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Abstract. Current standards cannot cover the safety requirements of machine 
learning based functions used in highly automated driving. Because of the opacity 
of neural networks, some self-driving functions cannot be developed following the 
V-model. These functions require the expansion of the standards. This paper focuses 
on this gap and defines functional reliability for such functions to help the future 
standards control the quality of machine learning based functions. As an example, 
reliability functions for pedestrian detection are built. Since the quality criteria in 
computer vision do not consider safety, new approaches for expression and 
evaluation of this reliability are designed. 
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1. Introduction 

The development of semiconductor industry and artificial intelligence brings us closer to 
fully automated driving. The transition from hands-on driver assistance to hands-off 
automated driving, however, requires a huge change of system safety [1], which may 
rebuild the development process of safety systems in vehicles and redefine the legal 
responsibility between manufacturers and users. The utilization of artificial neural 
networks is seen as an effective approach for some or even all tasks in highly automated 
driving (HAD) [1,2], but the opacity of neural networks challenges the standard 
development process and functional safety considerations.   

In this work, we consider the applicability of existing standards on machine learning 
based functions applied in HAD vehicles and propose a new kind of reliability to fill the 
gap of HAD safety requirement, which the current standards do not cover. We build 
functions to express this reliability mathematically in pedestrian detection and generalize 
the approaches that can improve this reliability. 

Our paper is organized as follows. Section 2 introduces the insufficiency of current 
standards when applied to high-level self-driving vehicles. In section 3 we limit the scope 
of application and define the reliability functions for different purposes. Section 4 
discusses the enhancement methods of reliability. We summarize our work in section 5. 
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2. The Conversion of the Functional Safety 

Functional safety is an important part of the overall system safety in E/E/PE 
(Electrical/Electronic/Programmable Electronic) systems. It aims to protect people from 
unacceptable risk of physical injury or health damage, which is caused by human errors 
or system failures. In automobile industry, because of the high-level integration of 
electronic components and its inseparable relationship with safety, the functional safety 
must be considered in detail in the concept phase and completely validated in the test 
phase. Thus, the International Organization for Standardization published the ISO 26262: 
Road vehicles – Functional safety [3] to guide the automobile manufacturers. ISO 21448: 
Road vehicles – Safety Of The Intended Functionality [4], which is generally abbreviated 
as SOTIF, on the other hand, concentrates on how a target function is to be specified, 
developed, verified and validated so that it can be regarded as sufficiently safe. 

Over the last decade, the development of neural networks (NN) and deep learning 
brings breakthroughs in computer vision and robotics, which deeply impacts the 
autonomous driving seen today both in academia and industry [2]. In automobile industry, 
the traditional standards for functional safety are no more suitable to guide the design 
and verification of NN-based safety functions [1,2]. The ISO 26262 follows the famous 
V-model, which splits the target function into sub-specifications and develops it under 
those specifications. Such a process is called white-box, the whole data processing is 
transparent and understandable. On the contrary, the NNs are generally black-box, the 
mapping between in- and output is a statistical approximation, which is not humanly 
understandable. The SOTIF aims to address such insufficiency of ISO 26262, but focuses 
mainly on driver assistance systems rather than HAD systems [1]. In driver assistance 
systems, the driver shall safely take over the vehicles when failure occurs. However, 
HAD system itself shall make sure a hazard-free status when failure occurs. Thus, the 
SOTIF cannot cover the safety requirements of HAD. The prospect of HAD demands 
more attention on the normalization of the development of NN-based functions in 
automobile. One of the core jobs for the normalization is bringing the functional safety 
requirements into HAD functions. Like the requirement of hardware reliabilities in ISO 
26262, the reliabilities of functions in HAD system should be defined, so that 
corresponding ASIL (Automotive Safety Integrity Level) and safety methods can be 
determined.  

The in ISO 26262 defined reliability, however, cannot describe the reliability of the 
HAD functionalities. In HAD systems, multiple sensors will be used for perception of 
the environment. Based on the environment modeling, the NNs will be performed to 
understand the surroundings (e.g. pedestrian, obstacle and parking space) and control the 
vehicle to drive safely. In this case, unlike traditional mechatronic systems in vehicles, 
one specific sensor takes responsibility for several tasks and multiple sensors work 
together for one specific task. Therefore, we propose to use the functional reliability to 
describe the quality of the specific HAD function. Functional reliability can be validated 
and calculated in development phase by using a validation dataset. In future standards, a 
reliability benchmark can be given to guide the automotive manufacturers. An example 
is given in the following sections to clarify this concept.  

