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Abstract.

The ongoing COVID-19 pandemic brings new challenges and risks in various
areas of our lives. The lack of viable treatments is one of the issues in coping with
the pandemic. Developing a new drug usually takes 10-15 years, which is an issue
since treatments for COVID-19 are required now. As an alternative to developing
new drugs, the repurposing of existing drugs has been proposed. One of the sci-
entific methods that can be used for drug repurposing is literature-based discovery
(LBD). LBD uncovers hidden knowledge in the scientific literature and has already
successfully been used for drug repurposing in the past. We provide an overview
of existing LBD methods that can be utilized to search for new COVID-19 treat-
ments. Furthermore, we compare the three LBD systems Arrowsmith, BITOLA,
and SemBT, concerning their suitability for this task. Our research shows that
semantic models appear to be the most suitable for drug repurposing. Neverthe-
less, Arrowsmith currently yields the best results, despite using a co-occurrence
model instead of a semantic model. However, it achieves the good results because
BITOLA and SemBT currently do not allow for COVID-19 related searches. Once
this limitation is removed, SemBT, which uses a semantic model, will be the better
choice for the task.

Keywords. literature-based discovery, drug repurposing, COVID-19, Arrowsmith,
BITOLA, SemBT

1. Introduction

With the COVID-19 pandemic ongoing for some time, there is still a lack of viable treat-
ments. Although a few promising drug candidates have been proposed, including remde-
sivir, chloroquine, and hydroxychloroquine [1], their efficacy and safety are still under
investigation. What the proposed drugs have in common is that they have been repur-
posed for treating COVID-19. Remdesivir, for example, was initially developed for treat-
ing Ebola and Marburg virus disease but was found to be ineffective against these viral
infections [1]. However, antiviral activity was demonstrated against SARS and MERS,
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two diseases caused by coronaviruses closely related to SARS-CoV-2 [2]. Likewise,
chloroquine and hydroxychloroquine were initially developed for treating malaria [1].

It comes as no surprise that promising candidates for the treatment of COVID-19
are existing drugs. The development of a new drug typically takes 10-15 years, and costs
between $500 million and $2 billion [3,4,5]. While the cost of developing a new drug
for COVID-19 should be of secondary concern, considering that almost every country is
affected by the virus, the development time of 10-15 years is not. The rapidly evolving
situation demands new treatments as fast as possible. An alternative to developing new
drugs is using existing drugs for new indications, a process known as drug repurposing
or drug repositioning.

Literature-based discovery (LBD) is a cost- and time-efficient method that can be
used for drug repurposing. It automatically or semi-automatically generates hypotheses
for scientific research by finding hidden links in existing scientific literature [6,7]. LBD
operates on large literature databases such as PubMed. Discoveries have the form of
relations between two previously unrelated concepts, for example, a disease and a drug
that treats the disease. Such relations are discovered by uncovering a third concept, like
a physiologic function or gene expression, that relates to both the drug and the disease
[6]. The discovery of the linking concept leads to the assumption that there may also be
a link between the two primary concepts, which can then be investigated further.

This paper gives an overview of LBD methods and systems that could be used to
search for possible COVID-19 treatments. Our objective is not to give a comprehensive
overview of existing LBD methods. Such an overview can be found in [7]. Instead, we
discuss the LBD methods that seem most suitable regarding the search for COVID-19
treatments. Our method selection is based on literature research about LBD with a focus
on drug repurposing. First, section 2 presents related work on LBD and its application to
drug repurposing. Then, section 3 gives an overview of LBD methods that can be used to
search for drug candidates. Next, section 4 introduces three LBD systems and explains
how they operate. Based on examples, we demonstrate how they could be used to search
for COVID-19 treatments. Finally, section 5 concludes with a summary of our findings
and discusses future work.

2. Related Work

LBD was first proposed by Swanson for uncovering hidden knowledge in scientific liter-
ature [8]. He read about Raynaud’s disease increasing blood viscosity and platelet aggre-
gation in one set of articles and fish oil reducing blood viscosity and platelet aggregation
in another set of articles. However, he found no studies that reasoned that fish oil could
treat Raynaud’s disease. As a result, he proposed fish oil as a new treatment for Ray-
naud’s disease. Another previously unexplored relationship he found was that magne-
sium might help against migraine [9]. These relationships were discovered manually by
researching the literature. To automate the LBD process, Swanson and Smalheiser initi-
ated the Arrowsmith project, a co-occurrence-based LBD system for automatic knowl-
edge generation [10]. The system was later improved with the integration of Medical
Subject Headings (MeSH)[11] and the Unified Medical Language System (UMLS)[12]
to overcome some of the limitations of co-occurrence based models.

Another co-occurrence-based LBD system named BITOLA was developed by Hris-
tovski et al. [13]. They proposed the use of discovery patterns [6] to search for drugs
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that may be repurposed for different indications. To apply the discovery patterns, seman-
tic knowledge had to be derived from the literature. Hristovski et al. used the seman-
tic parsers BioMedLEE and SemRep for this task. Later they integrated SemRep with
BITOLA and named the new system SemBT (Semantic BITOLA).

