
Towards Formalisation of Concept
Descriptions and Constraints

Matt SELWAY 1, Markus STUMPTNER and Wolfgang MAYER

Industrial AI Research Centre, UniSA STEM,
University of South Australia, Australia

Abstract. The integrated management of industrial systems in future
environments like Industry 4.0 requires the effective management of
information throughout the engineering life cycle. As systems pass
through phases of design, construction, operation, maintenance, renewal

or replacement, they will be administered via different information
ecosystems, requiring changing perspectives on their descriptive
information. A central role in the interplay of software and hardware
artefacts, functions, documentation and managing software is played
by the descriptions of concepts (i.e. formalised definitions of concepts
within the domain of quantification). In this paper we propose a
unified formalisation of descriptions that permits consistent analysis

of the relationships between the designs, types, products, and concrete
artefacts that can be found in the industrial engineering life-cycle.
The approach is consistent with our earlier framework that describes
artefacts, requirements and functional roles in the context of the DOLCE
foundational ontology.

Keywords. Interoperability, Artefacts, Descriptions, Relationships

1. Introduction

Effective construction and operation of industrial plants requires the management
of extensive bodies of information about the plant and its surrounding operational
and maintenance activities across the entire life cycle of the plant. Figure 1 depicts
the life cycle of a particular “object” in engineering parlance, such as a pump that
is part of a vehicle or an industrial plant. The pump itself is a complex object
composed from multiple parts—with its specification, design information, and
maintenance/fault records reflecting this subdivision—while being itself only a
small part of the whole plant. Each stage, from requirements through specification,
design, construction, operation, and maintenance, may be subject to information
being handled by different software systems based on different languages, data
models, or assumptions concerning scope and interpretation of data. As a result,
establishing and sustaining interoperability between these heterogeneous systems
is a long standing challenge, in particular in heavy industry sectors.

1Corresponding Author: Matt Selway, University of South Australia, GPO Box 2471, Adelaide
SA 5001, Australia; E-mail: matt.selway@unisa.edu.au.

Formal Ontology in Information Systems
F. Neuhaus and B. Brodaric (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210368

18

matt.selway@unisa.edu.au

Figure 1. Engineering Life Cycle of a Pump Object (Source: POSC Caesar Association)

Information modelling and exchange standards have been developed to
facilitate sharing of information among these information systems, but they remain
generally confined to particular subsections of the life cycle. Ontology based
information modelling offers to help overcome the information silos by providing
a principled view of the problem domain and the associated information artefacts.
Such an overarching reference model can then be used to mediate between the
individual system’s information models by expressing each individual information
system in terms of the reference model and exploiting the resulting mappings in
the transformations that implement the information exchange protocols. For the
construction of suitable transformations and to maintain consistent information
across system boundaries, automated validation and integration of information
are key. In [1], we presented a framework for such a reference model based on
explicit ontologically sound representation of artefacts.

This paper extends the formal coverage of the framework to manage, apply
and validate machine interpretable content of the specifications and descriptions
associated with an artefact in different life cycle stages, without the development
of custom application code for each aspect. In Section 2, we examine the
basic requirements for such an explicit representation and introduce declarative
constraints that embody domain specific invariants on the instances of the
ontology that represent a particular collection of technical artefacts relevant to an
application. We characterise the properties of constraints and distinguish necessary
and obligatory constraints in the context of evolving information. In Section 3 we
validate the formal model by applying it to describe the SLICER approach [2] for
representation of industrial artefact domains, showing that the framework can
restate the core axioms of SLICER within the extended DOLCE ontology from [1].

2. Basic Formulation

In this section we formalise the foundations of our approach. As in [1], the
representation is again formalised as extensions to the DOLCE foundational
ontology [3] enriched with the notion of social concept and description introduced
in [4], relationships reified in the domain of quantification suggested in [5], artefacts

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 19

Concept (CN)

Non-Agentive
Social Object

(NASO)

Domain
Relationship

(REL)

Artefact Type (AT)
(has kinds (AK)

and species (AS)
as subtypes)

Description (DS)

Formal Description
(FD)

defined by (DF) ►

* 1

defined by (DF) ►
{refines DF}

1

1

Constraint (CSTR)

◄ constant
part of (CP)

*

*

◄ is necessary in (NEC)
{subsets CP}

*

*

◄ is obligatory in (OBG)
{subsets CP}

*

*

Endurant (ED)

classified by (CF)▼
(at time t)

*

*

Physical Artefact
(PAO)

▼proper classified by (PCF)
 (at time t) {refines CF}

*

*

artefactually classified by (ACF)▼
(at time t) {refines CF}

*

*

◄classified by relationship (CF)
(n-ary, at time t)

*

*

subconcept of (SB)
{transitive}

*

*

used by (US)

* 1

introduced by (INTR) ►
*

*

introduced by (INTR) ►

*

*

Figure 2. Conceptual overview of the types and relations in the formalisation

proposed in [6], and functions and roles discussed in [7]. For brevity, we consider
only a subset of categories to do with concepts and their descriptions. An overview
of these concepts is illustrated in Figure 2. In particular, we focus on artefactual
objects and their specifications.
(1) CN(x) → NASO(x) (Concepts are non-agentive social objects)
(2) REL(x) → CN(x) (Domain Relationships (types) are concepts)
(3) AT(x) → CN(x) (Artefact Types are concepts)
(4) AT(x) → AK(x) ∨ AS(x) (Artefact types are A.Kinds or A. Species)2

It should be noted that since the basis of our formulation reifies concepts and
their descriptions in the domain of quantification, so too must the constraints
be reified within the domain of quantification. Therefore, the typical approach
that would use, say, modal logic and axioms at the top-level axiomatisation is
inappropriate for defining the domain specific constraints. Moreover, the approach
taken here, which avoids the use of modal logic, quarantines the domain specific
definitions and constraints from the framework used to describe them, allowing
local re-evaluation of constraints when data changes in the system (e.g., a new
temperature value is sensed). This is important in an information system that
may be managing very large sets of instances and constant data updates.

