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Abstract. Dimensionality reduction plays an important role in the fields of pattern 

recognition and computer vision. Recursive discriminative subspace learning with 

an L1-norm distance constraint (RDSL) is proposed to robustly extract features from 

contaminated data and L1-norm and slack variables are utilized for accomplishing 

the goal. However, its performance may decline when too many outliers are 

available. Moreover, the method ignores the global structure of the data. In this 

paper, we propose cutting L1-norm distance discriminant analysis with sample 

reconstruction (C-L1-DDA) to solve the two problems. We apply cutting L1-norm 

to measure within-class and between-class distances and thus outliers may be 

strongly suppressed. Moreover, we use cutting squared L2-norm to measure 

reconstruction errors. In this way, outliers may be constrained and the global 

structure of data may be approximately preserved. Finally, we give an alternating 

iterative algorithm to extract feature vectors. Experimental results on two publicly 

available real databases verify the feasibility and effectiveness of the proposed 

method. 

Keywords. Discriminant analysis, dimensionality reduction, cutting L1-norm, 

sample reconstruction  

1. Introduction 

Dimensionality reduction is utilized for preprocessing high dimensional data, which 

plays an irreplaceable role in the fields of pattern recognition and computer vision. In the 
past decades, it has been extensively studied and a variety of methods have been 

presented, such as linear discriminant analysis (LDA) [1], locality preserving projections 

[2] and principal component analysis (PCA) [3]. Among them, LDA and PCA are two 

basic methods, which are widely used in practice. The former is a supervised method and 
based on the criterion that the distances between samples from the same class are 

minimized and the distances between samples from different classes are maximized 

simultaneously. 

LDA is an effective method for dimensionality reduction. However, its performance 
may decline when the data are contaminated by outliers or noise. Many methods have 
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been presented to deal with the problem and enhance the performance [4-6]. From the 
view of mathematics, L1-norm is more robust to outliers or noise than L2-norm and 

hence some methods replace the latter with the former and improve the robustness [7-

11]. Rotational invariant LDA (RILDA) [7] constructs a unified rotational invariant 

framework with L2,1-norm and generalizes Laplacian eigenmaps for better robustness. 
Based on LDA, L1-norm LDA [8] substitutes L1-norm for L2-norm and outperforms 

RILDA. However, the gradient ascending iterative algorithm may not guarantee to obtain 

an optimal solution. L1-LDA [9] follows the theoretical framework of Bayes optimality, 

but the method actually cannot guarantee the Bayes optimality for it introduces the 
alternating optimization strategy to obtain a solution. Moreover, it is not more robust to 

outliers or noise for the same reason. In order to avoid the problems, non-greedy L1-

LDA [10] uses a non-greedy iterative algorithm to optimize the trace ratio form of L1-

LDA. However, the method is sensitive to initialization for the introduction of the 
learning rate, and it is true to L1-norm distance-based effective LDA [11]. 

Recently, a novel recursive discriminative subspace learning method with an L1-

norm distance constraint (RDSL) has been proposed to obtain a robust and discriminative 

subspace [12]. The method formulates LDA with the maximum margin criterion and 
avoids the introduction of the learning rate. It introduces slack variables in order to obtain 

better robustness. However, its performance may decline when too many outliers are 

available in training samples. Moreover, the method ignores the global structure of the 

data and thus there is still room for performance improvement. 
In this paper, we present cutting L1-norm distance discriminant analysis with sample 

reconstruction (C-L1-DDA) to solve the two problems existing in RDSL. Based on 

RDSL, we apply cutting L1-norm to measure within-class and between-class distances, 

thus strongly suppressing outliers. Furthermore, we construct a model of sample 
reconstruction as a regularization term, which uses cutting squared L2-norm to measure 

reconstruction errors. The model can also suppress outliers and approximately preserve 

the global structure of data. Finally, we use an alternating iterative technique to optimize 

the objective function. Experimental results on two publicly available real datasets 
demonstrate that our method obtains better classification performance than RDSL. 