Ahlers et al. adapted the discovery patterns proposed by Hristovski et al. and devel-
oped their own discovery pattern [14]. While the discovery patterns proposed by Hris-
tovski et al. are aimed at drug repurposing, the discovery pattern derived by Ahlers et al.
is focused on investigating hitherto unknown mechanisms of action involved in existing
drug applications. Henry and MclInnes provide a comprehensive overview of current and
past LBD methods and systems [7]. Thilakaratne et al. [15] give a systematic review of
existing LBD literature.

3. Methods

This section addresses important aspects of LBD in the context of drug repurposing.
When using LBD, it must first be decided what model should be used to extract knowl-
edge from the literature. Section 3.1 discusses semantic models, which are the most qual-
ified models for LBD. Semantic models extract semantic predications from the scientific
literature, which represent relations between two terms. The semantic predications are
extracted with semantic parsers. Section 3.2 introduces the two semantic parsers Sem-
Rep and BioMedLEE. The process of extracting the semantic predications is explained
in section 3.3. For extracting new knowledge from the literature, most LBD systems rely
on Swansons’s ABC model, which is discussed in section 3.4. If a semantic model is
used, different discovery patterns may be applied, which are tailored to detect certain
relation types. Two different discovery patterns which are aimed at drug repurposing are
described in section 3.5.

3.1. Semantic Models

The most promising LBD models for drug repurposing are semantic models. Other LBD
models include co-occurrence models and distributional models. They will not be dis-
cussed here, but an explanation of these models and literature for further reading is pro-
vided in [7]. Semantic models use semantic predications that are extracted from biomed-
ical literature using semantic parsers [7]. These semantic predications reflect relations
assumed between two terms [14], for example, “chloroquine treats malaria”. The two
terms are chloroquine and malaria, and the relation assumed between them is treats.
Using semantic predications increases the quality of the extracted relations at the
risk of missing relations. Thus, it increases the model’s precision at the cost of recall.
Another benefit of semantic predications is that the extracted relations are labeled, al-
lowing the user to remove uninteresting relations. This reduces the amount of reading
required by the user. The model’s precision can be increased further by manually elim-
inating relations that have been wrongly identified (false positives). Furthermore, using
predications can explain potential discoveries [6]. Other benefits of semantic predica-
tions include normalization, stop word removal, and identification of multi-word terms

[7].
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3.2. Semantic Parsers

Semantic parsers extract semantic predications from literature. The most popular seman-
tic parser in the biomedical domain is SemRep [16]. Semantic predications in SemRep
are three-part propositions, which consist of a subject argument, an object argument, and
a relation that binds them. For example, from the sentence

* “We used hemofiltration to treat a patient with digoxin overdose that was compli-
cated by refractory hyperkalemia.”

SemRep would extract the predications

1. Hemofiltration-TREATS-Patients

2. Digoxin overdose-PROCESS_OF-Patients

3. hyperkalemia-COMPLICATES-Digoxin overdose
4. Hemofiltration-TREATS(INFER)-Digoxin overdose

SemRep is based on the UMLS, a comprehensive collection of biomedical vocabu-
laries and standards [17]. The UMLS consists of three knowledge resources, the Metathe-
saurus, the Semantic Network, and the SPECIALIST Lexicon and Lexical Tools. The
Metathesaurus, the biggest component of the UMLS, is a large biomedical vocabulary
organized by concept or meaning. It links similar names for the same concepts from
nearly 200 different vocabularies and identifies useful relationships. The Semantic Net-
work consists of semantic types that categorize concepts from the Metathesaurus and
useful semantic relations between them. The SPECIALIST Lexicon and Lexical Tools
include a large syntactic lexicon of biomedical and general English terms and tools for
NLP tasks such as normalizing strings, generating lexical variants, and creating indexes.

SemRep has been used to extract about 94 million semantic predications from 27.9
million PubMed articles, which are stored in SemMedDB [18]. The subject and object
arguments in SemRep semantic predications are concepts from the Metathesaurus, while
their relationships are semantic relations from the Semantic Network. Another semantic
parser is BioMedLEE, which is a knowledge-based phenotype organizer system that
extracts genotype-phenotype relations from biomedical text [19].

3.3. Semantic Predication Extraction

Following the approach of a semantic model, the first step in the LBD process is the
extraction of semantic predications from the literature. Semantic predications reflect
known facts that are contained explicitly in the literature. Hristovski et al. use the Asso-
ciated_with_change relation from BioMedLEE to extract predications where one concept
(e.g., a disease) is associated with a change in another concept (e.g., a pathological func-
tion). In addition to the Associated_with_change relation from BioMedLEE, they use the
Treats relation from SemRep to extract drugs that are known to treat certain diseases.
BioMedLEE is not required to extract semantic predications that reflect a change in a
concept provoked by another concept. Ahlers et al. entirely rely on SemRep for the ex-
traction of semantic predications from biomedical literature. To represent the inhibitory
action of one bioactive substance on another, they use the INHIBITS relation. Etiolog-
ical relations between a bioactive substance and a pathological process are represented
with the relations CAUSES, PREDISPOSES, and ASSOCIATED _WITH. Known drug-
disease relationships are extracted using the TREATS and PREVENTS relations [14].
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3.4. Swanson’s ABC Model

After extracting explicit semantic predications that reflect known facts in the literature,
the next step in the LBD process is retrieving previously unknown implicit knowledge.
Almost all LBD systems rely on Swanson’s ABC model to discover new knowledge from
research literature [8]. It builds on the assumption that when term A is connected to term
B, and term B is connected to term C, it can be assumed that there also is a link between
terms A and C. For discoveries to be new, the terms A and C must occur in different
literature sets. Figure 1 shows Swanson’s ABC-model in the biomedical domain.