Similarly, the concept of software reliability exists in software engineering [5]. It 
can also not cover the HAD safety requirements, because different influences on safety 
of different functions are not considered. Imagine the consequence of a not detected 
person on the road and a not detected parking space. Different from software reliability, 
the functional reliability is function-oriented and services for safety evaluation.  
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3. The Reliability of Machine Learning Functions 

In this chapter we use pedestrian detection as an example to clarify how the functional 
reliability of machine learning functions in HAD can be evaluated and how it describes 
the quality of the function regarding safety.  

3.1. Function Boundary 

In system safety approaches such as STAMP (Systems-Theoretic Accident Model and 
Processes), the safety constraints or boundaries must be clearly defined [6]. To analyze 
the intended function reliability, the function boundaries and use cases need to be 
clarified. Consequently, defined use cases are only part of the intended function [7]. 

There are two types of strategies in highly automated driving: End to End and 
perception-planning-action pipeline [2]. End to End means the algorithm maps the sensor 
data directly to driving commands without any middle steps, while the classical approach 
manually decomposes the process into the aforementioned pipeline. NVIDIA believes 
that handcrafted interfaces ultimately limit performance by restricting information flow 
through the system and researches continuously on End to End solution, they developed 
PilotNet to verify the strategy [8]. However, safety requirements for End to End learning 
approaches are more abstract, formulating and validating measurable performance 
criteria is significantly more difficult [1]. The decomposed process generally follows the 
perception and localization � high level path planning � behavior arbitration � motion 
control pipeline. In each part, several functions will be designed. Therefore, the function 
boundaries can be narrowly defined, so that the law responsibilities can be clarified when 
products are put on the market. Thus, considering the executability, the first boundary 
we formulate is: the reliability of machine learning based pedestrian detection is defined 
for decomposed HAD strategy. 

The training technique is another factor that deeply influences the safety boundary. 
A neural network can be fully trained and then applied. During application the 
knowledge, abilities and performance of the network will not be changed. This is so-
called offline training. Such training is centralized, all deployments have exactly the 
same performance. The opposite is online training, the neural network continuously 
learns from the inputs during application, for this, a mechanism to assess inputs is 
necessary. Obviously, each deployment of such networks evolves differently because of 
the individual diversity. This approach is often utilized in reinforcement learning. Clearly, 
decentralized, online training imposes currently great challenges for safety validation [1]. 
Thus, we define our second boundary: the considered reliability is aimed at centralized, 
offline trained neural networks. 

Under these constraints we define the pedestrian detection function in HAD. First, 
we formulate the prioritized definition, which is safety-relevant and shall be verified. 
Hereafter comes the generalized definition. 

� Prioritized definition: detection and tracking of all the pedestrians in front of 
the driving direction of the automated driving vehicles in urban areas (velocity 
usually under 60 km/h). 

� Generalized definition: detection and tracking of all pedestrians in all directions 
around the vehicles. 

Figure 1 shows a scenario of the use case and the corresponding definition zone.  
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Figure 1. Driving scenario. The red-green colored area satisfies the prioritized definition. The red to green 
color gradient describes the urgency to take actions. Detection of people in  demands the highest quality, 

while prediction ability attenuation in  is allowed. Interaction with people like  belongs to researches in 
pedestrian behavior understanding [9,10]. Due to its safety irrelevance, detecting  is just a task for 

generalized definition. 

3.2. Statistical Reliability of the Function 

Camera is the main sensor that is generally used for pedestrian detection. CNN-based 
neural networks will be used for image processing.  Unlike traditional sensor, which 
directly changes the measured quantity to an electrical signal, the output of NN is a 
statistical result based on the big training data. Traditional sensors give out a measured 
value with a confidence interval satisfying gauss distribution, which can be represented 
with measurement uncertainty. This representation is meaningful in quality management. 
The prediction from NN is also given confidence, however, this value reflects the 
goodness of fit of the sample to the fitted function, which cannot match the real 
probability of a right prediction. Thus, this description is not suitable for reliability. 