Descriptions (really, formal descriptions) uniquely define a concept and comprise
constraints (CSTR), which can be necessary or obligatory (i.e., constraints that
can be falsified without impacting an object’s classification). This specialises the
definition of [4] which allows a description to define multiple concepts or none at
all.3 We take an intensional view that requires concepts to be defined by (DF) a

2Artefact Kinds are more general types such as ‘Pump’, while Artefact Species are more
detailed, physically and functionally, such as the C12 pump model sold by a manufacturer.

3This difference is due to formalising the content of formal descriptions to be constraints
rather than other, simpler descriptions that do not define a concept at all; this does not change

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints20

description, indeed it is part of a concept’s identity. The constraints extend the
content of descriptions to more than the ‘used by’ relation of [4]. We maintain
consistency with [4] in that we consider the semantic content of a description to
not change over time (12, 13).
(5) DS(x) → NASO(x) (Descriptions are non-agentive social objects [4])
(6) FD(x, y) → DS (Formal descriptions are descriptions)
(7) DF (x, y) → CN(x) ∧ DS(y) (The concept x is defined by the description y)
(8) FD(x) → ∃!y CN(y) ∧DF (y, x) (9) CN(x) → ∃!y DS(y) ∧DF (x, y)

(10) CSTR(x) → NASO(x) (A constraint is a non-agentive social object)
(11) P (x, y, t) → ED(x) ∧ ED(y) ∧ T(t) (Endurant x is a part of y during t [3])
(d1) CP(x, y) � ∃t (PRE(y, t))∧∀t (PRE(y, t) → P (x, y, t)) (Constant Part [3])
(12) NEC (x, y) → CSTR(x) ∧ FD(y) ∧ CP(x, y) (x is necessary in y)
(13) OBG(x, y) → CSTR(x) ∧ FD(y) ∧ CP(x, y) (x is obligatory in y)
(14) CSTR(x) ∧ FD(y) ∧ P(x, y) → NEC (x, y) ∨OBG(x, y)

Classification Necessary constraints must always evaluate to true for an object
to be considered to be classified by the concept with the constraint. In contrast,
obligatory constraints may be violated while still considering the object to be
classified by the concept. To handle this, we weaken the definition of classification
(CF) from [4] and introduce two specific types of classification: artefactual
classification, ACF , and proper classification, PCF .

Artefactual Classification embodies the idea that an artefact is intended to
be of a certain type, or is created to conform to a particular specification or
artefact species [6]. However, it may not always conform to it, for example, if it is
broken down. Proper classification, on the other hand, assumes the notion of full
conformance to the constraints of the description and applies to non-artefactual
concepts, e.g., social concepts, and roles. Importantly, proper classification allows
for a concept to be classified by another concept, allowing the construction of
multi-level hierarchies describing concepts at different levels of abstraction.
(15) CF (x, y, t) → ED(x) ∧ CN(y) ∧ T(t) (endurant x is classified by y at

time t [4])
(16) ACF (x, y, t) → CF (x, y, t) (17) PCF (x, y, t) → CF (x, y, t)
(18) ACF (x, y, t) → PAO(x)∧AT(y) (ACF holds between a physical artefactual

object4 and an artefact type)

Relationship Classification Moreover, we adopt the relationship classification
relation from the second approach of [5], i.e. for a relationship with arity 2 there
is a relation CF (x, y, r, t) (extendable to different arities) meaning ‘x and y are
in the relationship r during t’. Since the formalisation of relationships is not the
focus of this paper, we provide only a minimal definition. However, additional
axioms could be introduced to formalise a particular theory, such as those of [5,8].
Since relationships are concepts, relationship classification implies the existence
of an instance (RELI) that is classified by the relationship concept. The relation

the definition in [4] that a concept be defined by a single description nor does it impact the
ability for different information objects to express a formal description in different ways.

4For simplicity we consider only physical artefacts in this paper; however, the formalisation
presented can be easily extended to consider abstract artefacts such as Information Artefacts.

