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Abstract. Recently, long short-term memory (LSTM) networks have been widely 

adopted to help with fault diagnosis for power systems. However, the parameters of 
LSTM networks are determined by prior knowledge and experience and thereby not 

capable of dealing with unexpected faults in volatile environments. In this paper, we 

propose and apply an improved grey wolf optimization (IGWO) algorithm to 
optimize the parameters of LSTM networks, aiming to circumvent the drawback of 

empirical LSTM parameters and enhance the fault diagnosis accuracy for on-load 

tap changers (OLTCs). The composite multiscale weighted permutation entropy and 
energy entropy yielded by the grasshopper optimization algorithm and variational 

mode decomposition (GOA-VMD) method are used as the inputs of LSTM 

networks. The IGWO algorithm is applied in an iterative manner to optimize the 
relevant super arithmetic of the LSTM. In this way, an IGWO-LSTM combination 

model is constructed to classify different faults diagnosed in OLTCs. Experimental 

results verify the diagnosis performance superiority of the proposed method over 
several widely used comparison benchmarks 

Keywords. Long short-term memory (LSTM) network, fault diagnosis, on-load tap 

changer (OLTC), parameter optimization, improved grey wolf optimization 

(IGWO) 

1. Introduction 

On-load tap chargers (OLTCs) are important components in transformers but are 

relatively fault-prone compared to other components. In recent years, it has been reported 

that the faults in OLTCs have accounted for more than 20% of transformer faults, and 

this percentage keeps increasing [1]. OLTCs are mechanical components in transformers, 

and therefore when switching OLTCs, complex friction and collision among components 

generate random and nonlinear vibration signals [2]. As a result, one can process and 

study these vibration signals to extract features, summarize patterns, and finally diagnose 

operational statues [3]. Time-frequency methods are suitable for the analysis and 

processing of non-stationary signals and can characterize the relationship between signal 

frequency series and time [4]. Among them, the wavelet analysis is widely used for 

OLTC fault diagnosis by virtue of its multi-resolution, high accuracy, and small 

reconstruction error [5]. However, due to the arbitrary selection of wavelet bases, the 

analytical results by time-frequency analysis can hardly characterize mechanical statuses 

in an accurate manner. As an alternative, mode decomposition methods, e.g., empirical 
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mode decomposition [6] and variational mode decomposition [2], can extract vibration 

characteristic information of OLTCs quickly and efficiently. However, it is still 

challenging to cope with randomness and real-time diagnosis requirements for OLTCs 

by these mode decomposition methods. Recently, with the advances in artificial 

intelligence (AI) technologies, researchers also resort to hidden Markov model (HMM) 

[7], support vector machine (SVM) [8], convolutional neural network (CNN) [9] to help 

with OLTC fault diagnosis. Among these technologies, HMM cannot yield synchronized 

data, and thereby features are easily submerged in noise. SVM can be greatly affected 

by internal parameters and relies on an extra optimization process with higher 

computational complexity. The main issues with CNN are the low training efficiency 

and manually adjusted parameters. Different from the aforementioned AI technologies, 

the long short-term memory (LSTM) is a special architecture of recurrent neural network 

(RNN) and has been proven effective for fault diagnosis of power systems [10]. On the 

other hand, the LSTM parameters are determined empirically based on previous 

knowledge and experience and thereby not capable of dealing with unexpected faults in 

volatile environments. In this regard, we propose and apply an improved grey wolf 

optimization (IGWO) algorithm to optimize the parameters of LSTM networks, aiming 

to circumvent the drawback of empirical LSTM parameters and enhance the fault 

diagnosis accuracy for OLTCs. In particular, the proposed IGWO algorithm inputs 

composite multiscale weighted permutation entropy and energy entropy yielded by the 

grasshopper optimization algorithm and variational mode decomposition (GOA-VMD) 

method to LSTM networks and optimizes relevant super arithmetic of the LSTM on an 

iterative basis. In this way, we can construct an IGWO-LSTM model to efficiently 

classify different faults diagnosed in OLTCs. The rest of the paper is organized as follows. 

We first propose the novel OLTC fault diagnosis method and expatiate on the 

optimization of LSTM parameters in Section II. Experimental setups are presented in 

Section III, analysis of experimental results in Section III. Finally, the paper is concluded 

in Section V. 