2.  Recursive Discriminative Subspace Learning 

As previously mentioned, RDSL reformulates LDA according to the maximum margin 

criterion and avoids the sensitiveness to initialization. Here we give a brief review of 
RDSL for our method is based on it. 

Let there be a data set m nX R �� , which includes n  samples from c  classes in an 

m  dimensional space. Let ix
 
be the mean of class i , 1,2, ,i c� ,c, , and x the mean of 

all the classes. Let ijx be the j th sample from class i  and in  the number of samples 

from the same class. Then RDSL is formulated as 

� �
, 1

1 1 1

min
i

q i

nc c
T
q ij i iw i j i

w x x
�

� �
� � �

	 
�� �  

s.t. � �
1

1T
q i iw x x �	 
 �  

0i� � , 1,2, ,i c� ,c,                                                    (1) 
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where qw  is the q th projection vector, 1 q d
 
 , and d  is the dimensionality of the 

subspace. Accordingly, the projection matrix 
1 2[ , , , ]dW w w w� , ]d, . Moreover, i�  is a 

slack variable, which is used to improve the generalization or the robustness of RDSL, 

and �  is the regularization parameter. 

RDSL simultaneously considers within-class compactness and between-class 

separability and uses L1-norm and slack variables to improve the robustness to outliers 
or noise. However, it is difficult to directly solve Eq. (1) for the use of L1-norm. 

Fortunately, the problem can be transformed into a linear or quadratic programming form 

and then an iterative technique is used to obtain the solution [12].  

3. Cutting L1-Norm Distance Discriminant Analysis 

RDSL can obtain excellent performance when there are a few outliers in training samples. 

However, its performance may decline when too many outliers are available since, in 

this situation, L1-norm and slack variables may not eliminate the adverse effects of the 

outliers to a large extent. 
Inspired by the success of the cutting L1-norm loss function in support vector 

machines [13], we first apply cutting L1-norm to RDSL in order to eliminate the effects 

of outliers. Our method is formulated as follows: 

� �� �
, 1

1 1 1

min min ,
i

q i

nc c
T
q ij i iw i j i

s w x x
�

� �
� � �

	 
�� �
s.t. � �� �

1
min , 1T

i q i ih n w x x �	 
 �  

0i� � , 1,2, ,i c� ,c,                                                      (2) 

where s  and h  are two given values, 0s � , 0h � . 

By applying cutting L1-norm in the objective function and the constraint, our 
method can strongly suppress outliers. On the one hand, the distances between outliers 

and their class means are usually larger than those between normal samples and the 

means. The larger distances may dominate the objective function when too many outliers 

are available, which may lead to the drift of projection directions. It may be the reason 
that the performance of RDSL declines when training samples include too many outliers. 

We use cutting L1-norm to constrain the larger distances and thus may greatly improve 

the robustness to outliers. On the other hand, the distances between the class means and 

the mean of all the classes may also be severely influenced by outliers. In other words, 
the distances may be significantly increased. In this case, the drift of projection directions 

may occur for the constraint in Eq. (1). Therefore, we apply cutting L1-norm to constrain 

the terms with larger distances, which may alleviate the problem. 

4. Cutting L1-Norm Distance Discriminant Analysis with Sample Reconstruction 

RDSL is designed to robustly learn a series of projection vectors from noisy data. It 

realizes within-class compactness by the objective function and between-class 

separability by the constraint. However, the method ignores the global structure of the 

G. Shao et al. / Cutting L1-Norm Distance Discriminant Analysis with Sample Reconstruction 647



data. As a result, the projection vectors may not extract as much discriminative 
information as possible. 

In order to solve the problem, we utilize sample reconstruction for preserving the 

global structure. More specifically, we minimize the reconstruction errors of training 

samples, and cutting L1-norm is applied to accomplish the goal. The modified form is 
formulated in the following: 

� �� � � �
1, , 1

1 1 1 1 1

min min , min , +
i i

q q i

n nc c c
T T
q ij i ij q q ij iw u i j i j i

s w x x k x u w x
�

� � �
� � � � �

	 
 	�� �� �         

s.t. � �� �
1

min , 1T
i q i ih n w x x �	 
 �  

0i� � , 1,2, ,i c� ,c,                                                    (3) 

where qu  is the q th reconstruction vector, 1 q d
 
 , �  is a regularization parameter, 

0� � , and k is a given value, 0k � . The reconstruction regularization term takes the 

form of cutting L1-norm and thus can improve the robustness to a certain extent. 

