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Abstract. Linear discriminant analysis (LDA) is sensitive to noise and its 

performance may decline greatly. Recursive discriminative subspace learning 

method with an L1-norm distance constraint (RDSL) formulates LDA with the 

maximum margin criterion and becomes robust to noise by applying L1-norm and 

slack variables. However, the method only considers inter-class separation and 

intra-class compactness and ignores the intra-class manifold structure and the global 

structure of data. In this paper, we present L1-norm distance discriminant analysis 

with multiple adaptive graphs and sample reconstruction (L1-DDA) to deal with the 

problem. We use multiple adaptive graphs to preserve intra-class manifold structure 

and simultaneously apply the sample reconstruction technique to preserve the global 

structure of data. Moreover, we use an alternating iterative technique to obtain 

projection vectors. Experimental results on three real databases demonstrate that our 

method obtains better classification performance than RDSL. 
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1. Introduction 

High dimensional data are available in pattern recognition and computer vision 

applications. However, it is difficult to directly use the data for some reasons, such as the 

curse of dimensionality and high computational complexity [1]. A natural solution to the 

difficulty is to perform dimensionality reduction or subspace learning for data 
representation. Many methods are presented to realize the fundamental task under the 

assumption that the most useful information lies in a latent subspace [2]. Among them, 

linear discriminant analysis (LDA) [3] and principal component analysis (PCA) [4] are 

two classical and representative methods for supervised and unsupervised dimensionality 
reduction, respectively. 
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According to the definition of LDA, it measures within-class and between-class 
distances in Euclidean space, namely LDA is based on L2-norm. Therefore, LDA is 

sensitive to noise and its performance may decline greatly. Some methods use L1-norm 

to measure the distances for enhancing the robustness [5-9]. Rotational invariant LDA 

(RILDA) [5] uses RI L1-norm or L2,1-norm as the metric and constructs a more 
generalized dimensionality reduction framework. However, the proposed algorithm is 

not convergent and thus the performance may be further improved. L1-norm LDA [6] 

extracts local optimal projection vectors by replacing L2-norm with L1-norm based on 

the formulation of LDA. It avoids the singular problem existing in LDA and obtains 
better results than RILDA. L1-LDA [7] applies the Bayes optimality theory for excellent 

performance. However, the iterative algorithm enlarges the Bayes error upper bound and 

cannot guarantee the optimality. Besides, its robustness cannot be enhanced for the 

overemphasis on the minimum distance between boundary points and the center of all 
points. In this situation, non-greedy L1-LDA [8] combines two L1-norm terms in a 

difference form and gives a non-greedy iterative algorithm, which obtains better 

performance. L1-norm distance-based effective LDA [9] is similar to non-greedy L1-

LDA. However, the two methods are sensitive to initialization for they adopt the 
Rayleigh quotient as the learning rate. 

Recently, a novel recursive discriminative subspace learning method with an L1-

norm distance constraint (RDSL) has been proposed to obtain a robust and discriminative 

subspace [10]. The method formulates LDA with the maximum margin criterion and 
avoids the sensitiveness to initialization. In addition to L1-norm, RDSL introduces slack 

variables and thus it is more robust to noise. However, the method only considers inter-

class separation and intra-class compactness and ignores the intra-class manifold 

structure and the global structure of data. It is beneficial to utilize structure information 
for better performance. 

In this paper, we present L1-norm distance discriminant analysis with multiple 

adaptive graphs and sample reconstruction (L1-DDA) to solve the problem existing in 

RDSL. We apply Shannon entropy to adaptively construct a graph for each class as a 
regularization term and thus intra-class structure information may be incorporated into 

projection vectors. L1-norm is used in the construction of adaptive graphs in order to 

improve the robustness. Meanwhile, we add a sample reconstruction term to 

approximately preserve the global structure of data, and sample reconstruction is in the 
form of cutting squared L2-norm. Finally, we use an alternating iterative technique to 

optimize the objective function. Experimental results on three publicly available real 

databases demonstrate that our method obtains better classification performance than 

RDSL. 