2. IGWO-LSTM fault diagnosis based on multi-feature fusion 

2.1. Feature fusion based on CMWPE 

The GOA-VMD method lies on the core of the proposed the OLTC fault diagnosis 

method. Specifically, the GOA [11] is used to optimize the number of intrinsic mode 

function (IMF) components and a penalty factor yielded by VMD, which are denoted as 

K and γ. It is stipulated by that the minimum envelop entropy of a vibration signal 

detected from the OLTC denoted as min Ep is adopted as the fitness function the fault 

diagnosis process  

In order to further verify the effectiveness of the proposed method, CMWPE is 

introduced into the multi-scale analysis. CMWPE [12] is also a measure of system 

complexity. The specific calculation steps are as follows: 

input vibration signal ( )( 1,2,3, , )x i i N� , ), ,the number of embedded bits is τ, and 

the delay time is m;   

 initialization CMWPE = , s = 1; 

for ( )( 1,2,3, , )x i i N� , ), coarse-grained time series , , [( 1)/ ] 1

1{ ( ( )}s d s d N s
jy y y j � �
�� can 

be expressed as: 
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Where, s is scale factors, [N + 1)/s] represents the a ceiling function, 
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Where, CMWPE is the average WPE value 

CMWPE CMWPE CMWPE( , , , )= Y m s� ,s=s+1, repeat steps 2-4 ,until s > Smax. 

The vibration signal of OLTC is decomposed by GOAVMD to obtain l IMF. The 

CMWPE value and energy value are calculated respectively, and then two of them are 

fused to form the feature vector. The matrix of CMWPE is as follow: 
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Where, Hη,η represents the η value of the IMF element with scale η. η  {1, 2, · · · , l} 

and η  {1, 2, · · · , s},then add an average of 1 to l elements in each H column vector, 

which is expressed as follows: 1 2[ , , , ]SH H H H� , ], ,
1

1 lH H
l

 �
� � .The energy 

eigenvector is expressed as 
,1 ,2, ,=[ , , ]l l l jB E E E, ]j,

. Where El,j represents the i-th energy 

eigenvalue corresponding to the j-th IMF component, and 
2

di jE c t
��

��
� � . where ci(t) 

represents the magnitude of each scale coefficient or natural mode function at time t. The 

energy characteristic B is standardized, and is expressed as follows: 

                                              
,1 ,1 ,=[ / , / , , / ]l l l jB E E E E E E� � �� ///j, /                                   (4) 
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l
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All the features are fused to form the feature matrix [ , ]D H B�� . In this paper, the 

sample signal with length N is divided into z segments. Each segment has 1024 samples 

so that the characteristic samples can be expressed as 
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Where, J = s + l represents the dimension of solving the problem, and Z represents the 

number of the Grey Wolf population, which is applied in the next scene. 

2.2. The improved Grey Wolf Optimization 

The Grey Wolf Optimization(GWO) [13] algorithm simulates the social system and 

hunting behavior of a wolf pack, and the optimal solution is set as α wolf; the second 
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optimal solution is β wolf, the third optimal solution is σ wolf, and the remaining solution 

is ω wolf. The hunting process of wolves can be divided into three stages: the stage of 

tracking and approaching the prey; surrounding and harassing; and the stage of attacking 

the prey, and the mathematical model of surround behavior is: 

                                  ( +1)= ( ) ( )P PQ t Q A C Q t Q t� � �                                        (6) 

Where t is the current iteration number, C and a are coefficients, a is the distance control 

parameter, C = 2r1, a = 2ar1 − a, QP is the position vector of the prey, Q is the position 

of the grey wolves, and r1 and r2 are random variables uniformly distributed in [0,1]. The 

mathematical model of the tracking target is as follows: 

                               

1 1 1 1

2 2 2 2

3 3 3 3

( +1)= ( ) ( ) ( )
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                                   (7) 

                                             1 2 3( ) ( ) ( )
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                                          (8) 

In the hunting process, α, β and σ wolves locate the position of the prey and form a 

enclosure. Under the guidance of α, β and σ wolves, ω wolf wolves surround the prey. 