Disease A

Source Literature Target Literature

Figure 1. Swanson’s ABC-model [20]

For example, Swanson proposed fish oil as a new treatment for Raynaud’s disease.
The A term in his discovery was Raynaud’s disease. Two of the B terms that co-occurred
with Raynaud’s disease were blood viscosity and platelet aggregation, which are both
increased in Raynaud’s disease (AB literature). Blood viscosity and platelet aggregation
co-occurred with a C term, fish oil (rich in eicosapentaenoic acid), which reduces blood
viscosity and platelet aggregation (BC literature). Consequently, fish oil was proposed to
treat Raynaud’s disease (newly found AC relationship). Swanson’s ABC model can be
used for open and closed discovery, which are depicted in Figure 2.

Open Discovery Closed Discovery

Figure 2. Open and closed discovery [7]
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Open discovery is used to generate new hypotheses [7]. To perform open discovery,
the user must provide the LBD system with a start term. The system then generates a list
of linking terms that co-occur with the start term. Based on the linking terms, the system
generates a list of target terms that co-occur with the linking terms. The result is a list of
previously unknown relations between the start term and the target terms.

Closed discovery, on the other hand, is primarily used to explain correlations or ob-
servations [7]. For example, it may be used to examine hypotheses previously generated
with open discovery. To perform closed discovery, the user must enter a start term and
a target term. The system then generates a list of linking terms related to the start term
and the target term. The result is a list of linking terms that may explain the relationship
between the start term and the target term.

3.5. Discovery Patterns

Based on Swanson’s ABC model, different discovery patterns have been proposed. Dis-
covery patterns are used to extract potentially new treatments from biomedical literature
and to explain existing drug-disease relationships by identifying previously unknown
pathways. Hristovski et al. [6] proposed the Maybe_Treats discovery pattern, which has
the forms Maybe_TreatsI and Maybe _Treats2 depicted in Figure 3.

Maybe_Treats1

Same Change2

M Y
Substance B2

Substance B1 Opposite Change1
Change1 (or Body meas., Drug C1
Body funct.) (or substance)
(or Body meas.,

Body funct.

___________________________ Drug C2
(or substance)

Figure 3. Two forms of the Maybe_Treats discovery pattern Maybe_Treatsl and Maybe_Treats2 [6].

The Maybe_Treatsl discovery pattern considers drug C1 to possibly treat disease
A if the following applies. First, the disease is associated with changing a B1 concept,
which might be a substance, a body measure, or a body function. Second, the drug pro-
vokes an opposite change of this substance. To consider this a discovery, the drug and the
disease can not co-occur in the literature. For example, in Swanson’s discovery of fish
oil as a new treatment for Raynaud’s disease, the drug C1 was fish oil, while disease A
was Raynaud’s disease. One of the B1 concepts that linked Raynaud’s disease to fish oil
was blood viscosity. Blood viscosity is a body measure, which is increased in patients
with Raynaud’s disease and reduced by fish oil.
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The Maybe_Treats2 discovery pattern follows a different approach. Other than the
Maybe _Treatsl discovery pattern, it does not search for a drug that causes an opposite
change of a B concept changed by the disease A. Instead, it searches for different diseases
A2 that cause similar changes of a B2 concept as the disease A. Drugs C2 that treat the
disease A2 are assumed to possibly treat disease A as well. As with the Maybe_Treats]
discovery pattern, the drug and the disease must not co-occur in the literature for the
discovery to be new. Using this approach, Hristovski et al. observed that insulin levels
are decreased in patients with Huntington’s disease. Insulin levels are also decreased in
patients with Diabetes Mellitus (type 2 diabetes). Therefore, they proposed drugs for
Diabetes Mellitus for treating Huntington’s disease.

Another discovery pattern was developed by Ahlers et al. They used the discovery
pattern May_Disrupt to investigate the mechanisms underlying drug therapies that are
currently used but poorly understood [14]. Other than the Maybe_Treats discovery pat-
tern, which searches for a wide range of linking concepts that may connect a drug to a
disease, the May_Disrupt discovery pattern concentrates on pharmacogenomics, the rela-
tionship among drugs, genes, and diseases. The May_Disrupt discovery pattern consists
of the following three parts:

1. Substance A <inhibits> Substance B
2. Substance B <causes> Pathology C
3. Substance A <may_disrupt> Pathology C

To apply the pattern, first, the relations must be extracted from the literature. Ahlers
et al. use SemRep for this task. First, “drug A inhibits substance B” relations are ex-
tracted using the INHIBITS relation. Second, “substance B causes disease C” relations
are extracted using the CAUSES, PREDISPOSES, and ASSOCIATED_WITH relations.
Third, “drug A may disrupt disease C” relations are extracted using the TREATS rela-
tion. When the pattern is used for open discovery, it states the following: if drug A in-
hibits substance B and substance B causes disease C, drug A may disrupt disease C. If it
is known that drug A disrupts disease C, the mechanism of action can be examined with
closed discovery. When the pattern is used for closed discovery, it states that if drug A
inhibits substance B and substance B causes disease C, then substance B is involved in
the mechanisms of action of drug A disrupting disease C.