In computer vision, the following concepts are widely utilized to measure object 
detection: – true positive  – false positive,  – false negative,  – true negative, 
Precision ( ) – the ratio of  compared to all detections, Recall ( ) – the ratio of  
compared to all ground truths, 

   (1)

and  – Intersection Over Union: 

   (2)

where  denotes the area of a region in an image,  is the detected bounding box 
of the object, and  is the area of the bounding box of the matched ground-truth.  

Since these concepts quantitatively describe the quality of single-object detection 
algorithms in different dimensions, we intend to expand them in defining reliability.  

The  and  or  and  are not mathematically independent. The predefined 
 determines the boundary between  and . A detection is , when 

, and vice versa. Thus, the  should be uniformly 
defined for all pedestrian detection methods in HAD, so that the basic quality of single 
detection can be defined, and the  and  can be decoupled. Defining  
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requires discussion and verification. A high  leads acceptable detection seen 
as an error, while a low  leads to insufficient precision on perception, the 
reported detection may deviate greatly from the ground truth.  

Considering the reaction (e.g. brake, steer, decelerate) time of vehicles, the distance 
 between objects and the vehicle must be given for evaluating the reliability. The 

braking distances for the common speed limits of 30km/h and 50km/h in urban areas are 
10m and 29m respectively [11]. We suggest using objects between 10 – 20m and 30 – 
50m to evaluate the reliability. Other distances like 100m can be used complementarily 
for uncommon situations.  

Precision  influences the passenger comfort of the vehicle. Algorithms with poor 
precision mark more positive detections than ground truths. The vehicle status will be 
more frequently adjusted, unnecessary emergency brakes might be operated. Recall  
influences pedestrian safety. Undetected ground truths might lead to collisions and 
accidents.  represents the accuracy of detection. The higher the IOU reaches, the 
more accurately the velocity and distance can be predicted. 

Based on the above arguments, we define the algebraic reliability : 

   (3)

where possibly  
 — ,  and ,  etc. 
 — influence factor,  

The algebraic reliability describes the functional quality comprehensively. 
Reliabilities for different distances will be separately represented. Defining  is a task 
similar to defining , a balance between comfort and safety must be 
considered. Regarding the importance of safety,  should dominate , followed by . 

Furthermore, we define the reliability vector : 

 
  (4)

The reliability vector  enables the visualized representation. See Figure 2.  

 
Figure 2. Visualization of reliability vector. A verified acceptable minimum reliability requirement can be 
shown as safety surface in the figure. The point  is the ideal function. The volume between them is 
defined as safety volume. Only the pedestrian detection algorithm, whose reliability vector points into this 

volume, can be seen as functional safe. 
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Regarding unevenness of above defined , representing the reliability by the 
magnitude of the vector is not recommended. 

Other researchers suggested the utilization of vertical and horizontal pixel deviation 
between ground truth and detection to judge the confidence level [7]. In this case, the 
direction influences of bias can be considered, but it complicates the reliability 
expression. 

3.3. Dynamic Reliability of the Function 

SSD (Single Shot MultiBox Detector) is nowadays one of the best object detection 
algorithms, it reaches an average precision (AP) of more than 84.5% for person detection 
in 512×512 images [12]. The improved algorithm FSSD reaches even 90.2% for the same 
inputs, with a single NVIDIA 1080Ti GPU, the speed reaches 65.8 FPS for 300×300 
input size [13]. Such a score is impressive for normal object detection tasks. Nevertheless, 
in HAD systems, the missed detections must be handled to satisfy safety requirements. 
One of the simplest solutions is voting mechanism: Prediction bases on 3 frames, in 
which the object being in at least two frames as  marked will be seen as positive. 
Suppose the AP of FSSD 90.2% is valid for each detection, feed it 3 independent frames, 
the final AP in this case can be improved significantly to 97.3%. 

On the other hand, the pedestrian detection self has limited meaning without the 
above-mentioned high-level functions like velocity estimation and motion prediction. 
Such approaches belong to Multi-Object Tracking (MOT) in computer vision. Since 
HAD is a highly dynamic system, an effective prediction for other surrounded traffic 
participants can ameliorate both safety and comfort by predictive driving. The standard 
employed algorithm is tracking-by-detections [14], in which detections in continuous 
frames are generally basic inputs for tracking functions. The pedestrian detection we 
defined also includes pedestrian tracking. The deviation of the same object in different 
frames can influence the prediction quality.  

