
Dist Frequent Next Neighbours: A
Distributed Galois Lattice Algorithm for

Frequent Closed Itemsets Extraction

Naomie Sandra NOUMI SANDJI a,1, Djamal Abdoul Nasser SECK a

a Department of Mathematics and Computer Science, Faculty of Science and
Technology, Cheikh Anta Diop University of Dakar, Senegal

Abstract. The general purpose of this paper is to propose a distributed version of
frequent closed itemsets extraction in the context of big data. The goal is to have
good performances of frequent closed itemsets extraction as frequent closed item-
sets are bases for frequent itemsets. To achieve this goal, we have extended the
Galois lattice technique (or concept lattice) in this context. Indeed, Galois lattices
are an efficient alternative for extracting closed itemsets which are interesting ap-
proaches for generating frequent itemsets. Thus we proposed Dist Frequent Next
Neighbour which is a distributed version of the Frequent Next Neighbour concept
lattice construction algorithm, which considerably reduces the extraction time by
parallelizing the computation of frequent concepts (closed itemsets).

Keywords. frequent itemset, association rules, closed itemset, Galois lattice, big
data, data mining.

1. Introduction

Association rule mining is a data mining task introduced by Agrawal et al. in 1993 [1]
that discovers meaningful relationships between attributes according to their associations
in databases. It consists of two steps: the discovery of frequent itemsets and the gener-
ation of association rules. The discovery of frequent itemsets, which is the most impor-
tant step, consists in discovering sets of attributes that appear very often with the same
groups of values on a large part of the data. There are several areas of application. In
the commercial sector [1], [2], the analysis of the transaction databases allows to de-
termine the items that are often bought together and thus to highlight the causal rela-
tionships between them, which then allows to elaborate a good commercial planning as
to the location of the items in the shelves.In the telecommunication sector, they are
used for example for the prediction of incidents in remote maintenance processes, in or-
der to limit the costs of manual interventions and to improve the quality of service[3].
In the medical field [4] ,organizations (laboratories, hospitals, etc.) can search frequent

1Corresponding Author: Naomie Sandra NOUMI SANDJI, Cheikh Anta DIop University of Dakar, Senegal,
B.P.:5005 Dakar-Senegal; E-mail:noumisandji03@gmail.com.

Modern Management based on Big Data II and Machine Learning and Intelligent Systems III
A.J. Tallón-Ballesteros (Ed.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210299

667

sets in patient databases to determine symptoms that precede an illness, or a treatment
to be provided.Several algorithms for frequent itemsets extraction have been proposed,
including the Apriori algorithm [5], which is one of the first algorithms proposed, and its
improved variants such as ECLAT [6], Fp-growth [7], etc. These algorithms sequentially
analyze the databases to extract frequent itemsets. With the explosion of data favored by
the development of the internet and data collection and storage tools, the size of transac-
tion databases becomes very important and the extraction task becomes a complex and
computationally expensive task, as it requires several scans of the transaction database
for the calculation of the support of the candidat itemsets in order to generate the fre-
quent ones. Next to these algorithms there are others based on frequent closed itemsets
such as CLOSE [8], CHARM [9], CLOSET [10], etc. Frequent closed itemsets consti-
tute reduced bases allowing to find all frequent itemsets, therefore reducing the set of
candidates to be processed and the number of scans in the databases. Thus the extraction
of frequent closed itemsets is more advantageous in the context of large volumes of data,
as they allow the improvement of the computation time. In this paper we propose Dist

Frequent Next Neighbour, which is a distributed version of the Frequent Next Neigh-
bour algorithm for extracting frequent closed itemsets from Galois (or concept) lattices.
We implemented this algorithm with the Apache Spark framework. This proposed algo-
rithm allows the efficient extraction of frequent closed itemsets by optimizing the closure
computation and the support computation of closed itemsets. The plan of the paper is
organized as follows: after presenting some definitions in section 2, a literature review is
presented in section 3. Then section 4 presents in detail the Dist frequent Next Neighbour
algorithm; section 5 evaluates the performances of the Dist Frequent Next Neighbour
algorithm and compares them to those of the Spark-Apriori algorithm [11] and finally
section 6 to conclude the paper.