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 21

instance is specifically constantly dependent (SD) [3] on the objects in the relations
(i.e. the relation can only be present while the related objects are present).
(19) CF (x, y, r, t) → ED(x) ∧ ED(y) ∧ REL(r) ∧ T(t)
(20) CF (x, y, r, t) → ∃iRELI(i) ∧ PCF (i, r, t) ∧ SD(i, x) ∧ SD(i, y)

Constraint Evaluation Constraints and descriptions can be applied (i.e. evaluated
for truth) in the context of an object. This is denoted by φ(x, t), which means
‘the constraint/description φ is satisfied by x during t.’ Therefore, the requirement
that the constraints of concepts are satisfied by the objects classified by them can
be considered as follows:
(21) ACF (x, y, t) ∧DF (y, φ) → ∧

ψ,NEC (ψ,φ) ψ(x, t)

(All necessary constraints must be satisfied by an object
that is artefactually classified by a concept)

(22)* PCF (x, y, t) ∧DF (y, φ) → ∧
ψ,P(ψ,φ) ψ(x, t)

(All constraints must be satisfied by an object that is
proper classified by a concept)

The problem with using (22) for proper classification is that it only works with
strict classification, i.e., when each level of classification is fully described by the
immediate level above. However, when working with multiple levels of classification,
constraints may be defined that relate qualities, etc. across multiple levels and that
cannot be satisfied at an intermediate level. This occurs with technical artefacts
where the designs, e.g., specify particular requirements or nominal qualities, such
as ‘operating temperature’, that the physical artefact is to fulfil. In traditional
representations, the operating temperature would be defined as a necessary quality
for the artefact kind ‘Pump’, while a subclass representing an artefact species of
pump (i.e., a pump model) would constrain the range of the quality to enforce
the requirement. This implies that the physical pump would cease to be a pump
if its physical temperature strayed outside of the range of its design, or various
other nonsensical outcomes depending on formalisation and commitments in use.
This is due to conflating the qualities of the design (the requirements), with the
qualities of the physical artefact.

A multi-level classification system separates these: there are distinct concepts
for the artefact kind ‘Pump’, the artefact species (or pump models), and the
concept of ‘Pump Model’. The latter describes what all designs of pump—i.e.,
the artefact species which subclass ‘Pump’—are to specify, such as the ‘operating
temperature’ requirement distinct from the ‘temperature’ quality of all pumps.
The two are naturally linked via a constraint, such as ‘the temperature of a pump
should remain within the operating temperature range defined by its pump model.’

To do so in a general fashion, the constraint between the requirement at
one level and the quality at another must be definable. Such a constraint is not
satisfied at the concept of ‘Pump Model’, nor at a specific model of pump, but
rather at the level of the physical pump artefact. Therefore, proper classification
cannot simply demand that all of the described constraints be satisfied by the
classified object as it would prevent the definition of such multi-level constraints.

Artefactual classification does not exhibit this issue as it always classifies an
artefact, never a concept, and thus always requires a complete description.

To support constraints across multi-level classification hierarchies, we replace
(22) with (23) to take into account the nature of the constraints and whether or not

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints22

they can be evaluated in an object’s context. Doing so maintains consistency when
propagating constraints across classification levels via domain specific relationships
by only evaluating constraints if the classified object is not a concept (hence
fully described) or if the (abstract) quality or relationship has been previously
introduced. The idea stems from the notion that the constraint that introduces
the use of a quality or relationship is not the concept on which it should be
applied, rather it should be applied at a lower level of abstraction. When applying
the basic framework, where each level is fully described, the evaluation of all
constraints will occur at the immediate level below as expected, as all the qualities
and relationships will be introduced by the classifying concept.
(23) PCF (x, y, t) ∧DF (y, φ) → ∧

ψ,EV (ψ,φ,x) ψ(x, t)

(24) EV (ψ, φ, x) ↔ P(ψ, φ) ∧ (¬CN(x) ∨
(CN(x) ∧ ∀q [US (q, ψ) ∧ q ∈ QA → ¬INTR(q, φ)]) ∨
(CN(x) ∧ ∀r [US (r, ψ) ∧ REL(r) → ¬INTR(r, φ))])

)

(Constraint ψ of
description φ can

be evaluated in the
context of object x)

Where INTR means ‘introduced by’ and US means ‘used by’, which are
formalised later for the internal structure of descriptions and constraints.

Subconcepts A concept can be a subconcept of another, similar to subsumption
between unary predicates [4]. Everything that is classified by a subconcept is
classified by the parent concept. In particular, if an object is artefactually classified
or proper classified by a concept, then it must also be artefactually classified or
proper classified by any parent concepts. As a result, an object must satisfy the
descriptions of all parent concepts (28, 29).
(25) SB(x, y) → CN(x) ∧ CN(y) (x is a subconcept of the concept y)
(d2) SB(x, y) � ∀t[∃z[CF (z, x, t)] ∧ ∀z[CF (z, x, t) → CF (z, y, t)]

]

(adapted from [4])
(26) SB(x, y) ∧ SB(y, z) → SB(x, z) (Subconcepts are transitive)
(27) P(x, y, t) ∧ SB(y, z) → P(x, z, t), for P ∈ {ACF ,PCF}
(28) ACF (x, y, t) ∧ SB(y, z) ∧DF (z, φ) → ∧

ψ,NEC (ψ,φ) ψ(x, t) (from 21, 27)

(29) PCF (x, y, t) ∧ SB(y, z) ∧DF (z, φ) → ∧
ψ,EV (ψ,φ) ψ(x, t) (from 23, 27)

Constraint Structure Constraints must be defined in some constraint language,
which we leave flexible in this framework. However, there are minimum
requirements. Since the descriptions (and, hence, constraints) must be anchored
in the ontology [4], the language must support the ability to: (a) reference the
primitives of the ontology; (b) reference well known concept names and object
names from the domain of quantification (treated as constants); (c) reference a
special constant, e.g. self, representing the contextual object with respect to
which the constraints are evaluated; (d) refer to qualities and values (regions of a
quality space); (e) include logical operators and quantifiers, such as conjunction,
disjunction, universal quantification, existential quantification, etc.