4. LBD Systems

Several LBD systems have been developed in the past. We compared the three LBD
systems Arrowsmith, BITOLA, and SemBT, concerning their suitability to search for
COVID-19 drug repurposing candidates. The systems share the following properties.
They are publicly available, support open and closed discovery, use PubMed as their
literature database, and MeSH for filtering terms. An overview of other LBD systems is
provided in [15]. We briefly explain the functionality of each system and demonstrate
open and closed discovery for each system based on example experiments. Additionally,
we provide a conclusion for each system that outlines its limitations.
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4.1. Arrowsmith

Based on Swanson’s manual discoveries of the connections between Raynaud’s disease
and fish oil [8], and between migraine and magnesium [9], Swanson and Smalheiser de-
veloped the Arrowsmith LBD system [10]. Arrowsmith is the first semi-automatic LBD
system and uses a co-occurrence model to find relationships between terms. To over-
come some of the limitations of co-occurrence-based models, Smalheiser later improved
the system by integrating biomedical knowledge resources, including the UMLS [12]
and MeSH [11]. MeSH is a hierarchically organized vocabulary controlled by the Na-
tional Library of Medicine (NLM). It includes subject headings appearing in PubMed,
the NLM catalog, and other NLM databases and is used to index, catalog, and search
biomedical information. Arrowsmith allows the user to input PubMed queries in order to
define the A and C literature. For that purpose, a simplified version of the PubMed query
box was integrated into the system.

For closed discovery with Arrowsmith, the user is asked to input two separate
PubMed queries that define the A and C literature. We used closed discovery to exam-
ine linking concepts that may explain the mechanism of action of remdesivir concern-
ing COVID-19. To define the A literature, we used the start term COVID-19. The query
yielded 25,000 articles dealing with COVID-19, the maximum number of articles con-
sidered by Arrowsmith for the A literature. To define the C literature, we chose remde-
sivir as the target term. That resulted in 526 articles about remdesivir. Theoretically, up
to 25,000 articles could be considered by Arrowsmith for the C literature, so the total
number of articles considered for closed discovery adds up to 50,000 articles [21]. Ar-
rowsmith always considers the latest 50,000 articles. Articles that occur in both litera-
ture sets are removed. Thus only indirect relations between the literature sets via linking
concepts are captured. However, the removed articles are kept and can be inspected by
the user. For COVID-19 and remdesivir, this affected 457 articles, leaving 68 articles that
deal with remdesivir but not COVID-19.

Next, the system searches for words and two- and three-word phrases in the A and C
literature article titles. The resulting linking terms are processed and ranked according to
the predicted probability of being relevant to the user. Torvik and Smalheiser integrated
this feature into Arrowsmith to solve the problem of predicting which of the hundreds to
thousands of linking terms returned for a single query are most likely to be relevant to
the user [12]. They developed a logistic regression model that estimates the probability
for each linking term to be relevant. Based on their predicted relevance, the linking terms
can be ranked. Furthermore, the model estimates the total number of relevant linking
terms. For COVID-19 and remdesivir, 498 linking terms were generated, 89 of which
were predicted to be relevant. We limited the linking terms to concepts that may explain
the mechanism of action of remdesivir regarding COVID-19. For that, we restricted the
linking terms to the semantic types anatomy, chemicals & drugs, genes & molecular
sequences, gene & protein names, and physiology. That decreased the number of linking
terms to 96. 13 of these terms were predicted to be relevant, the first ten of which are
shown in Table 1.
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Table 1. First ten linking terms generated by Arrowsmith using closed discovery for the start term COVID-19
and the target term remdesivir.

Rank | Probability | Linking Term

1 0.99 | ritonavir

2 0.99 | respiratory syndrome coronavirus
3 0.99 | lopinavir ritonavir

4 0.98 | ebola

5 0.97 | cov

6 0.96 | rna dependent rna

7 0.94 | dependent rna polymerase
8 0.94 | dependent rna

9 0.74 | antiviral strategy

10 0.74 | chloroquine

If the user selects a linking term, Arrowsmith presents the articles linked to the start
and target term through the linking term. Multiple linking terms may be selected as well.
Of the first ten linking terms shown in Table 1, only rna dependent rna, dependent rna
polymerase, and dependent rna explain the physiologic link between COVID-19 and
remdesivir. All these terms are synonyms for RNA-dependent RNA polymerase and thus
refer to the same concept. Remdesivir inhibits the RNA-dependent RNA polymerase of
MERS [22], various flaviviruses [23], Ebola virus [24], and human endemic and zoonotic
deltacoronaviruses [25]. Since SARS-CoV-2 also relies on an RNA-dependent RNA
polymerase for the catalyzation of the RNA replication process [26], this could explain
the mechanism of action of remdesivir regarding COVID-19.