Thus, we propose to validate the dynamic reliability of the function. In MOT there 
are two widely used metrics to evaluate the tracking quality: CLEAR MOT metrics and 
ID scores [14]. CLEAR MOT focuses on detection quality, which is similar to the criteria 
of statistical reliability, while the approach ID scores concentrates on matching cascade. 
The matching cascade, however, is not a safety-relevant factor in HAD systems. The 
switch of the IDs of two different pedestrians will not influence the vehicle’s motion 
control. Therefore, both these two metrics are not suitable for dynamic reliability. 

 

 
Figure 3. Left:  is the ground truth motion of the object,  is the tracking motion of the object.  will be fed 

to other functions. The key frames are the frames, where the object motion will be estimated.  is the 
deviation vector we defined to describe the tracking quality. Right: Move all the endpoints of  to , cross 

all the endpoints of , we see the distribution of all deviations of predictions. The average of  is . 
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We propose to use the average deviation vector of predictions to describe the 
prediction accuracy and to use the distribution of the deviations to describe the prediction 
precision. See Figure 3. 

This description can perfectly match the traditional measurement techniques. The 

 matches system error and the distance between a cross and  point can be seen as 
random error. In [15], the pixelwise deviation distribution of YOLOv2 algorithm used in 
self-driving is investigated. It shows that the x- (horizontal axis) and y-pixel (vertical 
axis) errors are independently in the x- and y-pixel directions normally distributed, so 
that the  and  are evaluable. Thus, the dynamic reliability can be represented: 

   (5)

where  and  and  is the above-defined distance. 

This definition can benefit the safety functions designed for HAD. Suppose an 
algorithm has a dynamic reliability  in driving direction eques 1m and in cross direction 
eques 0m,  is 1m, the object is predicted 30m directly in front of the vehicle, it can be 
concluded that the distance is 95.45% (2- ) farther than 29m and 99.73% (3- ) farther 
than 28m. Using 28m for motion control is 99.73% suitable for this scenario. 

This distribution is not proved valid for other algorithms. Regarding the principle of 
creating bounding box, we assume that YOLO-like algorithms (One-stage) satisfy 
normal distribution. The distribution of two-stage methods should be investigated. Even 
if the deviation is not normally distributed, the corresponding probability density 
function can represent the dynamic reliability and guide the design of safety functions. 

4. Improve the Reliability of safety-related Machine Learning Functions 

The reliability we proposed aims to reflect the ability of an accurate perception of the 
driving surroundings. The more accurate the perception is, the safer and more 
comfortable the vehicles can drive. Thus, the optimization of reliability plays a role in 
development. Considering the perception process we propose two directions to improve 
the reliability, namely sensory and algorithmic.  

Camera, the main sensor for pedestrian detection, has inherent insufficiencies like 
low resolution, color sensitivity and dynamic range because of the limited computing 
power and the performance of light-sensitive elements. Sensor fusion is an effective 
approach to counteract the inherent insufficiencies of single sensor. A LiDAR, for 
example, can sense the environment during the camera blindness when driving in and 
out of the tunnel. Another widely used method to improve functional safety is 
redundancy. Additional fault tolerance can generally improve a safety integrity level. It 
is also a practical solution to the blindness of specific camera caused by specific sunlight 
angles. 

Furthermore, the prediction algorithms like LSTM (Long Short-Term Memory) and 
Kalman Filter can provide a predicted location of the covered object, or when the camera 
is blinded. With the help of pedestrian behavior understanding, which is based on 
Bayesian networks, a multi prediction for pedestrian motion can be constructed. The 
prediction will reference the past location and velocity as well as the intention of the 
pedestrian. The interaction between vehicles and pedestrians will be built like it in reality. 
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5. Conclusions and Future Work 

In this work, we investigated the evolution of safety requirements with the development 
of autonomous driving. We expounded on the insufficiency of existing standards 
applying in HAD and proposed the application of functional reliability. To evaluate and 
validate the reliability of machine learning based HAD functions, we put forward the 
definition of a reliability function under predefined constraints to quantitatively describe 
the reliability of pedestrian detection regarding safety and comfort. At last, we indicated 
some practical methods, which can improve the defined reliability. 

In the future, we will implement and verify some sensor fusion and algorithm 
methods we mentioned. We are striving to realize a safe, reliable and robust pedestrian 
detection proposal in HAD. We suggest the automated driving community and 
automobile industry taking closely part in creating validation datasets and defining key 
parameters in HAD to accelerate the standardization of HAD vehicles development. 
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