However, the form may lead to a high computational cost in the optimization when the 

number of training samples is large. 
Therefore, we replace L1-norm with squared L2-norm in order to reduce the 

computational cost and the modified version is described as follows: 

� �� � � �2

2, , 1
1 1 1 1 1

min min , min , +
i i

q q i

n nc c c
T T
q ij i ij q q ij iw u i j i j i

s w x x k x u w x
�

� � �
� � � � �

	 
 	�� �� �

s.t. � �� �
1

min , 1T
i q i ih n w x x �	 
 �  

0i� � , 1,2, ,i c� ,c,                                                (4) 

Although L2-norm is sensitive to noise, it is possible to evade the problem in the form 

of cutting squared L2-norm. That is to say, the samples with larger reconstruction 

residuals are regarded as outliers and constrained. 

5. Optimization 

Eq. (4) involves the variables: qw , qu
 
and i�  

and we adopt the alternating iterative 

method [14] to obtain the solutions. 

5.1. Reformulation of Minimization Terms

Eq. (4) involves more complex minimization terms and it is difficult to directly optimize 

the problem. In order to solve the difficulty, we reformulate the terms in the following. 

We first reformulate the constrain in Eq. (4). Let � �i i ip n x x� 	 , then 

� � � �
1 1

min , ( ) = min ,T T
i q i q ih n w x x h w p	  

� �� � � �� �= min ,max 0, min ,max 0,T T
q i q ih w p h w p
 	  

and 
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� �� � � � � �min ,max 0, = max 0, max 0,T T T
q i q i q ih w p w p w p h	 	  

� �� � � � � �min ,max 0, = max 0, max 0,T T T
q i q i q ih w p w p w p h	 	 	 	 	  

Therefore, we have 

� � � � � �
1 1

min , = max 0, max 0,T T T T
q i q i q i q ih w p w p w p h w p h	 	 	 	 	  

Namely, the constraint term 
1

min( , ( ) ) 1T
i q i ih n w x x �	 
 �  can be transformed into 

as follows: 

� � � �
1

max 0, max 0, 1T T T
q i q i q i iw p w p h w p h �	 	 	 	 	 
 �  

Let � �1 max 0, T
i q iw p h� � 	

 
and � �2 max 0, T

i q iw p h� � 	 	 , then the constraint term 

can be written as follows: 

1 21
1T

q i i i iw p � � �	 	 
 �  

1

T
i q ih w p�
 �  

2

T
i q ih w p�
 � 	  

1 20, 0i i� �� �  

Clearly, � � � �
1
= sign = sign ,T T T T T

q i q i q i q i i qw p w p w p w p p w where sign ( )� is the sign 

function. Let � �a = sign T
i q i iw p p , � �1 2a ,a , ,a

T
q cA � �,a

T
c,a and � �1 2, , ,

T
cB p p p� �Tcp, . Let 

ce  denote a column vector and its elements consist of c ones. In addition, let 

� �1 11 21 1= , , ,
T

c� � � � �1

T� , � �2 12 22 2= , , ,
T

c� � � � �2

T� and � �3 1 2= , , ,
T

c� � � � �Tc�, . Accordingly, 

the constraint in Eq. (4) can be reformulated as the following form: 

1 2 3q q cA w e� � �	 	 
 �  

1c qhe Bw�
 �  

2c qhe Bw�
 � 	  

1 2 30, 0, 0� � �� � �  

We then reformulate the first term of the objective function in Eq. (4). Let

ij ij if x x� 	 , then 

1 1

1

( ) =

T T
q ij ij qT T

q ij i q ij T
q ij

w f f w
w x x w f

w f
	 �  

Accordingly, 

� � � �
1 1

min , ( ) = min , = +T T T T
q ij i q ij ij q ij ij q ijs w x x s w f w f f w s� �	  

where 
1

1 T
ij q ijw f� � and 0ij� �  if 

1

T
q ijw f s� , otherwise 0ij� � , 1ij� � . Therefore, 

we have 

� �� �
1

1 1

min ,  = +
inc

T T
q ij i q q q q

i j
s w x x w F w z

� �

	��  
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where 

1 1

inc
T

q ij ij ij
i j

F f f�
� �

��� , and

1 1

inc

q ij
i j

z s�
� �

��� . 

