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Abstract. Mumford-Shah model has been used for image segmentation by 
considering both homogeneity and the shape of the segments jointly. It has been 
previously optimized by complex mathematical optimization methods like Douglas-
Rachford, and a faster but sub-optimal k-means. However, they both suffer from 
fragmentation caused by non-convex segments. In this paper, we present 
hierarchical algorithm called Pairwise nearest neighbor (PNN) to optimize the 
Mumford-Shah model. The merge-based strategy utilizing the connectivity of the 
pixels prevents isolated fragments to be formed, and in this way, reaches better 
quality in case of images containing complex shapes. 
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1. Introduction 

Image segmentation is a fundamental pre-processing task applied in more complex 
machine vision applications. The goal is to find regions of interest in an image that 
possess homogeneity and spatial connectivity. Let function  represent RGB 
color of a pixel in the image at location . We aim to find k segments so 
that the pixel colors or some other feature would have smooth variation within the 
segments but discontinuous over the segment borders. We characterize the problem in 
terms of approximation theory, as the problem of finding an approximation  of  so that 
each  represents the segment  via a piecewise smooth function.  

Existing approaches to image segmentation [1] include thresholding, clustering and 
classification methods [2], [3], [4], region-based methods [5], and edge based active 
contour methods [6], [7], [8]. The segmentation problem has also been dealt as an energy 
minimization problem. Obtaining a generalized solution that works without prior 
knowledge about the objects, their characteristics like shape, color, texture, appearance 
of shadows and overlapping of objects, is still an open problem. 

Clustering has also been applied to image segmentation via grouping the pixels by 
minimizing intra segment similarity using k-means algorithm [9]. K-means is known to 
be sensitive to initialization, but it can be improved significantly by better initialization 
technique and by repeating the algorithm 100 times [10]; or by using random swap 
algorithm [11] which practically never gets stuck to an inferior local minimum.  
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K-means and random swap minimize sum-of-squared error (sse) between the pixels 
and centroids:  

 (1) 

However, minimizing sse leads to color quantization where every pixel is mapped 
to its nearest color regardless of its neighbors resulting in a fragmented segmentation. 
This is typically solved by adding spatial constraint to the equation or by using explicit 
convexity criterion in the algorithm.  

Mumford-Shah is an energy minimization model that has been applied for image 
segmentation [12]. Its simplified version is defined as follows: 

 (2) 

where the first term equals to sse,  denotes the total length of the segment boundaries, 
and  is a control parameter. Large values of  will produce shorter boundaries whereas 
smaller values of  will put more emphasis on the homogeneity of the segments. The 
Mumford-Shah model has been extensive used in the areas of image denoising, 
segmentation and restoration [13].  

Algorithmic techniques to minimize the Mumford-Shah includes Douglas-Rachford 
algorithm [14], implicit methods [15], and k-means [16]. The last one is virtually as fast 
as standard k-means and significantly faster than the other optimization techniques using 
Mumford-Shah model [15], [17], [18], [19], [20], [21]. However, the algorithm itself 
does not control the convexity and it can still lead to fragmentation with isolated sub-
segments. 

In this paper, we propose hierarchical merge-based clustering algorithm for 
optimizing Mumford-Shah model. It allows only neighbor segments to be merged, and 
in this way, prevents isolated sub-segments to be formed. Classical agglomerative 
clustering itself is a slow algorithm, but we show that utilizing the 2-D neighborhood we 
can reach  time complexity by rather straightforward implementation. 

2. Pairwise nearest neighbor using Mumford-Shah 

Agglomerative clustering [22], [23] is a popular alternative to k-means but a simple 
implementation can be several orders of magnitude slower. Initially, each pixel forms its 
own segment . Two segments are then repeatedly merged until the desired number of 
segments is reached. The segment pair to be merged are selected using the Ward's method 
[24] so that the increase in sse is the least among all possible merges. Thus, it generates 
clusters by a sequence of locally optimal merge operations. 

2.1. Pairwise nearest neighbor method 

In the context of vector quantization, agglomerative clustering is known as the pairwise 
nearest neighbor (PNN) method due to Equitz [25]. Many variants of PNN exist. Most 
of them try to speed up the algorithm while some also try to improve the clustering 
quality. We next give a brief literature review of the agglomerative clustering. 