To perform open discovery with Arrowsmith, the user must enter a single PubMed
query to define the A literature. We used the start term COVID-19 to limit the A literature
to articles dealing with COVID-19. Next, the user chooses a MeSH category to filter the
C literature searched for target terms. Since the objective is to find existing drugs that
may be repurposed for COVID-19 treatment, the target terms should be drugs. Therefore,
we chose the MeSH category molecular mechanisms of pharmacological action, which
includes 20 classes of drugs. Given a MeSH category, the system performs a closed
discovery search between the defined A literature and all subcategories of the defined
MeSH category (C literature). For each subcategory, several metrics are calculated that
quantify the result:

* nC = number of articles in the C literature

* nAC = number of articles in both the A and C literature

* nTot = total number of linking terms in the subcategory search

* nR = number of linking terms predicted to be relevant

* pR = percentage of linking terms predicted to be relevant (high pR values indicate
that the A and C literature share a lot of implicit information. pR < 0.1 is near
chance level whereas pR > 0.3 is a relatively high value.)

Table 2 shows the metrics computed for each subcategory. The user may click each
of the Job IDs to examine the linking terms that have been generated for the start term
and the respective subcategory. Peptidomimetics scored the highest pR and were ranked
first. Clicking on a Job ID opens a similar interface as for closed discovery. Arrowsmith
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Table 2. Result of open discovery with Arrowsmith for the start term COVID-19 and the target MeSH category
molecular mechanisms of pharmacological action.

Rank | JobID C-query nC | nAC nTot nR PR
1 1901117 | Peptidomimetics [mh] 1160 3 2621 481 | 0.184
2 190118 Enzyme Inhibitors [mh] 50000 381 | 28846 | 5081 | 0.176
3 190111 Angiotensin Receptor Antagonists | 17334 141 | 13995 | 2165 | 0.155
[mh]
4 1901110 | Fibrin Modulating Agents [mh] 38061 33 | 22974 | 3385 | 0.147
5 1901118 | Radiopharmaceuticals [mh] 50000 7 | 22273 | 3184 | 0.143
6 19011 Alkylating Agents [mh] 17397 2 | 13492 | 1793 | 0.133
7 1901112 | HIV Fusion Inhibitors [mh] 1213 0 2931 384 | 0.131
8 190114 Antimetabolites [mh] 50000 28 | 28015 | 3561 | 0.127
9 1901115 | Neurotransmitter Agents [mh] 50000 16 | 27309 | 3355 | 0.123
10 1901113 | Membrane Transport Modulators | 50000 5 | 24221 | 2870 | 0.118
[mh]
11 1901111 | Heparin Antagonists [mh] 1288 0 2651 270 | 0.102
12 1901114 | Mitosis Modulators [mh] 15530 4 | 11378 | 1122 | 0.099
13 190117 Enzyme Activators [mh] 2610 0 4604 453 | 0.098
14 190112 Antacids [mh] 6292 0 6840 657 | 0.096
15 1901116 | Nitric Oxide Donors [mh] 6946 0 6697 591 | 0.088
16 190115 Antioxidants [mh] 50000 20 | 19749 | 1673 | 0.085
17 190113 Antifoaming Agents [mh] 192 0 793 59 | 0.074
18 190119 Enzyme Reactivators [mh] 1749 0 2742 191 | 0.070
19 1901119 | Sequestering Agents [mh] 31538 2 | 16122 | 1044 | 0.065
20 190116 Cerumenolytic Agents [mh] 27 0 132 2 | 0.015

presents the user with the generated linking terms between the start term and the selected
target term. As with closed discovery, the user may select one or more linking terms and
inspect the articles containing the start and linking term and the linking and target term.
Unfortunately, unlike with closed discovery, the linking terms can not be filtered by their
semantic type. Clicking on the respective button results in an internal server error.

For COVID-19 and peptidomimetics, 2,621 linking terms were generated, 481 of
which were predicted to be relevant. 445 articles occurred in both literature sets and were
not included in the search for linking terms. Table 3 shows the first ten linking terms
predicted to be relevant by Arrowsmith. Linking terms that could stimulate further re-
search include 3c protease, furin, and proteasome inhibitor. For example, ten articles in-
vestigate the effects of 3C-like protease inhibition on SARS-CoV-2 and related coron-
aviruses (e.g., [27]). Four studies research peptidomimetics as 3C-like protease inhibitors
[28,29,30,31].

The results demonstrate Arrowsmiths potential regarding the search for COVID-19
treatments. However, there are limitations to Arrowsmith that result from the underly-
ing co-occurrence model. Although the system was improved by integrating MeSH cat-
egories and UMLS semantic type filtering, the system still generates many irrelevant
linking terms. This is because co-occurrence-based models do not harness known se-
mantic knowledge in biomedical literature. Furthermore, finding linking terms worth re-
searching in open discovery is aggravated by semantic type filtering for linking terms not
working at the moment.
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Table 3. First ten linking terms generated by Arrowsmith using open discovery for the start term COVID-19.