In addition, we reformulate the second term of the objective function. Clearly, 
2

2
2T T T T T T T

ij q q ij ij ij ij q ij q q ij q q ij qx u w x x x x u x w w x u u x w	 � 	 
  

and 

� � � �2 2

2 2
min , 1T T

ij q q ij ij ij ij q q ijk x u w x k x u w x� �	 � 	 
 	  

where 1ij� � if 
2

2

T
ij q q ijx u w x k	 � , otherwise 0ij� � . Accordingly, 

� �2

1 12
1 1

min ,
inc

T T T
ij q q ij q q q q q q

i j
k x u w x b a w w G w

� �

	 � 
 
��  

where 

� �� �1

1 1

1
inc

T
q ij ij ij ij

i j
b k x x� �

� �

� 	 
��  

� �1

1 1

2
inc

T
q ij ij q ij

i j
a x u x�

� �

� 	 ��  

1 1

inc
T T

q ij ij q q ij
i j

G x u u x�
� �

���  

5.2. Algorithm 

After reformulating the constraint and the two terms of the objective function, we adopt 

an alternating iterative algorithm [14] to obtain the projection vector. Let 
t
qw

 
and 

t
qu

 
be 

the values of the projection vector and the reconstruction one at the t th iteration, and 
� �+1t
qw

 
and 

� �+1t
qu

 
the values at the � �1t 
 th iteration. 

The iterative method alternately performs the following two main steps: 

Step 1. Fix qu
 
and compute the value of qw

 
in Eq. (4). More specifically, we can 

obtain 
� �+1t
qw

 
by solving the following problem: 

� �

� �� � � � � � � �
1

1 2 3

+1 +1 +1

1 3
, , ,

min + +
t

q

Tt t tT T
q q q q q q c

w
w F G w a w e

� � �
� � � �




  

s.t. 
� �+1

1 2 3

t
q q cA w e� � �	 	 
 �  

� �+1

1

t
c qhe Bw�
 �  

� �+1

2

t
c qhe Bw�
 � 	  

1 2 30, 0, 0� � �� � �                                                   (5) 

Eq. (5) is a quadratic programming problem and thus 
� �+1t
qw

 
can be easily obtained. 
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Step 2. Fix qw
 
and i�  

and compute the value of qu
 
in Eq. (4). In this situation, Eq. 

(4) reduces to the following form: 

� �2

2
1 1

min min ,
i

q

nc
T

ij q q iju i j
k x u w x

� �

	��                                            (6) 

Accordingly, � �+1t
qu can be easily obtained by solving the following quadratic 

programming problem: 

� �

� �� � � � � �
1

+1 +1 +1

2 2min
t

q

Tt t tT
q q q q q q

u
g u u a u b




 
                                    (7) 

where 

� �� �2

1 1

1
inc

T
q ij ij ij ij

i j
b k x x� �

� �

� 	 
��  

� �� �1

2

1 1

2
inc

tT
q ij ij q ij

i j
a x w x� 


� �

� 	 ��  

� �� �2
1

1 1

inc
tT

q ij ij q
i j

g x w� 


� �

���  

After qw
 
is obtained by iteration, the training samples are updated by the factor 

� �T
mI WW	 , where mI

 
is the m m�  dimensional identity matrix [12]. The detailed 

process of the algorithm is shown in Table 1. 

Table 1. Algorithm 1. The alternating iterative algorithm 

Input: X  ---  labeled data set, m nX R �� ; 

            � , �  --- regularization parameters; 

d  --- number of projection vectors; 

Output: W --- projection matrix, m dW R �� . 