2. Related Work 

In this section, we briefly review RDSL for our method is based on it and then simply 

explain Shannon entropy which is applied to multiple adaptive graphs. Given a data set 

� �1 2, , , nX x x x� �, nx, , 
m

jx R� , 1,2, ,j n� n, , and the n points in the m dimensional 

space come from c classes. Let ijx
 
denote the j th point from class i  and in  the 

number of points from class i . In addition, let ix
 
denote the mean of class i  and x the 

mean of all the classes. 
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2.1.  Recursive Discriminative Subspace Learning 

LDA uses L2-norm to construct an objective function and thus its performance may 

deteriorate when noisy data are available. In this case, some methods [8-9] adopt L1-

norm to cope with the problem. However, the methods are sensitive to initialization. 

RDSL applies the maximum margin criterion to formulate LDA and avoids the 
sensitiveness.  

RDSL is formulated as [10] 

1,
1 1 1

min ( )
i

q i

nc c
T
q ij i iw i j i

w x x
�

� �
� � �

� 	

 
  

s.t. 
1

( ) 1T
q i iw x x �� 	 �  

0i� � 1,2, ,i c� ,c,                                                (1) 

where qw  is the q th projection vector, 1 q d� � , d is the number of projection 

vectors, and accordingly the projection matrix 
1 2[ , , , ]dW w w w� , ]d, . i�  is a slack 

variable, which is introduced to avoid the overfitting and � is a regularization parameter 

which can control the generalization or the robustness of RDSL. 

Eq. (1) can be transformed into a linear programming problem or a convex quadratic 

programming problem and then the solution can be obtained by an iterative algorithm 

[10]. 

2.2. Shannon Entropy 

Information theoretic learning techniques have been extensively applied in the pattern 

recognition field and many methods for dimensionality reduction have involved 

entropies. Among different types of entropies, Shannon entropy is most widely used 
since, in general, there is a close-form solution with the entropy.  

Shannon entropy is defined as follows [11]: 

1

( ) log
N

i i
i

H P p p
�

� �
  

s.t. 

1

1
N

i
i

p
�

�
 , 0ip �  

where 1 2( , , , )NP p p p� , )Np, is a probability distribution. The definition measures the 

uncertainty of the distribution. More specifically, the value of ( )H P  will increase as 

the distribution becomes more uniform. 

According to the graph theory, the similarity values between samples from the same 
class tend to the same value. In other words, the values are roughly uniformly distributed. 

Therefore, the similarity matrix may be optimized by maximizing the Shannon entropy 

of the distribution. In section 3, we construct an adaptive graph for each class based on 

the analysis.  
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3. L1-Norm Distance Discriminant Analysis

As formulated in Eq. (1), RDSL considers inter-class separation and intra-class 

compactness. However, RDSL ignores intra-class structure. It is beneficial to exploit 

within-class structure information [12] and hence there is room to enhance the 

performance. 

3.1. L1-Norm Distance Discriminant Analysis with Multiple Adaptive Graphs 

Since the local geometry structure of data can be modeled by a nearest neighbor graph 

or a similarity matrix, we use multiple graphs to construct within-class structure. It is 

difficult to select the number of nearest neighbors of a graph. In order to avoid the 
difficulty, we intend to construct an adaptive graph for each class. According to the graph 

theory, the similarity between two samples is large when the samples belong to the same 

class with high probability. Therefore, it is reasonable to infer that any two samples from 

the same class have a roughly equal similarity value in most cases. Based on the inference, 
we use Shannon entropy to adaptively construct similarity matrices. 

Our model is formulated as follows:

1 1, ,
1 1 1 1 1 1

min ( ) ( ) log
i i i

i
q i kj

n n nc c c
T i T i i
q ij i i kj q ik ij i kj kj i

w s i j i k j i
w x x s w x x s s

�

 � � �

� � � � � �

� �
� 	 � 	 	� �

� �


 
 

 
  

s.t. 
1

( ) 1T
q i iw x x �� 	 �  

0i� �
1

1
in

i
kj

j
s

�

�
 0i
kjs � 1,2, ,i c� ,c, , 1, 2, , ik j n� in, (2)

where i
 and i�  
are regularization parameters, 0i
 � , 0i� � , and

i
kjs is the similarity 

between the k th and j th samples from class i . 