According to the literature, the GWO algorithm can easily fall into the local optimum 

[14]. This paper improves the GWO algorithm. Inspired by particle swarm optimization 

(PSO), a strategy of adjusting parameters by random distribution is proposed according 

to the literature [15]: Assuming that the distance parameter a obeys a random number of 

a certain distribution, the value of a control parameter is adjusted by using the 

characteristics of random variables to make the algorithm jump out of the local optimum; 

if the optimal individual is near, the random distribution control parameter produces a 

relatively small value, which is conducive to accelerating the convergence speed of the 

algorithm. The specific formula is as follows: 

                                 initial initial final( ) ( ) rand() randn()a t a a a �� � � � � �                         (9) 

Where, ainitial and afinal represent the initial value and the end value of the distance control 

parameter, respectively. rand() is [0, 1] , randn() is a random number that obeys the 

normal distribution, λ (variance) is used to measure the deviation degree between the 

control parameter and the random variable and the mathematical expectation (mean 

value). It is to control the error of parameter a in the value selection and make the control 

parameter evolve to the expected control parameter a. 

2.3. Parameter optimization of optimized LSTM based on IGWO 

Long short-term memory (LSTM) neural network is a variant of recurrent neural network 

(RNN). It can learn the long-term dependence of input data and alleviate the problems 

of gradient disappearance and gradient explosion in model training. It has obvious 

advantages in processing data with nonlinear time series. 

As multiple parameters need to be adjusted in the process of using LSTM, the parameter 

values have a significant impact on the model prediction and classification effect, and 

the manual search of parameters is time-consuming and laborious, so the goal 

programming algorithm is needed to assist the parameter optimization. Therefore, the 

IGWO algorithm in this paper is used to optimize the LSTM. In the neural network, the 

number of hidden layer neurons, and the learning rate are optimized as follows: 
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 The number and range of optimization parameters are determined. Set the values of 

the parameters to be optimized in LSTM, and set the upper and lower limit arrays ub and 

lb. 

The parameters are expressed as follows: 

                                                         1 2 3 1=[ , , , , , ]v vLb lb lb lb lb lb�1,1lb lb, ,,1,1                            (10) 

                                                      1 2 3 1=[ , , , , , ]v vUb ub ub ub ub ub�1,1b, ,,1,1                           (11) 

Where v is the number of parameters to be optimized, lbv is the lower limit of the vth 

parameter to be optimized, and ubv is the lower limit of the vth parameter to be optimized. 

 The model index accuracy of LSTM is used as the fitness function output, and the 

fitness function is as follows: 

                                                           100%Fitness
J
�

� �                                          (12) 

Where �  represents the number of correct classifications. 

 Set algorithm parameters: population size m, maximum iteration parameters tmax, ainitial, 

afinal; 

 Initialize the grey wolf population { , 1,2, , }id i Z� , }, ,and calculate the fitness value 

of each grey wolf individual using equation (12); 

The fitness value is sorted in non-decreasing order, and the first, second and third 

individuals of the wolf population are found, which are α,  β and δ. In the iterative process, 

the position of each individual is updated using (7)and (8) in the wolf population; 

 Use formula (9) to generate random parameters a, A and C;

Judge whether the algorithm reaches the termination condition (t tmax). If the 

conditions are not met, repeat steps . If the termination condition is reached, the 

iteration is stopped, and the optimal solution is output. The test flow chart is shown in as 

Fig. 1. 

Fig. 1: Test flow chart 

 

            
Fig. 2: Contact fault setting                            Fig. 3: Acceleration sensor location 
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In this paper, the model CM111-50-63B-10193W Huaming on-load tap changer was 

adopted, and lc0151 was used in the experiment. The advantage of this collector is that 

the traditional piezoelectric sensor and charge amplifier are integrated, which simplifies 

the test system and improves the test accuracy and reliability. A typical mechanical fault 

of the OLTC switch was simulated. Specifically, it was divided into to normal operation 

marked as 1, contact burning marked as 2, contact loosening marked as 3, and contact 

shedding marked as 4. for comparison. A total of 60 groups were collected in each state, 

and the sampling frequency was 50kHz. The contact fault setting is shown in Fig. 2. The 

acceleration sensor is shown in Fig. 3. 