These requirements allow defining key concepts and constraints: (a) relationships
linked to primitive predicates, e.g., domain specific part-of relationship associated
with the primitive parthood predicate (P); (b) constraints on the existence of a
quality on the classified objects, e.g., wheels require a diameter; (c) constraints
on the values of a quality, e.g., 10 inch wheels have a diameter within the 10

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 23

inch region of the quality space. This may be inexact to allow for tolerances,
e.g., 10± 1/4 inches (i.e., nominal qualities); (d) constraints on the existence of
entities of certain types, e.g., a concept may require a specific relationship to an
object of another type, while relationships may have constraints on the existence
of mediating entities; (e) constraints based on temporal aspects and perdurants
such as process instances, e.g., some constraints on a piece of equipment may only
apply while the equipment is participating in a “running” process.

To keep the theory agnostic of any particular constraint language, we re-
purpose the ‘used by’ relation (US) of [4] to characterise the contents of constraints
in terms of the qualities, relationships, and concepts that they reference. The
re-purposed relation is formalised almost identically to the original, allowing the
original to be derived from the contents of the description, rather than as primitive
on descriptions themselves. In particular, the axiom that enforces the use of a
concept in its own description (33) remains applicable as it embodies the idea that
the constraints are in the context of an object of that concept. Moreover, each
constraint uses the defined concept (34) since the reference to the special constant
self implicitly uses the concept of the description and is the starting point of
each constraint. In addition, we specify the ‘introduced by’ relation (INTR) to
identify constraints that introduce qualities or relations, not just use them. This
allows for the identification of the point in a classification hierarchy that a quality
or relationship is introduced and not just referenced. When dealing with a specific
constraint language, this relation should be defined in terms of that language.
(30) US (x, y) → (x ∈ Q ∨ CN(x)) ∧

(DS(y) ∨ CSTR(y))
(The quality or concept5 x is used by

the description or constraint y)
(31) INTR(x, y) → (x ∈ Q∨REL(x))∧

(FD(y) ∨ CSTR(y))
(The quality or relationship x is

introduced by y)
(32) INTR(x, y) → US (x, y) (An introduced quality/relationship

is used by the constraint)
(33) DF (x, y) → US (x, y) (A concept is used by the description

that defines it [4])
(34) DF (x, y) ∧ P(c, y) → US (x, c) (All parts/constraints of a description

use the concept the description defines)
(35) US (x, y) → (PRE (y, t) → PRE (x, t)) (Used concepts must be present

when the using entity is present [4])
(36) US (x, y) ∧ FD(y) ↔ ∃cCSTR(c) ∧ P(c, y) ∧ FD(y) ∧ US (x, c)
(37) INTR(x, y) ∧ FD(y) ↔ ∃cCSTR(c) ∧ P(c, y) ∧ INTR(x, c)

A special handling of quality types is required as they are universals. Here we
use a treatment similar to DOLCE [3] which considers a second order axiom as
syntactic sugar for a finite list of first-order axioms. This can be achieved since, for
a given ontology, we can assume a finite set of quality types, Q. In addition, we
can posit sets representing the partitioning of quality types as physical, abstract,
or temporal as QP , QA, and QT , respectively. However, this approach mixes
constraints over universals with elements in the domain of quantification and
requires modification of the universals of the ontology to incorporate domain
specific quality types. An alternative would integrate quality types into the domain

5Since relationships are concepts they do not have to be explicitly mentioned.

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints24

of quantification in a similar fashion to concepts and relationships; this will be
performed in future work.

Example Constraints Consider the simplified representation of a type of pump
(such as a particular model of centrifugal pump) and its specification. It may
include constraints on necessary parts6, for example, an impeller of a certain
type. The impeller itself may define necessary constraints such as its diameter
being of a certain dimension (within some tolerance). Moreover, the pump may
include constraints on its operating temperature and flow rate7 such that they
must stay within certain ranges but can be violated. For example, if the connecting
pipe is broken the flow rate will drop without affecting the object’s status as a
pump. The referenced quality types (e.g., operating-temp) are assumed to have
been incorporated into the ontology. Example 1 illustrates these constraints using
a first-order logic-like language where terms in small caps represent names of
concepts and qualities that are referenced in the constraint. As the constraints
are reified in the domain of quantification, they are illustrated as symbols with
their content defined in the boxes. In addition, the following shorthand is used for
classification: cn(x, t) → CF (x, cn, t), r(x, y, t) → CF (x, y, r, t)
The relations qt and ql from DOLCE [3] indicate that something is a quality and
a quale (i.e., a value of a quality), respectively. For brevity, the quantification of
time inside constraint expressions is in the context of the object for which the
constraint is evaluated. When no explicit quantification is specified it is implicitly:
∀tPRE (self, t). For example, in ψpump1, a pump must have an impeller only for
those times at which the pump is present.