Procedure: 
Initiate the projection matrix W �� , where � is the empty set; 
For 1q � to d do 

                           Initiate qw ; 

Compute qu according to Eq. (7); 

While not converge do 

Update qw according to Eq. (5); 

Update qu according to Eq. (7); 

End while  
Let [ , ]qW W w� , and normalize and orthogonalize it; 

Let � �T
mI WWX X	� ;  

End for                                                                  
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6. Experiments 

We conduct experiments on USPS [15] and COIL-20 [16] datasets to evaluate LDA, 

coined complete large margin linear discriminant analysis (CLMLDA) [17], RILDA, 
RDSL and C-L1-DDA. The grayscale of images from the datasets is normalized to[0,1] . 

After training samples are artificially contaminated and represented with the 
corresponding vectors, PCA is applied to reduce the dimensionality to n c	 . In the 

experiments, the regularization parameters of CLMLDA, RDSL and C-L1-DDA are 

chosen from the set 3 2 3[10 ,10 , ,10 ]	 	 3,10 ]3 . Our method has three cutting parameters, i.e., h ,

s and k , and it is difficult to specify them. As an alternative, the three parameters are 

empirically set in this way that five percent of training samples with the largest within-

class distances are eliminated, which are regarded as outliers. The initial value of qw is 

set to the solution of LDA. Basically, the convergence condition is set according to [12] 

and the difference lies in that the maximum number of iterations is set to fifty. In the 

experiments, the nearest neighbor classifier is employed in measuring classification 
performance, and it is directly used for preprocessed data by PCA as the baseline method. 

All the experiments are implemented ten times and the average lowest classification error 

rates are reported. 

6.1. Experiments on the USPS Database 

In this section, experiments are conducted with the USPS database. Ten handwritten 
digits from 0 to 9 of this database have 11,000 grayscale images whose size is16 16�  

pixels. A subset is first constructed for the experiments and each digit includes 100 

images which are randomly selected from the original database. For each digit, K
samples are selected for training and the remaining ones are used for testing. In the 

experiments, K is specified for� �10,12,14,16 . Forty percent of training samples are 

contaminated by inserting occlusion with black or white rectangular noise at a random 
location and the size of the rectangle is at least 4 4� and up to10 10� pixels.  

Average lowest classification error rates with different dimensions are shown in 

Figure 1. From the experimental results, we can conclude that the proposed method is 
significantly effective for classification. 

6.2. Experiments on the Coil-20 Database

The section deals with the experiments carried out on the Coil-20 database to test the 

performance of C-L1-DDA. The database consists of 1,440 grayscale images of twenty 
objects and each object has 72 images at an interval of five degrees of rotation. Each 

image is downsampled and resized to 32 32� pixels. Let � �8,10,12,14K � , and for each 

object, K samples are used for training and the rest for testing. Similar to the experiments 

on the USPS database, forty percent of training samples are contaminated and the 
difference is that the size of the noise rectangle is at least 20 20� and up to30 30� pixels.  

Average lowest classification error rates with different dimensions are given in 
Figure 2. From the figure we conclude that the performance of C-L1-DDA is better than 

that of RDSL 
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Figure 1. Average lowest classification error rates on the USPS database. (a) 10 samples, (b) 12 samples, (c) 

14 samples, and (d) 16 samples. 
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Figure 2. Average lowest classification error rates on the Coil-20 database. (a) 8 samples, (b) 10 samples, (c) 

12 samples, and (d) 14 samples. 
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7. Conclusions 

In this paper, we present a novel discriminant analysis method, cutting L1-norm distance 

discriminant analysis with sample reconstruction (C-L1-DDA), which utilizes cutting 

L1-norm for measuring within-class distances and between-class distances. It may 

strongly suppress outliers and thus the robustness may be improved. Moreover, our 
method uses cutting squared L2-norm to measure reconstruction errors. As a result, it 

may suppress the outliers and approximately preserve the global structure of data. Finally, 

we use an alternating iterative algorithm to obtain projection vectors. Experimental 

results on two real databases demonstrate the effectiveness of C-L1-DDA. In the future, 
we will test the performance of our method on more databases.  
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