3. Analysis of Experimental Results 

To verify the superiority of this method, the optimal value (the maximum accuracy) and 

the standard deviation are used as the evaluation indexes. Comparing the support vector 

machine(SVM)assigned marked as 1. kernel extreme learning machine(KELM) marked 

as 2,Convolutional Neural Networks(CNN) marked as 3, LSTM marked as 4.GWO-

LSTM marked as 5 compared with the proposed method in this paper which marked as 

6.The proposed method network simulation is composed of the input layer, one hidden 

layer, and the output layer, and the Adaam algorithm is used to train the internal 

parameters of LSTM. The activation function in the hidden layer adopts the tanh function, 

and the abandonment rate of the network node is 0.2. In order to prevent excessive fitting, 

the number of iterations is selected as 100. Fig. 4 shows the parameter iteration diagram 

of IGWO-LSTM. As can be seen from Fig. 4a, the convergence of IGWO is earlier than 

that of GWO, indicating that the convergence performance of IGWO is stronger than that 

of GWO, and the convergence value is finally stabilized at 0.0038. Fig. 4b shows the 

change of hidden neurons with the number of iterations and 

finally stabilized at 128. LSTM network, SVM network, and KLEM network are 

constructed by training set samples. CNN network, combined with literature, the learning 

rate of the LSTM model is 0.01, and the number of hidden neurons is 152. Fig. 4c shows 

that the learning rate is stable at 0.0012 with the change of iteration times. The kernel 

parameter g of SVM is 1, wand the penalty factor c is 2. The number of network layers 

of CNN is seven layers (3 convolution layers, three pooling layers, and one full 

connection layer), the kernel parameter c of KELM is 0.001. 

(a)                                                        (b)                                                            (c) 

 Fig. 4: Changes of c, RLR and Tmax in IGWO-LSTM optimal grey wolf individual 

 It is compared with the other five methods in the case of CMWPE only. It can be seen 

from Fig. 5 that the average value of IGWO-LSTM is the highest when τ = 3; 4; 5; 6. It 

can be seen from Fig. 7 that the STD value of the proposed is the smallest of the six 

methods, which indicates that the accuracy of OLTC fault diagnosis based on LSTM 

can be improved by optimizing LSTM parameters by IGWO. 
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(a)                                                                 (b)         

                                            (c)                                                               (d) 

Fig. 5: Considering CMWPE only results 

(a)                                       (b)    

                               (c)                                                      (d) 
Fig.6 Feature fusion results 

But because based on single scale proposed method there is still a false negative, 

there can still be a misjudgment in OLTC fault diagnosis. To further improve the fault 

diagnosis accuracy of OLTC, CMWPE and energy entropy of fusion, the proposed 

Y. Yan and H. Ma / A Novel OLTC Fault Diagnosis656



method in the same place with six kinds of method is compared. As can be seen from 

Fig. 6, compared with proposed method based on a single feature, when _ = 3; 4; 5; 6, 

the average value of the proposed method is 8%-10% higher than that of GWO-LSTM 

and about 20%-30% higher than that of the other 4 methods. As can be seen from Fig. 8, 

the STD value of proposed method is the smallest, so it can be concluded that the method 

proposed in this paper has the highest fault diagnosis accuracy and the best classification 

effect among the six methods. This shows that the fault diagnosis accuracy of OLTC 

based on IGWO-LSTM can be greatly improved by feature fusion. 
 

                        Fig. 7: Considering CMWPE only stds                            Fig. 8: Feature fusion stds 

4. Conclusion 

In this paper, an improved grey wolf optimization algorithm is proposed to optimize the 

relevant parameters of LSTM, and it is applied to OLTC fault diagnosis. The test is 

carried out by single feature and multi-feature fusion. The specific results are as follows: 

under the condition of CMWPE only, the parameters of LSTM can be optimized by 

IGWO, which can improve the fault diagnosis accuracy of OLTC based on LSTM. Under 

the condition of CMWPE and energy entropy fusion, the effect of the method proposed 

in this paper is obvious, compared with the accuracy of OLTC fault diagnosis 

based on single feature IGWO-LSTM. The stability of the method is better, which shows 

that the method proposed in this paper is relatively good, and further provides a 

theoretical basis for online OLTC fault monitoring. 
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