A straightforward implementation of the PNN algorithm takes  time because 
there can be  steps in total, and every step takes  time. Even if the merge costs 
were stored in a matrix, the search for the best merge would still require exhaustive 
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search [26]. In [27] an alternative variant called fast exact PNN was proposed to reduce 
the time complexity to , where  is significantly smaller than n with all realistic 
data sets. The main idea is to maintain a nearest neighbor to store the lowest merge cost 
for each segment to avoid repeating unnecessary calculations [25]. The method is exact 
in a sense that it does not compromise the accuracy of the PNN. 

In [28], an improved variant called Lazy-PNN was developed. The running time of 
the algorithm is dominated by  time operations [25], [29]. However, some of the 
merge cost calculations can be delayed and a remarkable number of calculations can be 
avoided completely. Practical tests indicated that the lazy-PNN is about 35% times faster 
than the fast exact PNN [30], and 200-500 times faster than the original PNN [23], [30]. 

In [31], the fast exact PNN was also applied to multilevel nonparametric image 
thresholding, achieving  but this does not generalize to segmentation in RGB 
space. In [32], the algorithm uses a heap data structure in which all pairwise merge costs 
are stored and the smallest merge cost is always found as the element of the root node of 
the heap. The computation time of the algorithm is at most  at the cost of 

 memory consumption, which is not suitable for segmenting large images. 
In [33], a more general approach called iterative shrinking is proposed. Instead of 

merging, the number of clusters is reduced by a sequence of cluster removal operations. 
Clusters are removed one at a time by reassigning the objects from the removed cluster 
to the nearby clusters. The PNN method can be considered as a special case of the 
iterative shrinking, in which the objects of the removed cluster are all forced to move to 
the same cluster selected for the merge [25].  

In [34], an approximate k-nearest neighbor graph is used for reducing the number of 
merge cost calculations.  The graph is utilized so that the search for the cluster with the 
smallest merge cost is limited only to the clusters that are directly connected by the graph. 
This reduces the time complexity from  to  for a single node. The graph 
construction becomes then the bottleneck but fast approximate variants using k-d tree, 
divide-and-conquer or projection-based search were considered in [35]. The time 
complexity of the algorithm can be improved accordingly from  to   
at the cost of slight increase in sse [22], [35]. All the above variants of agglomerative 
clustering aim at faster speed except the iterative shrinking which aims at better quality. 

2.2. Adopting Mumford-Shah to PNN 

In this paper, we adopt the PNN variant from [34] to image segmentation using 
Mumford-Shah model. The main difference is that we take spatial connectivity of the 
pixels into account instead of merely minimizing sse. 

The basic structure of the PNN method is shown in Algorithm 1. Given a set of n 
pixels , the method starts by assigning each pixel  to its own 
segment represented by centroid . In each step, the number of segments is reduced by 
merging two segments a and b. The merge cost is calculated as follows: 

 (3) 

The first term calculates how much sse is increased by the merge, and second term 
how much the boundary length is reduced. It can be calculated as follows:  

 (4) 
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where i is the boundary length of the segment i. The PNN method applies a local 
optimization strategy: all possible cluster pairs are considered and the one increasing the 
Mumford-Shah model according to (3) is always chosen: 

 (5) 

Algorithm 1: Pairwise nearest neighbor 

  
 FOR  to  DO 

   ; 

 REPEAT 
   SearchNearestClusters  
  Merge  
 UNTIL  

2.3. Implementation of Mumford-Shah PNN 

The proposed algorithm follows the basic structure of the PNN method in [34] with two 
main differences. First, we use merge cost derived from Mumford-Shah model. Second, 
since we operate on image pixels, we can implement the search for the nearest neighbors 
more efficiently by utilizing the connectivity of the segments.  

In the beginning, each pixel forms its own segment. The centroid of the segment is 
the pixel value as such, , and the segment size is set to  An array of 
its four neighbors is recorded ( ). For each segment, we also maintain its nearest 
neighbor ( ) and the corresponding merge cost value ( ). These are found by 
calculating the merge cost (3) of the segment and with its all neighbors. We explain next 
how these data structures are updated during the merge process. 

The next merge is always found by linear search among all the nearest neighbors. In 
case the merge cost of two or more neighbors are equal, we select the neighbor as per the 
row-major order. While the merging process, the algorithm considers only spatially 
connected neighbors. This prevents fragmentation to appear which happens with the 
k-means variants that only minimizes (3) without explicit connectivity constraint.  