Rank | Probability | Linking Term
1 0.99 | respiratory syndrome coronavirus
2 0.99 | molecular dynamic simulation
3 0.99 | molecular docking
4 0.99 | syndrome coronavirus
5 0.99 | 3c protease
6 0.99 | dynamic simulation
7 0.99 | docking study
8 0.99 | docking molecular
9 0.99 | furin
10 0.99 | proteasome inhibitor
4.2. BITOLA

BITOLA was developed by Hristovski et al. [13] and uses association rule mining, a
variant of the co-occurrence model [7], to identify relationships. BITOLA computes fre-
quency and confidence measures for restricting and ranking terms. The retrieved terms
can be filtered using MeSH semantic groups and types and the computed frequency and
confidence. The use of MeSH turned out to be a limiting factor concerning the search
for COVID-19 treatments. For the sake of comparability, we intended to examine the
relationship between COVID-19 and remdesivir, as we did with Arrowsmith. However,
although COVID-19 and remdesivir are MeSH, BITOLA does not allow to use them as
start or target terms. We suspect that this is because COVID-19 and remdesivir are cur-
rently classified as MeSH Supplementary Concept Data, which BITOLA may not rec-
ognize. For example, SARS and chloroquine, which are classified as MeSH Descriptor
Data, are recognized by BITOLA.

Therefore, we used SARS and chloroquine to demonstrate the use of BITOLA for
closed discovery. SARS and chloroquine appeared together in two PubMed articles. In
total, 1,676 linking terms were generated. We restricted the linking terms to enzymes, as
we were interested in a potential inhibitory effect of chloroquine on enzymes involved
in the replication of SARS. This decreased the number of linking terms to 32. Table 4
shows the ten linking terms that were ranked first.

Clicking on Frequency AB or Frequency BC performs a PubMed query for the A
and B or B and C terms. Unfortunately, the user cannot determine which of the arti-
cles that the PubMed query returned linked the terms together. For example, clicking on
Frequency AB of lactate dehydrogenase leads to a PubMed search that returns 246 arti-
cles. However, it cannot be determined which of these articles are part of the 19 articles
that linked SARS to lactate dehydrogenase. This limits the tool’s usability for further re-
search, especially compared to Arrowsmith, which presents the user exactly the articles
that linked two terms together.

To perform open discovery with BITOLA, the user must enter a MeSH as the start
term. Because COVID-19 is not recognized as a MeSH by BITOLA, we used SARS
instead. Without further restriction, BITOLA generated 2,848 linking terms. Since this
is way too much for manual evaluation, we limited the linking terms to enzymes. This
reduced the number of linking terms to 52, the first ten of which are shown in Table 5.
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Table 4. First ten linking terms generated by BITOLA using closed discovery for the start term SARS and the
target term chloroquine.

Linking Term Semantic Type | Frequency AB | Frequency BC
Lactate Dehydrogenase Enzyme 19 42
Cysteine Protease Enzyme 8 31
Endopeptidases Enzyme 4 41
Cathepsins Enzyme 1 43
Alanine Transaminase Enzyme 12 11
Aspartate Transaminase Enzyme 7 20
RNA-Directed RNA Polymerase Enzyme 7 1
paired basic amino acid cleaving enzyme Enzyme 1 3
Peptide Hydrolases Enzyme 2 46
ALANINE AMINOPEPTIDASE Enzyme 5 1

Next, the user must select the linking terms that should be used to search for target
terms. Unfortunately, there is no option to select or deselect all generated linking terms
at once. Instead, they must be selected or deselected one by one. We selected lactate
dehydrogenase, which was ranked first.

Table 5. First ten linking terms generated by BITOLA using open discovery for the start term SARS.

Linking Term Semantic Type | Frequency | Confidence (%)
Lactate Dehydrogenase Enzyme 19 0.768
ACE2 enzyme Enzyme 12 0.485
Carboxypeptidase Enzyme 12 0.485
Alanine Transaminase Enzyme 12 0.485
Cysteine Protease Enzyme 8 0.323
Creatine Kinase Enzyme 8 0.323
Aspartate Transaminase Enzyme 7 0.283
RNA-Directed RNA Polymerase Enzyme 7 0.283
3C-like proteinase, Coronavirus Enzyme 6 0.243
ALANINE AMINOPEPTIDASE Enzyme 5 0.202

Without further restriction, the search generated 22,069 target terms. Therefore, we
limited the target terms to pharmacologic substances, which include enzyme inhibitors.
This reduced the number of linking terms to 2,538. Unfortunately, there is no option to
further restrict the target terms, for example, to include enzyme inhibitors exclusively.
Table 6 shows the first ten target terms generated for lactate dehydrogenase.

The example of COVID-19 as a search term has shown that the use of MeSH can
limit the usability of BITOLA since the system did not recognize COVID-19. Another
drawback to BITOLA is that terms may only be restricted using a limited subset of
MeSH semantic groups and types. The system does not allow for further restriction using
lower levels of the MeSH hierarchy. The open discovery search for enzyme inhibitors,
which, despite the restrictions put in place, returned 451 articles dealing with lactate
dehydrogenase and enzyme inhibitors, demonstrated this issue. An option to further limit
the enzyme inhibitors to agents specifically targeting lactate dehydrogenase would have
been helpful.



