model to 
control the adaptation: decreasing activation values of HWX,Y model make the adaptation 

slow down, and a value 0 causes a complete freezing of the adaptation. 

5. An integrative Adaptive Network Model 

Moving from the general premises, we first developed the conceptual model presented 

in Figure 2, which shows the connections between the gut mechanisms (on the left side 
of the graph) and the brain mechanisms (on the right side of the graph) which processes 

play a major role in PD pathogenesis. The blue boxes in Figure 2 represent two self-

model states WX,Y and one self-model state TY.  

 

Figure 2 - Conceptual Model for the brain-gut axis in PD. 

The designed self-modeling network model integrates both biological (physiological) 

and mental (neural) pathways. Both pathways interact in the so-called brain-gut axis 

which is represented at the base level (the pink plane in Figure 3). In PD, processes occur 

at different time spans and take a different amount of time to impact other processes. 
Therefore, an important addition to this model contributed here is an adaptive form of 

timing. Figure 3 represents a graphical 3D format that shows the base model on the 

bottom, and the self-model states are depicted at the next levels (reification levels). 
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Figure 3. 3D figure of the connectivity of an integrative adaptive network model for the gut-brain axis in PD. 

The states are labeled and described in Table 2. On the base level (pink plane) 

‘PROB’, ‘FIBR’, ‘TRI’, ‘DOPA-PRO’ and ‘LEVO-IN’ are independent states that have 
no incoming influences yet influence other states. These independent states are time-

dependent and occur occasionally; therefore, the stepmod combination function was used 

for these states to generate repetitive patterns. For all the other states, we used the 

alogistic combination function.  
On the base level, some arrows are red, meaning that they have a negative influence 

on the respective state. Through literature review, we found that constipation and α-syn 

in the gut have a negative influence on the gut microbiota. Furthermore, we noted that 

neurodegeneration and dopamine levels negatively influence each other. Meaning that 
low dopamine levels negatively affect neurodegeneration, and with increased 

neurodegeneration, it has a negative impact on dopamine levels.  

Reading this 3D figure, we can see that probiotic (X1) and fiber (X2) intake influence 

the gut microbiota. If you have low levels of both, you tend to develop a bad gut 
microbiota (X3). In addition, inflammatory triggers (X5) such as toxins influence the bad 

gut composition. Having a bad gut composition creates constipation (X4), which in return 

negatively affects the bad gut composition. Moreover, the bad gut composition has an 

influence on the system inflammation (X9) as well as on the α-syn in the gut (X7). 
The synucleinopathy (X7 and X8) and the intestinal inflammation (X6) affect each 

other. In addition, synucleinopathy influences neuro-inflammation (X10), which means 

that neurodegeneration (X11) is triggered. In addition, neurodegeneration increases by 

low levels of dopamine chemicals (X15). The latter is affected by the production of 
dopamine (X14) in the brain.  

As stated in the background section, Levodopa is the most common drug used in PD. 

It helps to increase the level of dopamine in the brain. Therefore, levodopa intake (X12) 

and its efficacy (X13) affect dopamine levels. On an everyday basis, individuals receive 
stimulus for activation (X16), which by consequences, therefore, triggers your motor 

activation (X17).  

As already mentioned in the previous section, the present models depicting the gut-

brain axis in PD deals with states occurring at various time scales. Intake of inflammatory 
triggers can happen on a regular occasion, whereas the bad gut microbiota composition 

happens throughout a longer period. In order to adjust for such dynamics, the model 

includes time regulations. In the 3D figure, on the first adaptive level (blue plan), a 

weight connection was added to affect the inflammation trigger connection on intestinal 
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inflammation (X6). This is done by adding state WBADG,IINFLA(1st order self-model level) 
into our model. Bad gut composition makes you more sensible for intestinal 

inflammation and thus strengthens the link between the inflammatory trigger and 

intestinal inflammation. Therefore, WBADG,IINFLA (X18) will regulate the impact on how 

much inflammatory triggers influence intestinal inflammation. Another weight 
connection on this first adaptation level was created between state X12 and X17, WDOPA-

L,MOTOR (X19). The dopamine level makes you more sensible for motor activation. The 

added WDOPA-L,MOTOR state, therefore, strengths the link between the stimulus for 

activation state and motor activation state. Over time, the effectiveness of Levodopa 
decreases even, if the intake of the drug increases. In order to adjust for this dynamic 

process in the current model, an adaptive excitability threshold TLEVEL-EFF (X20) was 

added to weaken the effectiveness of Levodopa over time.  