2. Some Definitions of the Term

In this section we present some basic notions for the good understanding of the docu-
ment.

A Formal context also called transaction base, is a triplet K = (O,A,I), where O is
the set of objects or transactions, A is the set of attributes and I is the incidence relation
between O and A (O and A are two disjoint sets). We write oIai or (o,ai) ∈ I to mean
that the object o has for attribute ai. It is represented in the form of an array in which the
objects are in row and the attributes in column, we use 1 or X to represent the incidence
relation oIai. If an object o does not have an attribute ai we leave the box empty or we
put 0 in the box. Let O = {1,2,3,4,5,6,7} the set of objects and A = {a,b,c,d,e,f} the set
of attributes, the table 1 below presents an example of formal context.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours668

Table 1. Example of a formal context[12]

Objects
Attributes a b c d e f

1 X X X X X

2 X X

3 X X

4 X X X

5 X X

6 X X

7 X X

A item or item or attribute, is any element belonging to a finite set of distinct
elements. I = {x1,x2, ...,xm}.
Example: In the table 1, the finite set of elements I = {a, b, c, d, e, f} contains 5 items
a, b, c, d, e, f.

An itemset is a set of items or any subset of items of I . The number of items of an
itemset constitutes its length, an itemset containing k items is called a k-itemsets

The support of an itemset is the percentage of transaction instances that contain the
itemset. It allows to measure the interest of the itemset, mathematically the support of an
itemset X is defined by :

Support(X) = Card ({ti/X ⊆ ti, ti ∈ T). Where Card(A) is the cardinal of the set A.
A frequent itemset is an itemset whose support verifies the fixed support threshold

y . In other words the itemset X is frequent if and only if support(X) ≥ y.
A Galois correspondence [13] is a derivation operation which allows to establish

the link (the correspondence) between objects and attributes of a context K. It can be
defined from two functions f and g :
• Soit X ⊆ O, f : P(O) → P(A), f(X) = { a ∈ A/ ∀ o ∈ X, oIa }
• Soit Y ⊆ A, g : P(A) → P(O), g(Y) = { o ∈ O/ ∀ a ∈ Y, oIa }
Example in the table 1, f({3,5}) = {c} and g({a,c}) = {1,2} which means that the set of
attributes {a,c} has as a set of common objects {1,2}. In the same way, the set of objects
{3,5} has in common the attribute {c}.
The Closure of sets [13] of a set S is the smallest superset containing this set. The two
functions f and g will be used to compute the closure of X (X ⊆ O) and the closure of
Y (Y ⊆ A) representing respectively a subset of objects and a subset of attributes. To do
this we compose the functions f and g as follows:
• X ′′ =g(f(X)) : closing operator on objects
• Y ′′ = f(g(Y)) : closing operator on attributes.
A set is said to be closed if it is equal to its closure. Thus X is closed if X = X ′′ (respec-
tively Y is closed if Y = Y ′′).
A closed itemset is said to be frequent if its support verifies the minimum fixed support
.
A Formal concept is a couple (O1,A1), with O1 ⊆ O, A1 ⊆ A, O1 = A′

1, and A1 = O′
1.

O1 is the extension (object) of A1 and A1 is the intention (attribute) of O1.
O′

1, A′
1 correspond respectively to the derivation operations f (O1) and g(A1)

Example : ({1,2,3,5},{c}) and ({1,2},{a,c}) are both formal concepts.
A Concept lattice is a pair (S,≤), where: ≤ is an order relation on the set S. That

is to say a binary relation which verifiy the following properties:

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours 669

1. reflexivity : for all x ∈ S we have xℜx
2. antisymmetry: for all x,y ∈ S we have (xℜy and yℜx) involves x = y
3. transitivity: for all x,y,z ∈ S we have (xℜy and yℜz) involves xℜz

3. State of Art

Several algorithms have been proposed to solve the problem of itemset extraction in large
volumes of data [14,15,16,17,18,19]. The majority of these algorithms use techniques,
tools and strategies to solve the problems of generating a large number of candidates in
the candidate itemset generation phase, efficient support counting in order to improve
retrieval performance. They are also much more based on frequent itemsets extraction
algorithms such as Apriori [5], ECLAT [6] and Fp-Growth [7]. In this paper we propose
the Dist Frequent Next Neighbours algorithm for frequent closed itemsets extraction
which improves and speeds up the frequent itemsets extraction process as frequent closed
itemsets form a basis for frequent itemsets.