We use L1-norm to measure distances between samples from the same class, which 

may enhance the robustness of the graphs. We then use multiple adaptive graphs as a 
regularization term to improve the performance of RDSL. However, intra-class structure 

is only local geometry structure and our model does not involve global structure. 

Therefore, the performance may be further improved. 

3.2. Improvement Strategy of the Model 

The data reconstruction trick is usually applied to preserve the global structure of data 

[13]. However, the trick may be less than effective when the data are corrupted by noise, 

especially strong noise. In other words, it is necessary to eliminate the adverse effect of 

noise on data reconstruction. Inspired by the cutting L1-norm loss function [14], we use 
cutting squared L2-norm to construct a sample reconstruction term in order to realize the 

purpose. 

The improved model is formulated as follows: 
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s.t. 
1
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1
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i
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j
s

�

�
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kjs � 1,2, ,i c� ,c, , 1, 2, , ik j n� in,                   (3) 

where qu is the q th reconstruction vector, 1 q d� � , � is a regularization parameter, 

0� � , and h  is a given value, 0h � . 

We do not use cutting L1-norm to measure reconstruction errors for it is easier to 
optimize the objective function. Although L2-norm is sensitive to noise, it is simple and 

convenient for optimization. Moreover, cutting squared L2-norm can constrain noisy 

samples and thus may become robust to noise. 

4. Optimization Procedure 

Eq. (3) involves the variables: qw qu i
kjs and i� , and we adopt an alternating 

iterative method [15] to obtain the solutions. 

4.1.  Fix qu  and i
kjs  and Update qw  and i�

When qu  and 
i
kjs  are fixed, Eq. (3) reduces to the following form: 

� �
1 1,

1 1 1 1 1

2

2
1 1 1

min ( ) ( )

min ,

i i i

q i

i
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q ij i i kj q ik ijw i j i k j
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T

ij q q ij i
i j i

w x x s w x x

h x u w x
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� � �
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s.t. 
1

( ) 1T
q i iw x x �� 	 �  

0i� � 1,2, ,i c� ,c,                                                (4) 

In order to optimize Eq. (4), we first reformulate the first item of the objective 

function. Clearly, 

1

1

( )( )
( )

( )

T T
q ij i ij i qT

q ij i T
q ij i

w x x x x w
w x x

w x x
� �

� �
�

 

Let 
1

1 ( )T
ij q ij iw x x� � � , then 

11
1 1

( )
inc

T T
q ij i q q q

i j

w x x w B w
� �

� �

 , where 
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Similarly, we reformulate the second item of the objective function and 

21
1 1 1

( )
i in nc

i T T
i kj q ik ij q q q

i k j
s w x x w B w
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where 2

1 1 1

( )( )
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q i kj kj ik ij ik ij

i k j
B s x x x x
 �

� � �
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 , 
1

1 ( )i T
kj q ik ijw x x� � � . 

Moreover, we reformulate the third item of the objective function, which can be 

written as 

� � � �2 2

2 2
min , 1T T

ij q q ij ij ij ij q q ijh x u w x h x u w x� �� � � 	 �  

where 1ij� � if 
2

2

T
ij q q ijx u w x h� � , otherwise 0ij� � . Clearly, 

2

2
2T T T T T T T

ij q q ij ij ij ij q ij q q ij q q ij qx u w x x x x u x w w x u u x w� � � 	  

Therefore, we have 

� �2

1 1 12
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min ,
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� �
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1
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Finally, we reformulate the constrain of the objective function. Clearly, 

� � � �
1

( ) sign ( ) ( ) sign ( ) ( )T T T T T
q i q i q i q i i qw x x w x x w x x w x x x x w� � � � � � �  

where sign( )�  is the sign function. Let ce denote the c dimensional column vector 

which includes c ones, and 
1 2[ , , , ]T

c� � � �� ]T
c�, . Let 1 2=[ , , , ]T

q cA � � �, ]T
c,,, , where

� �=sign ( ) ( )T
i q i iw x x x x� � � , Then 

1
( ) 1T

q i iw x x �� 	 � , 1,2, ,i c� ,c, , can be 

reformulated as follows: q q cA w e�	 � .