Example 1 (Definition of a pump concept and associated constraints)

AS(pump) ∧DF (pump, φpump) ∧NEC (ψpump1, φpump) ∧OBG(ψpump2, φpump)

∧OBG(ψpump3, φpump)

ψpump1 = ∃xhas-part(self, x, t) ∧ impeller(x, t)

ψpump2 =
∃q qt(q, self) ∧ operating-temp(q)

∧ ql(v, q, t) ∧ P(v, 100◦-200◦C, t)

ψpump3 = ∃q qt(q, self) ∧ flow-rate(q) ∧ ql(v, q, t) ∧ P(v, 10± 0.5 L/m , t)

AS(impeller) ∧DF (impeller, φimpeller) ∧ NEC (ψimpeller1, φimpeller)

ψimpeller1 = ∃q qt(q, self) ∧ diameter(q) ∧ ql(v, q, t) ∧ P(v, 10±1/4”, t)

REL(has-part) ∧DF (has-part, φhas-part) ∧NEC (ψhas-part1, φhas-part)

ψhas-part1 = self(x, y, t) → P(y, x, t)

We now briefly introduce the SLICER framework before defining how it can
be integrated to improve the granularity of the descriptions.

6For simplicity of the example we ignore that parts of an artefact can be replaced.
7Such constraints would only apply while the pump is running; however, since we do not cover

(artefactual) processes in the present work for brevity, such distinctions are not made.

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 25

3. Using the SLICER Relationship Framework for Relationship Concepts

The SLICER (Specification with Levels based on Instantiation, Categorisation,
Extension, and Refinement) framework was developed in the context of complex
domain models of the engineering life cycle to reduce the modelling load via flexible
meta-level modelling techniques.

A hierarchy of layers is used to separate ontological from representational
(“linguistic”) aspects, a concept known as multilevel modelling. In the engineering
life cycle, a higher level generally expresses the relationship between an entity and
its definition (or description), correlating with the intentional design process [9].

A level of description can be established either by instantiation, or by enriching
the vocabulary used to formulate the descriptions. This corresponds to the concept
of extension in specialisation hierarchies [10]: if a subclass describes additional
properties (attributes, relationships, etc.) then these properties can be used to
impose constraints on its specification and behaviour.

To support the purpose of describing joint metamodels in interoperability
scenarios, SLICER is based on a flexible notion of levels identified by applying
the semantic relationships below.

Instantiation and Specialisation Levels of description are dynamically derived
based on finer distinctions of the instantiation and specialisation relations.
Specialisation relationships extend the original class (by adding attributes,
associations, or behaviour, i.e., constraints or state change differentiation, SpecX)
or refines it (by adding granularity to the description, SpecR). Of the two, only
SpecX introduces a new model level.

Similarly, instantiation is characterised as Instantiation with Extension (InstX,
allowing additional properties, etc.) or Normal Instantiation (InstN). Instantiation
always introduces additional model levels. Objects created through InstN cannot
be instantiated further and form the most basic-level of individuals in a model.

Categories are concepts providing external (“secondary”) grouping of entities
based on common properties and/or explicit enumeration of members. We do not
discuss them further here.

Specifications are expressed via the Subset by Specification (SbS) relation. The
specification class (for example EquipmentModel) exists at the same level as the type
it refers to as it can define constraints with respect to that type. Specifications
and Categories relate to two common ways in which powertypes are applied [2].

Descriptions A description, e.g. a set of constraints, can refer only to the
properties specific to its object (or, if the description is for a specification, the
properties of the type associated with the specification) and are inherited through
specialisation, while instances of a type must satisfy its description.

This framework can now be used on top of the basic formalisation from
Section 2. That formalisation allowed for the definition of concepts, their (intended)
instances, and the checking of constraints between an entity and its classifying
concepts. As a result, the definitions of SLICER relationships can be reformulated
within the ontological framework, by defining the relationships as instances of REL,
linking them to appropriate primitive relations, and incorporating the SLICER

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints26

axioms as constraints within their descriptions. This way different information
representations, including information models and data models at different levels
of expressivity, can be formalised within the same ontological framework.

The following definitions validate the ontological framework against the
requirements of specifying SLICER relationships.

3.1. General Instantiation and Specialisation Relationships of SLICER

The formulation of the core relationships of general instantiation (Inst) and
specialisation (Spec) relationships is shown in Eqs. (38) and (39), respectively.
Below, Inst is a relationship concept (REL) defined by (DF) the description φInst
with the necessary constraint (NEC) labelled ψInst1. ψInst1 is a reified expression
indicating that instances of the relationship imply adherence to the standard
classification relation, cf. (15), tying the domain relationship to the ontological
primitives. The general specialisation relationship is defined analogously.