4. The Dist Frequent Next Neighbours Algorithm

In this section we will first present the Frequent Next Neighbours algorithm, then the
design of the Dist Frequent Next Neighbours distributed algorithm followed by its archi-
tecture and implementation.

4.1. The Frequent Next Neighbours Algorithm

The Frequent Next Neighbours [20] algorithm used to address the problem of deter-
mining only frequent concepts, rather than all concepts. We would like to recall that a
Frequent Concept is a tuple (extension, intention) with the intention being a Frequent

Closed Topic. The Next Frequent Neighbour algorithm is a top-down breadth-first search
algorithm (we start with the parent concept and generate its descendants (direct succes-
sors). It is formalized by the function Find Frequent Lower Neighbours which com-
putes and/or lists all the frequent lower neighbors (successors/children) of each concept
starting with the parent concept. The Frequent Next Neighbours sequential algorithm op-
erates in five steps that we have identified ourselves, namely:
step 1: The combinations of the intentions. In this step, combinations (union) are made
between the attribute (intention) of the current concept and each attribute of the set of
attributes of the context, excluding the attribute of the current concept. The objective is
to form potential intentions (or candidate intentions) Y1, for the calculation of the lower
neighboring concepts of the current concept.
Step 2: The support check. In this step, the support of each of the combinations obtained
in step 1 is computed and we retain those which have a support higher than or equal to
the fixed minimum support.
Step 3: The calculation of the neighboring concept. For each combination Y1 retained
in step 2 we compute the couple (Y 1′, Y 1′′), where Y 1′ and Y 1′′ are the first and second
derivatives which correspond respectively to the Galois connection functions g and fog,
g which associates the attributes with their objects and fog which is the closure operator
on the attributes.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours670

Step 4 : The maximality check. This step makes it possible to check the relation of cover-
age (direct link) between the parent concept and the calculated neighbour concept (child
concept) .
Step 5: The existence check. This last step allows to be reassured of the uniqueness of a
generated frequent concept. Generally, the first three steps are grouped into a single step
called the generation of frequent neighbour concepts of a concept.

4.2. Design of the Dist Frequent Next Neighbours Algorithm

In order to be able to design a parallel/distributed architecture of the Frequent Next
Neighbour concept generation algorithm, we first identified the independent actions of
the algorithm that can participate to the reduction of the execution time. We thus iden-
tified the step of generating the frequent neighbour concepts of a concept as an inde-
pendent step, because it can be carried out in a completely independent way. This step
which is the most complex step can be executed by several nodes simultaneously. And
the maximality and existence checks are delegated to a main node, because they require
the generation of all concepts by each node before being performed. Thus our distributed
approach is carried out in two phases:
Stage 1 : Parallel computation of frequent neighbour concepts. It is carried out in
three stages including the combinations of the intentions, the support control and the cal-
culation of the frequent neighboring concepts of a concept.
Stage 2 : The generation of frequent formal concepts (frequent closed itemsets) This
is done in two steps, the maximality check and the existence check.

4.3. Architecture of the Dist Frequent Next Neighbours Algorithm

To improve the performance of the frequent closed itemset extraction process, the Dist
Frequent Next Neighbours algorithm is based on the logical distribution of the search
space and a parallel execution of the generation of frequent neighbour concepts of a
frequent concept which are frequent closed itemset. Indeed, we make a distribution of the
set of attributes and on each distribution we have distinct combinations of attributes that
constitute subsets of the search space. Thus the architecture of our distributed approach
is given by the figure 1 below:

Figure 1. Architecture of the Frequent Next Neighbour distributed algorithm.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours 671