Therefore, Eq. (4) can be reformulated as 

� �1 2 1 1
,

min
q

T T T
q q q q q q q cw

w B B G w a w e
�

� � � �	 	 	 	  

s.t. q q cA w e�	 � , 0� �                                                     (5) 

Eq. (5) is a quadratic programming problem, which can be easily solved. 
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4.2. Fix qw , i�  and i
kjs  and Update qu  

When qw , i�  
and 

i
kjs  are fixed, Eq. (3) reduces to the following form: 

� �2

2
1 1

min min ,
i

q

nc
T

ij q q iju i j
h x u w x

� �

�

                                             (6) 

Eq. (6) can be reformulated as follows: 

2 2 2min
q

T T
q q q q q qu

g u u a u b	 	                                            (7) 

where 
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1 1

1
inc
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q ij ij ij ij

i j
b h x x� �

� �

� � 	
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1 1

2
inc
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q ij ij q ij

i j
a x w x�

� �
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� �2

2

1 1

inc
T

q ij ij q
i j

g x w�
� �

�

  

Eq. (7) is also a quadratic programming problem and the solution can be easily obtained. 

4.3. Fix qw , i�  and qu
 
and Update i

kjs  

When qw , i�  
and qu  are fixed, Eq. (3) reduces to the following form: 

1
1 1 1

min ( ) log
i i

i
kj

n nc
i T i i

i kj q ik ij i kj kj
s i k j

s w x x s s
 �
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� 	� �
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s.t. 

1

1
in

i
kj

j
s

�

�
 , 0i
kjs � 1,2, ,i c� ,c, , 1,2, , ik j n� in,                               (8) 

Eq. (8) can be easily solved and 

� �
� �

1

1
1

exp ( ) /

exp ( ) /
i

T
q ik ij ii

kj n
T
q ik ij i

j

w x x
s

w x x

�

�
�

� �
�

� �

                                            (9) 

It is worth noting that qw
 
can be initiated by other methods, such as LDA, and 

obtained by an iterative algorithm. After qw
 
is obtained, training samples are updated 

by the factor � �T
mI WW� , where mI is the m m  dimensional identity matrix [10]. For 

Eq. (5), since an iterative technique is used, the next value of qw can be obtained with the 

current one. Namely, 1qB , 
2qB , 1qG

 
and 

1qa  are also fixed. Similarly, for Eq. (7), the 

next value of qu
 
can be obtained with its current one. The alternating iterative algorithm 

is summarized in Table 1. 
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Table 1.  Algorithm 1. The alternating iterative algorithm  

Input: X  ---  labeled data set, m nX R  � ; 

            i
 , i� , � , �  --- regularization parameters; 

d  --- number of projection vectors ; 

Output: W --- projection matrix, m dW R  � . 

Procedure: 
Initiate the projection matrix W !� , where ! is the empty set; 
For 1q � to d do                             

Initiate qw ; 

Compute qu according to Eq. (7); 

Compute
i
kjs according to Eq. (9); 

While not converge do 

Update qw according to Eq. (5); 

Update qu according to Eq. (7); 

Update
i
kjs according to Eq. (9); 

 End while  
Let [ , ]qW W w� , and normalize and orthogonalize it; 

Update the data set X , i.e., � �T
mI WWX X�� ;  

End for                                                                  

5. Experiments 

In this section, we evaluate the classification accuracy of our method, and LDA, coined 

complete large margin linear discriminant analysis (CLMLDA) [16], RILDA, and RDSL 

are also run respectively on three real datasets, namely the USPS database [17],  
the COIL-20 database2 and the Yale database3. For the datasets, the grayscale of images 
is normalized to[0,1] . For simplicity, PCA is first used to reduce the dimensionality to 

n c�  after the images are represented with vectors. For CLMLDA, the optimal values 

of two parameter are chosen from the set 
6 3 3 6[10 ,10 ,0,10 ,10 ]� �

. For RDSL, the optimal 

value of �  is chosen from the same set. For our method, i� and �  are empirically set 

to 310 and 0.1, respectively, and other regularization parameters are chosen from the set. 