REL(Inst) ∧DF (Inst, φInst) ∧NEC (ψInst1, φInst),

ψInst1 = self(x, y, t) → CF (x, y, t)
(38)

REL(Spec) ∧DF (Spec, φSpec) ∧ NEC (ψSpec1, φSpec),

ψSpec1 = self(x, y, t) → SB(x, y, t)
(39)

3.2. Relationships Incorporating Extension and Refinement

SLICER introduces more specific relationships based on whether an object extends
(adding additional attributes, behaviour, etc.), refines (adding granularity, e.g.
by restricting the range of an attribute), and/or instantiates (i.e. assigns values
to its attributes) another [2]. These relationships can be defined as shown in
Eqs. (40) and (41). All specialisations may include refinement, while SpecX must
incorporate additional attributes, i.e. qualities or relationships in this context
(refer Eq. (41)). To support this we add a constraint that enforces the propagation
of constraints across all Spec relationships such that necessary constraints remain
necessary and obligations remain obligations (Eq. (40)). This remains consistent
with the evaluation of descriptions of parent types during classification. Although
it would be symmetrical with SpecX to enforce refinement in SpecR, doing so
would disallow the ability to extend the vocabulary of concepts in the case where
no refinement to the modelled attributes is included. For the same reason, we
have not defined the identity of concepts based on their intension, that is, the
constraints included in their descriptions. (However, a specific application could
choose to include additional axioms to enforce such a constraint.)

DF (Spec, φSpec) ∧NEC (ψSpec2, φSpec),

ψSpec2 =
self(x, y, t) ∧DF (x, φx) ∧DF (y, φy) →

∀c [P(c, φy) → P(c, φx)]
for P ∈ {NEC ,OBG}

(40)

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 27

REL(SpecX) ∧DF (SpecX, φSpecX) ∧ NEC (ψSpecX1, φSpecX)

∧ NEC (ψSpecX2, φSpecX),

ψSpecX1 = self(x, y, t) → Spec(x, y, t) ,

ψSpecX2 =
self(x, y, t) ∧DF (x, φx) ∧DF (y, φy) →

∃z (REL(z) ∨ z ∈ Q) ∧ US (z, φx) ∧ ¬US (z, φy)

(41)

A similar characterisation can be given of InstX and InstN, as illustrated in

Eqs. (42) and (43). The intended application of SLICER is for the definition of

artefacts, so we can define InstN in terms of artefactual classification.8

REL(InstX) ∧DF (InstX, φInstX) ∧ NEC (ψInstX1, φInstX)

∧NEC (ψInstX2, φInstX),

ψInstX1 = self(x, y, t) → Inst(x, y, t) ∧ PCF (x, y, t) ,

ψInstX2 =
self(x, y, t) ∧DF (x, φx) ∧DF (y, φy) →

∃z (REL(z) ∨ z ∈ Q) ∧US(z, φx) ∧ ¬US(z, φy)

(42)

REL(InstN) ∧DF (InstN, φInstN) ∧ NEC (ψInstN1, φInstN)

ψInstN1 = self(x, y, t) → Inst(x, y, t) ∧ ACF (x, y, t)
(43)

This characterisation implies that only concepts can be in an InstX relationship

with another concept, while non-concepts are the instances in InstN relationships.

Since non-concepts do not have descriptions, they cannot be extended with

constraints on additional quality types or relationships. Since the ontological

framework ensures that qualities have values (or quales), the assignment of values

to qualities does not need to be included in the constraints of InstN. Similarly, given

the axioms adopted for relations above, the existence of a value for a relationship

required by a constraint is already enforced; therefore, it is not necessary to include

a constraint for this in the description of InstN.

3.3. Subset by Specification

Another important relation in SLICER is Subset by Specification (SbS), which

is a form of powertyping relation that states the instances of the specification

type are subconcepts of the associated concept [2]. Such a construct is frequently

encountered in design and manufacturing settings. A minimal form of this

relationship can be defined within the ontological framework as shown in Eq. (44).

8This may not be the case for the full framework including roles and functions.

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints28

REL(SbS) ∧DF (SbS, φSbS) ∧NEC (ψSbS1, φSbS) ∧NEC (ψSbS2, φSbS),

ψSbS1 = self(x, y, t) → CN(x) ∧ CN(y) ,

ψSbS2 = self(c, c′, t) ∧ Inst(x, c, t) → Spec(x, c′, t)

(44)

3.4. Constraint Propagation Across Instantiation Relationships

Finally, SLICER introduces an intuitive method of propagating constraints across
multiple levels of instantiation/classification to where they can be evaluated. The
propagation is determined by whether a constraint can be evaluated for the current
object based on the presence or absence of appropriate attributes [2]. Within the
ontological framework we can make a similar distinction based on the types of
qualities and relations used by a constraint along with the INTR relation.

For example, a higher level concept may define constraints based on physical
qualities; however, concepts are non-physical and cannot have physical qualities in
DOLCE [3]. Therefore, when a concept instantiates the higher level concept, the
constraints using physical qualities are propagated to the instantiating concept.
Then, when a physical object instantiates the bottom-most concept, the constraints
can be evaluated in the context of a physical object. A similar situation occurs for
abstract and temporal qualities, except that other non-physical objects (not just
concepts) can have abstract qualities. Therefore, the propagation only occurs for
the abstract qualities that have not yet been introduced. Eq. (45) illustrates how
the propagation can be defined on the descriptions of the instantiation relationships
using a shorthand to abstract over necessary and obligatory constraints.