On the second level of the model, the H-states were added as a form of speed control 
for adaptation. Therefore HWBADG,IINFLA (X21) will regulate the learning speed of 

WBADG,IINFLA. Similarly, HWDOPA-L, MOTOR (X22) will regulate the learning speed of WDOPA-

L, MOTOR and HTLEVEL-EFF (X23) will regulate the learning speed of TLEVEL-EFF, respectively. 

Table 2. State labels and description  

States Label Description 
X1 PROB Probiotics intake 

X2 FIBR Fibers intake 

X3 BADG Bad gut microbiota 

X4 CONST Constipation 

X5 TRIG Inflammatory trigger 

X6 IINFLA Intestinal inflammation 

X7 GSYN α-syn protein in the Gut 

X8 BSYN α-syn protein in the Brain 

X9 SINFLA Systemic inflammation 

X10 NINFLA Neuroinflammation 

X11 DEGEN Neurodegeneration 

X12 LEVO-IN Levodopa intake 

X13 LEVO-EFF Levodopa effectiveness 

X14 DOPA-PRO Dopamine production 

X15 DOPA-L Dopamine level 

X16 STIM-A Stimulus for activation 

X17 MOTOR Motor activation 

X18 WBADG, IINFLA 
Self-model state for the weight of the connection from BADG to 

IINFL 

X19 WDOPA-L, MOTOR 
Self-model state for the weight of the connection from DOPA-L to 

MOTOR 

X20 TLEVEL-EFF Self-model state for the excitability threshold of LEVEL-EFF 

X21 HWBADG, IINFLA Self-model state for adaptation speed of WBADG, IINFLA 

X22 HWDOPA-L, MOTOR Self-model state for adaptation speed of WDOPA-L, MOTOR 

X23 HTLEVEL-EFF Self-model state for adaptation speed of TLEVEL-EFF 

6. Simulation of the Integrative Adaptive Network Model  

Within the present section, we will discuss the findings of the simulation that was 
generated using the software environment, and the specification by role matrices, 

detailing the network characteristics, which are presented in the Appendix available as 

Linked Data at URL https://www.researchgate.net/publication/353764251. Figure 4 

shows the simulation representing the brain-gut axis process in PD. This scenario shows 
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a adaptation effect after the inflammatory trigger intake, the stimulus activation, and the 
Levodopa effectiveness. 

 

Figure 4. Simulation of the adaptive network model. 

The simulation shows that probiotics and fiber levels continuously decrease over 

time due to an increasingly bad gut composition. With this, constipation slowly worsens. 

States X21, X22, X23, the adaptive connection weights and excitability threshold are very 

slow in the present model as can be spotted at the bottom of the simulation. Due to a 
slow adaptation rate of the model (WBADG,IINFLA), intestinal inflammation only expresses 

after a certain amount of time once the influence of the inflammatory trigger is high 

enough to affect the intestinal inflammation. The same holds for the Motor activation 

that slowly decreases over the time span (WDOPA-L, MOTOR). The excitability threshold 
(TLEVEL-EFF) is slow at the beginning of the simulation and increases after 100-time points. 

Therefore, the Levodopa effectiveness remains high at the beginning of the simulation 

at thus decreases with increasing TLEVEL-EFF.  

7. Discussion 

The presented model and its respective simulation is the first computational 

representation of the brain-gut axis processes and mechanisms that play major roles in 

PD. This simulation is useful because it gives insight into how the biological and mental 

pathways interact with each other. In addition, the model provides information on the 
different time spans that are taken into consideration within these PD processes.  

Nevertheless, the present model remains a simplified version of the PD pathogenesis 

and further work in computational modeling could consider, for example, the impact of 

the mitochondria process in PD. Furthermore, future studies may have a closer look at 
specific probiotics and their influence on the brain-gut axis in PD. These could eventually 

be helpful in the prevention strategies for PD. 
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