The cutting parameter h  is empirically set and as a result, five percent of training 

samples with the largest reconstruction errors are eliminated. qw
 
is initiated by the 

solution of LDA and the convergence condition is in accordance with [10]. The nearest 

neighbor classifier is used to measure classification accuracy and directly used on the 

preprocessed data by PCA as the baseline method. We repeat all the experiments ten 

times and obtain average lowest classification error rates. 

 
2 https://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php 
3 http://vision.ucsd.edu/content/yale-face-database 

G. Shao et al. / L1-Norm Distance Discriminant Analysis with Multiple Adaptive Graphs662

https://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://vision.ucsd.edu/content/yale-face-database


5.1.  Experiments on the USPS Database 

The USPS database consists of 9,298 grayscale images of digits from envelopes and their 
size is 16 16 pixels, namely each image can be described as a 256-dimensional vector. 

For each digit, we randomly select 100 samples and construct a subset for experiments. 

Furthermore, the images in the subset are artificially contaminated by the  
Gaussian noise at a random position with the proportion of forty percent. In the 

experiments, we randomly select 8, 10, 12 and 14 images as training samples, 

respectively, and the rest images as testing samples. 

Average lowest classification error rates with different dimensions are given in 

Figure 1, which shows that our method slightly outperforms RDSL. 
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Figure 1. Average lowest classification error rates on the USPS database. (a) 8 samples, (b) 10 samples, (c) 

12 samples, and (d) 14 samples. 

5.2. Experiments on the Coil-20 Database

There are 1,440 grayscale images from twenty objects in the COIL-20 database and each 

object has 72 images which are taken at an interval of five degrees. In the experiments, 
the images are downsampled and their size becomes 32 32  pixels. We then add the 

Gaussian noise to each image at a random position with the proportion of forty percent. 

For each object, 6, 8, 10 and 12 images are randomly selected as training samples, 
respectively, and the rest images are used for testing. 
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Average lowest classification error rates with different dimensions are shown in 
Figure 2. From the figure we conclude that the performance of L1-DDA is much better 

than that of RDSL. 
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Figure 2. Average lowest classification error rates on the COIL-20 database. (a) 6 samples, (b) 8 samples, (c) 

10 samples, and (d) 12 samples. 

5.3. Experiments on the Yale Database 

The Yale database consists of 165 grayscale face images and the images are from fifteen 
subjects and different in three aspects: facial expression, lighting condition and whether 

or not wearing glasses. In the experiments, we use the processed images whose size is

32 32 pixels4. Similar to the experiments on the USPS and COIL-20 databases, we use 

the Gaussian noise to contaminate each image at a random position with the proportion 
of forty percent. Moreover, we randomly select 5, 6, 7 and 8 images from each subject 

as training samples, respectively, and the rest ones as testing samples. 

Average lowest classification error rates with different dimensions are given in 

Figure 3. From the experimental results, we can conclude that the proposed method is 
significantly effective for classification. 

 
4 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html 
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Figure 3. Average lowest classification error rates on the Yale database. (a) 5 samples, (b) 6 samples, (c) 7

samples, and (d) 8 samples. 

6. Conclusions 

In this paper, we propose L1-norm distance discriminant analysis with multiple adaptive 
graphs and sample reconstruction (L1-DDA) based on RDSL. Our method uses multiple 

adaptive graphs to preserve intra-class manifold structure and applies L1-norm and 

Shannon entropy to robustly and adaptively construct the graphs. Moreover, it uses the 

sample reconstruction technique to preserve the global structure of data and cutting 
squared L2-norm is applied to constrain noisy samples for better robustness. Finally, we 

use an alternating iterative technique to obtain projection vectors. Experimental results 

on three real datasets show that our method obtains better classification performance than 

RDSL. 
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