4.4. Implementation on Spark

This subsection presents in detail the different steps of the implementation of the dis-
tributed algorithm Dist Frequent Next Neighbours in the Spark environment via the pys-

park python API.
Stage I: Parallel calculation of frequent neighbour concepts

The algorithm starts by creating the object SparkContext, whose role is to coordi-
nate Spark applications, running as independent sets of processes on a cluster. It takes as
input the formal context file, the structure of this file is such that objects and attributes
are separated by the space character . The input file is initially loaded into a Spark RDD.
The use of RDDs makes it possible to make the most of the resources available at the
cluster level and also take advantage of fault tolerance. To facilitate access to these data
sets, broadcast variables (command broadcast()) were used to store the data dictionaries
in the cache of each node-slave. Next we start by creating our parent concept; we create
an RDD that contains the set of all context attributes, excluding the attributes of the cur-
rent concept. Initially our current concept is the parent concept. This rdd will allow us to
perform the parallel calculation of the frequent neighbourconcepts of a concept.
Stage II: The generation of frequent formal concepts (frequent closed itemset)

After each iteration of generating the frequent neighbour concepts of a concept,
the results are sent to the master node by the spark action collect() for maximality and
existence testing to generate the relevant and unique frequent concepts (frequent closed
itemset). stages I and II are repeated for all these generated frequent concepts until there
are no more frequent concepts.

5. Experimental Assessment

In this section, we analyze the performance of our algorithm by analyzing the extraction
time of frequent (closed) itemset compared to those of the distributed Apriori algorithm
on Spark (Spark-Apriori [11]). For this purpose, a series of several tests is performed by
varying the value of the minimal support.

5.1. Data Sets

We have used for our experiments the following databases : Mushrooms, Retails,
T40I10D100K. These databases are available on the internet. They are distinguished
by their type. We have the dense databases which better reflect the real transaction
databases, they produce a significant number of frequent itemset of rather large size, and
this even for high values of the support. They are also characterized by a large number
of attributes per object (transaction), and a limited number of distinct attributes. We also
have the sparse databases which most often reflect the synthetic transaction bases, char-
acterized by a few items per object and a large number of distinct attributes. The Mush-
rooms databases contain information about mushrooms, they contain 8124 transactions
with an average size of 23 attributes per object and 115 items corresponding to the char-
acteristics of mushrooms in total. Retails and T40I10D100K are synthetic databases built
according to the properties of sales data. They contain respectively 88162 and 100 000
transactions with an average size of 15 attributes per object for Retails and 40 attributes

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours672

for T40I10D100K. The table 2 lists the characteristics of these databases we used for our
tests.

Table 2. Characteristics of transactional test databasest

Basics Type Number of items Number of

transactions

Mushrooms Dense 115 8124

T40I10D100K Sparse 1000 100 000

Retails Sparse 16469 88 162

For the performance study we used a cluster on amazon’s cloud with 3 nodes whose
characteristics are: 8 virtual cores, 32GB of RAM and 128GB SSD.

5.2. Performance Evaluation

The results obtained are represented by the figures 2, 3 and 4.

Figure 2. Variation of the extraction time of the Spark-Apriori algorithm and the proposed algorithm for the
Mushrooms database as a function of the support thresholds.

Figure 3. Variation of the extraction time of the Spark-Apriori algorithm and the proposed algorithm for the
database Retails as a function of support thresholds.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours 673

Figure 4. Variation of the extraction time of the Spark-Apriori algorithm and the proposed algorithm for the
T40I10D100K base as a function of the support thresholds.

Interpretations:

Reading of the figures 2-4. We could know that :

• For the Mushrooms dataset, the response times of the Apriori distributed algo-
rithm are much lower than those of the Dist Frequent Next Neighbours algorithm
for support thresholds of 0.3, 0.4, and 0.5. This can be explained by the fact that
the Mushrooms dataset is dense and correlated. Then, we have a large number of
frequent itemsets generated during iterations, which is less advantageous for our
proposed algorithm, as it performs more operations than the distributed Apriori
algorithm. And for support thresholds of 0.7, 0.8 and 0.9, the response times of
the two algorithms tend to be identical. This is due to the fact that for these mini-
mum support values the number of frequent itemsets generated at each iteration is
approximately the same as the number of closed itemsets generated. As a result,
the search spaces are almost identical.

• For the Retails and T40I10D100K datasets, the response times of the Dist Fre-
quent Next Neighbours algorithm are much lower than those of the Apriori dis-
tributed algorithm whatever the value of the minimum support set. We observe a
degradation of the performance of the distributed Apriori algorithm.