M. Tropmann-Frick and T. Schreier / Towards Drug Repurposing for COVID-19 Treatment 227

Table 6. First ten target terms generated by BITOLA using open discovery for the start term SARS and the
linking term lactate dehydrogenase.

Target Term Rank Freq | Rank Conf | CountBs | Freq | Conf | “Discovery?”
Lactate 26068 3,4285 1 1372 | 4463 | YES
Adenosine Triphosphate 20368 2,6789 1 1072 | 3.487 | YES
Lactic acid 9481 1,247 1 499 | 1.623 | YES
Enzyme Inhibitors 8569 1,127 1 451 1.467 | NO
Amino Acids 7676 1,0096 1 404 | 1.314 | NO
Antioxidants 7296 ,9596 1 384 | 1.249 | NO
Superoxide Dismutase 7011 9221 1 369 | 1.200 | YES
Recombinant Insulin 6479 ,8521 1 341 1.109 | NO
Amylases 6213 8172 1 327 | 1.064 | YES
Hydrogen Peroxide 5662 7447 1 298 | 0.969 | YES

Furthermore, BITOLA’s usability is limited because the user is not presented with
the articles involved in term-linking. Instead, the user is referred to a general PubMed
search for the terms involved, impairing the system’s transparency. Finally, the most sig-
nificant limitation to BITOLA remains its underlying co-occurrence model. Without the
use of semantic knowledge, the system generates too many unrelated terms. To increase
the quality of the generated terms, Hristovski et al. proposed to use discovery patterns.
Although this is a promising approach, it requires external semantic parsers like SemRep
and BioMedLEE to extract semantic predications from the scientific literature.

4.3. SemBT

To address some of BITOLA’s issues, Hristovski developed SemBT (Semantic BITOLA),
the semantic version of BITOLA, which takes advantage of semantic knowledge ex-
tracted from biomedical text with SemRep. Search queries are not entered in natural
language but instead as “questions”, consisting of subject, relation, and object. These
questions refer to the different components of SemRep’s semantic predications. At least
one of the components must be specified, but two or all three may also be specified.

1. Chloroquine: Simple question with only one component specified. The concept
chloroquine may be either the subject or the object. The question will return any
biomedical concepts related to chloroquine.

2. Chloroquine TREATS: More specific question, where both a concept and a rela-
tion are specified. The concept chloroquine may be either the subject or the ob-
ject, regardless of whether it is placed before or after the relation TREATS. The
question will return any biomedical concepts that are related to chloroquine via the
TREATS relation.

3. Chloroquine TREATS Malaria: Concrete question where all three components
are specified. Both concepts may be either subject or object. The question will
return any semantic relations that match the specified criteria.

The question is forwarded to Lucene, which means that full Lucene query syntax is
allowed. Unfortunately, like BITOLA, SemBT currently neither recognizes COVID-19
nor related terms, limiting the tool’s usability for searching for COVID-19 treatments.
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The generated subjects and objects and the relations may be filtered using semantic
types and relations. The semantic types must be abbreviated. The subject and object, and
their semantic type, may be referred to explicitly using qualifiers. When it should not be
distinguished between subject and object, the arg qualifiers may be used. The relation
may also be referred to explicitly.

* sub_name: subject name

* sub_semtype: subject semantic type abbreviation

* obj_name: object name

obj_semtype: object semantic type abbreviation

* arg_name: subject or object name

arg_semtype: subject or object semantic type abbreviation
* relation: relation name

A fully qualified question making use of the qualifiers is shown below:

* sub_name:Chloroquine sub_semtype:phsu relation:TREATS
obj._name:Malaria obj_semtype:dsyn: phsu refers to the abbreviated seman-
tic type pharmacologic substance, dsyn to disease or syndrome.

Since SemBT uses SemRep for semantic predication extraction, the discovery pat-
terns described in section 3.5 may be applied. To demonstrate the use of SemBT for
closed discovery, we chose the May_Inhibit discovery pattern. Because SemBT does not
allow for COVID-19 or related terms as arguments, we used chloroquine and malaria
instead. For the question defining the AB literature, we qualified chloroquine as subject
and INHIBITS as relation. As semantic type for chloroquine, we used organic chemical
(orch), which includes drugs such as chloroquine. We limited the objects to the semantic
types amino acid, peptide, or protein (aapp), and gene or genome (gngm). For the ques-
tion that defines the BC literature, we set malaria as object with semantic type disease
or syndrome (dsyn). We specified CAUSES as relation and limited the subjects to aapp
and gngm. The AB and BC literature were specified using the following fully qualified
questions:

1. sub_name:Chloroquine sub_semtype:orch relation:INHIBITS
obj_semtype: (aapp OR gngm)

2. sub_semtype: (aapp OR gngm) relation:CAUSES obj_name:malaria
obj_semtype:dsyn

SemBT found 215 AB relations, 112 BC relations, and 24 common linking terms.
The first ten linking terms are shown in Table 7. The generated linking terms appear to
be relevant for connecting chloroquine to malaria. However, tumor necrosis factor (TNF)
and the CD4 gene are included redundantly in the list. The user may click any generated
linking term to inspect the articles linking the start term to the target term. Other than
BITOLA, SemBT presents the user the articles responsible for the linkage instead of
referring to a general PubMed search for the terms involved.