DF (Inst, φInst) ∧ NEC (ψInst2, φInst),

ψInst2 =

self(x, y, t) ∧DF (x, φx) ∧DF (y, φy) →
∀c, q [P(c, φy) ∧ US(q, c) ∧ q ∈ QP ∪QT → P(c, φx)] ∧
∀c, q [P(c, φy) ∧ US(q, c) ∧ ¬INTR(q, φy) ∧ q ∈ QA → P(c, φx)] ∧
∀c, r [P(c, φy) ∧US(r, c) ∧ ¬INTR(r, φy) ∧ REL(r) → P(c, φx)]

for P ∈ {NEC ,OBG} (45)

Constraint Propagation Example Consider extending the constraints of Example
1 to utilise the SLICER model. Here the operating temperature constraint is not
defined solely as operating temperature; instead, it is defined as a comparison
between the values of two qualities that are introduced in different concepts
such that the constraint is propagated over two instantiation relationships. The
constraint is defined between the operating temperature (physical) quality, defined
on PumpModel, and the (actual) temperature quality, defined on Pump (the
superclass of all pump types). The operating temperature is a design (or nominal)
quality that can be constrained to a specific region by the different pump models/
types. The concept definitions and their constraints are illustrated in Example 2.

Example 2 (Definition of pump concept and constraints using SLICER)

AK(Pump) ∧DF (Pump, φPump) ∧ NEC (ψPump1
, φPump)

ψPump1 = ∃x qt(x, self) ∧ temperature(x)

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 29

CN(PumpModel) ∧ SbS(PumpModel,Pump, t) ∧DF (PumpModel, φPumpModel)

∧NEC (ψPumpModel1, φPumpModel)

∧OBG(ψPumpModel2, φPumpModel)

ψPumpModel1 = ∃q qt(q, self) ∧ operating-temp(q)

ψPumpModel2 =
qt(qot, self) ∧ operating-temp(qot) ∧ ql(vot, qot, t) ∧
qt(qt, self) ∧ temperature(qt) ∧ ql(vt, qt, t) → P(vt, vot, t)

AS(C12Pump) ∧ SpecX (C12Pump,Pump, t) ∧ InstX (C12Pump,PumpModel, t)

∧DF (C12Pump, φC12Pump) ∧NEC (ψC12Pump1, φC12Pump)

∧NEC (ψC12Pump2, φC12Pump)

ψC12Pump1 = ∃xhas-part(self, x, t) ∧ impeller(x, t)

ψC12Pump2 = qt(q, self) ∧ operating-temp(q) → ql(100◦-200◦C, q, t)

Therefore, to be a proper instance of C12Pump, a physical pump’s temperature
must be consistent with the operating temperature range of 100◦-200◦C. If the
obligation is not fulfilled, the pump is still considered to be a C12Pump due to the
artefactual classification; however, it does not conform to its specification.

The constraints defined on PumpModel will be propagated to the description
of C12Pump via the instantiation relationship, thereby making it an obligatory
constraint for all pumps. This demonstrates the ability to tailor the semantics in
the ontology to specific domains entirely within the domain of discourse. Different
domains may use different sets of semantics side-by-side: indeed, as defined here,
the SLICER semantics are specifically suited to artefacts.

4. Related Work

Wang et al. [11] have conducted ontological analysis of software systems based
on a requirements engineering perspective. They defined multiple levels of
detail, bottoming out in code, where each level is constitutedBy lower-level
pieces of software in a relationship defined by Baker [12]. Moreover, each level
(excluding code) is associated with a specification or description. To do so they
define a relationship intendedToImplement that corresponds roughly to our ACF
relation; the “intended” implying that the implementation may not be exactly
correct. Relations intendedToSatisfy and presupposes are used to relate different
levels of requirements and separate out environment assumptions. However, the
specifications are not broken down further and no axiomatisation is given.

Guarino and Melone [13] informally discuss the ontological status of design
objects, based on the viewpoint of architects, and therefore assuming that design
objects represent physical artifacts. The basic role is that of design element which,
installed in a particular position, serves as a design component. A conventional
system component, as in [6] is a particular location considered by the designer and

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints30

a physical system component is an actual physical object resulting from the design.
While Guarino and Melone identify these different design objects, they do not
consider the definition or content of the specifications.

The work by Sanfilippo et al. [14] is most similar to our own, focusing on a
structural decomposition of design objects that bottoms out in quality spaces.
The axiomatisation of (artefactual) concepts is based on some of the same basis as
our work such as DOLCE [3] and previous work on roles [4]. The characterisation
differentiates and compares design concepts vs. requirements concepts, but does not
consider the relationship to instances of the concepts. In contrast, we differentiate
necessary and obligatory constraints in the context of how they are fulfilled by
artefact instances. In addition, our characterisation of concepts goes further than a
simple group of properties as we explicitly associate the concepts with constraints.

More recently, Sanfilippo et al. [9] investigated the foundational ontological
basis of nominal and actual qualities through three possible representations:
Nominal qualities as qualities, Nominal qualities as properties, and Nominal
qualities as descriptions. Nominal qualities are highly related to engineering design
as they define constraints to which an artefact, with actual qualities, is expected to
conform to some degree. Our approach fits into the latter representation, in which
nominal qualities are defined by descriptions, where we characterise the content of
the descriptions as formal, executable constraints. While we have only illustrated
simple constraints, including what would be considered nominal qualities, our
approach is capable of (and intended for) much more complex constraints.

The work of [15,16] does not formalise the description of an artefact, but
merely its interface for assembly of cosimulation processes, but could serve as
another use case addressing one specific phase of the artefact life cycle. While their
GOPPRR approach supports the incorporation of different domains or information
representations into a single model, there is limited to no ontological commitment.