6. Conclusion and Future Works

We presented a new approach for frequent itemsets extraction based on closed itemsets.
The proposed algorithm Dist Frequent Next Neighbour is an extension of the Frequent
Next Neighbour algorithm to big data. The fact that frequent closed itemsets are by
nature reduced sets of frequent itemsets has allowed to obtain a significant reduction of
the search space to be explored (reduction of the number of candidates to be considered
at each iteration). The experimental results show an efficiency compared to the Spark-
Apriori algorithm. However, we note that the concept computation phase is the most
computationally intensive phase of our algorithm; this is explained by the intersection
operations performed between the sets of objects and attributes which contain more and
more elements. In our future work, we plan to improve the concept computation by
optimizing or dispensing with the intersection computation between the sets of objects
and attributes which is very consuming in terms of memory space.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours674

References

[1] Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases.
In : Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data;1993.
p. 207-216.

[2] White EN. The stock market boom and crash of 1929 revisited. Journal of Economic
Perspectives.1990;4(2):67-83.

[3] Ali K, Manganaris S, Srikant R. Partial Classification Using Association Rules. In : KDD; 1997; p.
115-118.

[4] Pazzani M, Mani S, Shankle RW. Comprehensible knowledge discovery in databases. In : Proceedings
of the Nineteenth Annual Conference of the Cognitive Science Society; 1997; p. 596-601.

[5] Agrawal R, Srikant R. Fast algorithms for mining association rules. In : Proc. 20th Int. Conf. Very Large
Data Bases, VLDB; 1994; p. 487-499.

[6] Zaki MJ, Parthasarathy S, Ogihara M, Li W. Parallel algorithms for discovery of association rules. Data
Mning and Knowledge Discovery. 1997;1(4):343-373.

[7] Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: A frequent-pattern
tree approach. Data Mining and Knowledge Discovery. 2004;8(1):53-87.

[8] Pasquier N, Bastide Y, Taouil R, Lakhal L. Efficient mining of association rules using closed itemset
lattices. Information Systems. 1999;24(1):25-49.

[9] Zaki MJ, Hsiao CJ. CHARM: An efficient algorithm for closed itemset mining. In : Proceedings of the
2002 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics;
2002; p. 457-473.

[10] Pei J, HAN J, MAO R. Closet: An efficient algorithm for mining frequent closed itemsets. In : ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery; 2000; p. 21-30.

[11] Zhang943. Spark apriori [Online]. 2018. Available from: https://github.com/zhang943/Spark-
Apriori.git.

[12] Jatteau G. APPROXIMATION DU TREILLIS DE CONCEPTS POUR LA FOUILLE DE DONNÉES.
2005.

[13] Ganter B, Wille R. Contextual attribute logic. In : International Conference on Conceptual Structures.
Springer, Berlin, Heidelberg; 1999; p. 377-388.

[14] Li H, Wang Y, Zhang D, Chang EY. Pfp: parallel fp-growth for query recommendation. In : Proceedings
of the 2008 ACM Conference on Recommender Systems; 2008; p. 107-114.

[15] Yahya O, Hegazy O, Ezat E. An efficient implementation of apriori algorithm based on hadoop-
mapreduce model. International Journal of Reviews in Computing. 2012;12:59-67.

[16] Moens S, Aksehirli E, Goethals B. Frequent itemset mining for big data. In : 2013 IEEE International
Conference on Big Data. IEEE; 2013; p. 111-118.

[17] Qiu H, Gu R, Yuan C, Huang Y. Yafim: a parallel frequent itemset mining algorithm with spark. In
: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops. IEEE; 2014; p.
1664-1671.

[18] Zhang F, Liu M, Gui F, Shen W, Shami A, Ma Y. A distributed frequent itemset mining algorithm using
Spark for Big Data analytics. Cluster Computing. 2015;18(4):1493-1501.

[19] Rathee S, Kashyap A. Adaptive-Miner: an efficient distributed association rule mining algorithm on
Spark. Journal of Big Data. 2018;5(1):1-17.

[20] Carpineto C, Romano G. Concept data analysis: Theory and applications: John Wiley & Sons; 2004.

N.S. Noumi Sandji and D.A.N. Seck / Dist Frequent Next Neighbours 675