With SemBT, open discovery must be performed in a different way than with
BITOLA. While BITOLA allows the user to search for linking terms related to the start
term and subsequently search for target terms related to one or more linking terms,



M. Tropmann-Frick and T. Schreier / Towards Drug Repurposing for COVID-19 Treatment 229

Table 7. First ten linking terms generated by SemBT using closed discovery for the start term chloroquine and
the target term malaria.

Rank | Linking Term Count AB | Count BC
1 TNF 4 4
2 Tumor Necrosis Factor-alpha 2 4
3 Antibodies 1 4
4 CD4 1 2
5 TNF gene 1 2
6 CD4 gene 1 2
7 cytokine 1 2
8 Proteins 1 2
9 Peptide Hydrolases 2 1
10 NOS2 1 1

SemBT requires the user to perform two separate searches. When searches performed
with SARS produced no meaningful results, we turned to chloroquine and malaria again.
To search for linking terms related to the start term malaria, we set malaria as object
with semantic type dsyn. The subjects we limited to aapp and gngm. As the relation, we
defined CAUSES. The full query was:

* sub_semtype: (aapp OR gngm) relation:CAUSES obj_name:Malaria
obj_semtype:dsyn

Table 8. First ten linking terms generated by SemBT using open discovery for the start term malaria.

Linking Terms Relation Type | Start Term Frequency
cytokine CAUSES Malaria, Cerebral 12
cytokine CAUSES Malaria 10
Antibodies CAUSES Malaria 8
Tumor Necrosis Factor-alpha CAUSES Malaria 5
Tumor Necrosis Factor-alpha CAUSES Malaria 4
Intercellular adhesion molecule 1 CAUSES Malaria, Cerebral 4
chemokine CAUSES Malaria, Cerebral 3
Genes CAUSES Malaria 3
Proteins CAUSES Malaria 3
TNF—TNF gene CAUSES Malaria 3

The search generated 22 linking terms. Table 8 shows the ten linking terms ranked
first. We chose the linking term TNF to search for target terms. To search for agents that
may inhibit TNF, we qualified it as object and set its semantic type to gngm. The subjects
we limited to orch. As the relation, we specified INHIBITS. The resulting question was:

¢ sub_semtype:orch relation:INHIBITS obj_name:Tumor Necrosis
Factor-alpha obj_semtype:gngm

SemBT generated 239 target terms. As shown in Table 9, chloroquine showed up
on the fourth place. This example demonstrates SemBTs potential in searching for drug-
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Table 9. First ten target terms generated by SemBT using open discovery for the linking term TNF.

Target Term Relation Type | Linking Term | Frequency
Pentoxifylline INHIBITS TNF 32
Methotrexate INHIBITS TNF 9
Curcumin INHIBITS TNF 7
Chloroquine INHIBITS TNF 6
Ketamine INHIBITS TNF 5
vesnarinone INHIBITS TNF 4
Rolipram INHIBITS TNF 4
Aspirin INHIBITS TNF 4
triptolide INHIBITS TNF 4
Ethanol INHIBITS TNF 4

disease associations. However, the fact that COVID-19 and related terms are currently
not allowed as arguments limits the tool’s usability for searching COVID-19 treatments.
Once this limitation is removed, SemBT could be a valuable tool to search for COVID-19
treatments.

5. Conclusion

Regarding LBD, we conclude that semantic models are the most suitable for searching
for COVID-19 drug repurposing candidates. They use semantic knowledge derived from
research literature with semantic parsers. The use of semantic models becomes especially
appealing in the biomedical domain, which provides several knowledge resources like
the UMLS and MeSH, as well as semantic parsers for knowledge extraction, such as
SemRep and BioMedLEE.

We compared three existing LBD systems concerning their suitability for searching
for novel COVID-19 treatments, Arrowsmith, BITOLA, and SemBT. Although Arrow-
smith is based on a co-occurrence model, we believe it is the best choice at the moment.
This is because both BITOLA and SemBT currently do not recognize COVID-19 or re-
lated terms, which makes them virtually useless for COVID-19 related searches. This
limitation is probably caused by MeSH, which all systems use for restricting the allowed
search terms. COVID-19 is currently classified as MeSH Supplementary Concept Data,
which BITOLA and SemBT might not recognize. Once COVID-19 is classified as MeSH
Descriptor Data, this limitation may disappear. If the restriction is removed, SemBT is
the best choice, in our opinion.

SemBT uses a semantic model that incorporates SemRep for semantic knowledge
extraction. This reduces the number of irrelevant terms generated by the system. Sem-
BTs potential has been shown using the example of chloroquine and malaria. In open and
closed discovery, the system identified relevant mechanisms of action involved in chloro-
quine treating malaria. Developing a new LBD system seems unnecessary. The existing
systems viability has been proven by discoveries made and validated in the past, and the
systems make good use of the knowledge resources available in the biomedical domain.
Also, developing a new LBD system would take considerable time, which is sparse in
the middle of a pandemic. Therefore, future work should instead focus on searching for
new treatments for COVID-19 using existing systems.
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