In [17], a group of modular ontologies built on the Basic Formal Ontology
upper ontology are described that cover the engineering life cycle, including
‘design specifications’, etc. The approach treats design specifications as Information
Content Entities (in the terms of the BFO-conforming Information Artifact
Ontology), rather than characterising their content as generic constraints that can
be applied to their instances. Also, as pointed out in [9], the BFO-based approach
may have difficulty representing nominal qualities (and, hence, more complex
constraints) as the Information Content Entities must be defined for things that
may not yet exist, which is in conflict with their definition.

5. Conclusion

In this work, we have brought together two threads of our work on large-scale
model-driven interoperability: the framework for artefacts and roles, based on an
extension of the DOLCE ontology [1], and the SLICER (Specification with Levels
based on Instantiation, Categorisation, Extension, and Refinement) approach
providing the semantic building blocks for the cleanly structured representation
of industrial artefact domains in detail [2]. A key innovation of SLICER is the
explicit handling of artefact descriptions, and based on Masolo and others’ work on

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints 31

social roles [4] we have provided a framework for the formalisation of descriptions
that enables the modelling and management of domain specific constraints on
technical artefacts. We have shown how to represent necessary and obligatory
constraints in the context of evolving information, and obtained a framework
capable of validating information models across multiple life cycle stages w.r.t.
specific domain requirements. The framework is being incorporated in our F-Logic
based transformation and validation environment [2]. Future work will use this
to perform tasks such as requirements verification, incorporate the handling of
functions and roles, and study the semantic SLICER relationship types as meta-
ontological properties in the plant life cycle domain. Also, adopting a reduced
ontological commitment following the (Constructive) Descriptions and Situations
framework [18] would allow this work to be applied across different foundational
ontologies in support of semantic interoperability for complex constraints.

References

[1] Jordan A, Selway M, Mayer W, Grossmann G, Stumptner M. An Ontological Core for
Conformance Checking in the Engineering Life-cycle. In: Proc. FOIS 2014; 2014. .

[2] Selway M, Stumptner M, Mayer W, Jordan A, Grossmann G, Schrefl M. A conceptual

framework for large-scale ecosystem interoperability and industrial product lifecycles. Data
Knowl Eng. 2017;109:85-111.

[3] Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A, Schneider L. WonderWeb
Deliverable D17: The WonderWeb Library of Foundational Ontologies. In: TR-NRC,
Institute of Cognitive Sciences and Technology. Italy; 2003. .

[4] Masolo C, Vieu L, Bottazzi E, Catenacci C, Ferrario R, Gangemi A, et al. Social Roles

and their Descriptions. In: Proc. KR ’04; 2004. p. 267-77.
[5] Masolo C, Guizzardi G, Vieu L, Bottazzi E, Ferrario R. Relational roles and qua-individuals.

In: Proc. AAAI Fall Symposium on Roles; 2005. p. 103-12.
[6] Guarino N. Artefactual Systems, Missing Components and Replaceability. In: Franssen M,

et al., editors. Artefact Kinds. Springer; 2014. p. 191-206.
[7] Mizoguchi R, Kitamura Y, Borgo S. Towards a Unified Definition of Function. In: Proc.

FOIS; 2012. p. 103-16.
[8] Guarino N, Guizzardi G. ”We Need to Discuss the Relationship”: Revisiting Relationships

as Modeling Constructs. In: Proc. CAiSE; 2015. p. 279-94.
[9] Sanfilippo EM, et al. A Foundational View on Nominal and Actual Qualities in Engineering.

In: Proc. FOIS. Cape Town; 2018. .
[10] Schrefl M, Stumptner M. Behavior Consistent Specialization of Object Life Cycles. ACM

TOSEM. 2002;11(1):92-148.
[11] Wang X, Guarino N, Guizzardi G, Mylopoulos J. Towards an Ontology of Software. In:

Proc. FOIS 2014. Rio de Janeiro; 2014. .
[12] Baker LR. The Ontology of Artifacts. Philos Explor. 2004;7:99-112.
[13] Guarino N, Melone MRS. On the ontological status of design objects. In: 1st Workshop

on AI and Design at AIIA; 2015. .
[14] Sanfilippo E, Masolo C, Porello D. Design knowledge representation: an ontological

perspective. In: 1st Workshop on AI and Design at AIIA; 2015. .
[15] Wang H, Wang G, Lu J, Ma C. Ontology Supporting Model-Based Systems Engineering

Based on a GOPPRR Approach. In: Proc. WorldCIST’19. Cham: Springer; 2019. p. 426-36.

[16] Lu J, Wang G, Törngren M. Design Ontology in a Case Study for Cosimulation in a
Model-Based Systems Engineering Tool-Chain. IEEE Systems Journal. 2020;14(1):1297-308.

[17] Otte JN, et al. An ontological approach to representing the product life cycle. Applied

Ontology. 2019;14(2):179-97. Available from: https://doi.org/10.3233/AO-190210.
[18] Gangemi A. Norms and plans as unification criteria for social collectives. Auton Agents

Multi Agent Syst. 2008;17(1):70-112.

M. Selway et al. / Towards Formalisation of Concept Descriptions and Constraints32

https://doi.org/10.3233/AO-190210