We maintain a heap structure of all the segments according to the descending order 
of . After the merge, the centroid of the merged cluster is updated as: 

 (6) 

The boundary length is also updated using (4), and the list of neighbors of cluster i 
is updated by selecting the unique neighbors of the two merged clusters avoiding 
duplicates. The nearest neighbor of the merged cluster i is then resolved by recalculating 
the merge cost to all its neighbors. 

We reach slightly better time complexity than in [27],  although 
the difference is not huge because  is data dependent variable which is usually small. In 
comparison to [34], our algorithm is still slower as . The main reason 
is that the original PNN does not need to maintain the partition whereas we need to 
update the pixel labels in order to calculate the boundary length. The Mumford-Shah 
PNN is slower than the Mumford-Shah k-means. This is the price we need to pay for the 
better segmentation quality. 
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3. Experiments 

We compare the proposed method (MS-PNN) with two other methods: regularized 
k-means (reg-KM) [36], and Mumford-Shah k-means (MS-KM) [16]. The experiments 
were conducted on desktop with Intel Core i5 processor with 2.50GHz speed, 8 GB RAM, 
64-bit Windows 10 operating system. To evaluate the quality of the segmentations we 
used two measures: bi-directional consistency error (BCE*) [37] and structural 
similarity index (SSIM) [38]. As test set, we use 11 images from the Weizmann dataset 
[37] which has human segmented ground truths. 

The results are summarized in Table 1. They show that the proposed method 
outperforms the other methods by clear margin. The average BCE* values are 0.33 (MS-
PNN), 0.38 (MS-KM), 0.46 (KM) and 0.47 Reg-KM. The SSIM values are best among 
9 out 11 images. The better quality comes at the cost of higher processing time; 476s for 
MS-PM compared to, 166s (Reg-KM) and <1s (KM and MS-KM).  

The visual quality in Fig. 1 shows the main benefit of MS-PNN; it is the only method 
without isolated fragments which is observed in all k-means variants. While k-means is 
reasonably good in optimizing the Mumford-Shah model, these isolated sub-segments 
are persistent and only the merge-based algorithm can avoid them completely. 

The main limitation of the algorithm is the λ parameter of the Mumford-Shah model 
which needs to be manually tuned. Fig. 2 shows it effects on few sample images. Here 
we have used the values of λ=0.25 and λ=0.50. 

 

Table 1. BCE* (the lower the better) and SSIM (the higher the better) for the three methods. 

Image 
BCE* SSIM 

KM 
Reg-
KM 

MS-
KM 

MS-
PNN 

KM 
Reg-
KM 

MS-
KM 

MS-
PNN 

1 0.22 0.65 0.54 0.05 0.77 0.57 0.82 0.96 
2 0.73 0.72 0.44 0.46 0.43 0.43 0.54 0.74 
3 0.53 0.57 0.42 0.51 0.52 0.52 0.63 0.72 
4 0.05 0.03 0.31 0.03 0.95 0.95 0.81 0.95 
5 0.18 0.23 0.24 0.08 0.80 0.80 0.82 0.94 
6 0.76 0.65 0.52 0.62 0.59 0.59 0.70 0.56 
7 0.44 0.20 0.20 0.16 0.61 0.77 0.78 0.89 
8 0.57 0.58 0.23 0.21 0.42 0.42 0.83 0.82 
9 0.44 0.58 0.41 0.33 0.57 0.57 0.72 0.80 

10 0.61 0.53 0.50 0.79 0.46 0.46 0.46 0.60 
11 0.54 - 0.35 0.38 0.41 - 0.50 0.66 

Average 0.46 0.47 0.38 0.33 0.59 0.61 0.69 0.79 

4. Conclusions 

We have introduced a new approach by embedding the well-known Mumford-Shah 
model into the merge-based hierarchical PNN algorithm. The results of the proposed 
MS-PNN are much better than the k-means variants in terms of segmentation quality 
(BCE*) and reconstruction quality (SSIM) of the images. The resulting segment 
boundaries of MS-PNN are much smoother without fragmentation. The drawback of the 
algorithm is slower than the corresponding k-means variant using Mumford-Shah but 
this can be tolerated as much better segmentation quality is obtained. Furthermore, it is 
quite possible to speed-up the method further from O(n2) to O(nlogn) by utilizing better 
data structures. This is our future work. 
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Figure 1. Visual comparison of the segmentation results using three methods. 
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Figure 2. Examples of the effect of � on the segmentation result. 
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