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Abstract. This paper proposes an algorithm to improve the efficiency of the multi-

robot system in simulated global information map containing obstacles. The 

designed multi-AGV scheduling algorithm is based on an optimal shortest path 

algorithm with the combination of the waiting mode and motion coordination. The 

proposed shortest path algorithm not only has lower time delay but also decreases 

the possibility of collision of the multi-robot system. In addition, simulated global 

information maps are established to test the efficacy of the algorithm.  
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1. Introduction 

A multi-robot system can generally be divided into two types, centralized control 

architecture and decentralized control architecture. For the former, there is a central 

control platform to convey useful information to each robot such as moving state of robot, 

map information and mark information, and it needs to carry out the algorithm for all 

robots [1]. Hence, the centralized control architecture has the properties of stability, 

simple realization, low efficiency and high requirement of communication. This 

architecture can be classified as coupled and decoupled. For the coupled architecture [2] 

[3], it regards all robots as the same one and carries out the same algorithm with 

considering the whole state and parameters, which means that its computation volume 

will be huge if there are multi-robots in the map. In contrast, the decoupled architecture 

does not consider all information but uses the tricks to deal with the coming conflicts or 

dead locks. To reduce time complexity, this architecture needs to plan paths and 

coordinate movements in real time. An apparent disadvantage of it is that it cannot 
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consider the ideal optimal solution for the system. About movement coordination modes, 

there are region control, time window and multi-agent system. This paper designs an 

algorithm to construct the shortest path for each robot and combines the waiting mode 

and collision avoidance algorithm to ensure there is no conflict in simulated maps. 

    For a large number of robot systems, the coupled architecture is not feasible of 

sustainable tasks because of the huge computation content. Thus, our idea emphasizes 

the decoupled architecture, which means each robot needs to compute the optimal path 

before moving and then implement a waiting or collision avoidance algorithm. For a path 

planning algorithm, in the first step, it needs to examine the environment parameters to 

construct a node-obstacle distribution graph [4]. Then, it uses an efficient shortest path 

algorithm to avoid obstacles [5]. In this paper, the algorithm adopts the quad tree to 

construct the lattice for the map. Unlike the general lattice map, using a quad tree can 

quickly locate a precise position and adjust the resolution more simply. It will also 

decrease time to compute the path planning and collision avoidance. 

    To effectively plan the shortest path and coordinate every robot to avoid collision, 

using decoupled architecture will be more suitable for the combination of waiting mode 

and avoidance collision algorithm. [6] has proposed a two-layer architecture to control 

the whole movement and local avoidance. They are macro level and micro level 

respectively. This architecture strength is that it distributes the calculated amount to 

different parts of the system. There are several other decoupled architectures with similar 

technology to deal with different assumed situations appearing in the [7] [8] [9]. In 

addition, to obtain dynamic information in real time, robot can communicate with 

neighbors in the specified region [10]. The advantage is its stability, expandability and 

flexibility. [11] has proposed a strategy that multi-robot system combines the guidance 

algorithm and disperse policy decision. 

    For a scheduling algorithm, the most important point is to coordinate robots to avoid 

collisions on the map. Those solutions can be divided into two types, waiting mode and 

motion coordination. To combine the stability of waiting mode and efficiency of 

coordination motion, this paper aims proposing a decentralized algorithm to solve 

collision avoidance problem of multi-robot system in a simulated map with polygon 

obstacles. In previous algorithms, they did not consider the obstacles when dealing with 

collision avoidance. In this paper, the designed algorithm uses quad tree to mark the map 

and obstacles. The robot only communicates with others in a certain region based on 

wanted accuracy, which reduces the computation complexity. Furthermore, there is a 

central control platform to observe global information which has access to collect the 

data from multi-robot to avoid the dead lock problem, which cannot be solved in [1] 

    The rest of this paper is described as the structure below. Section 2 introduces a 

path-planning algorithm containing how to climb obstacles. Section 3 introduces a 

designed system which combines the waiting mode and motion coordination. Section 4 

displays some simulations of the multi-robot system. Section 5 concludes the paper and 

discusses possible future work. 
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2. Robot planning 

First, assuming there is only one robot moving on the map where there are some resource 

points and polygon obstacles. To avoid the condition that the robot moves from one 

resource point to another resource point crossing through one unnecessary resource point, 

the robot is guided to move along with several resource points but not just from the 

source point to the destination point. To climb a group of obstacles between the resource 

point and destination point, the positions of the obstacles should be arranged. Then, the 

designed algorithm will check all obstacles that hinder the robot and find the distance 

between the source point and the obstacle. The distance value is calculated by the formula 

of distance between the point and straight line. 

    A shortest path algorithm to climb the polygon obstacles between the resource 

points is created. This algorithm is different from the previous shortest path algorithm 

which used the subdivision of the map and wave front to obtain the absolute shortest path 

[1]. The realization of the previous algorithms is complex and has higher time complexity 

of O(n*log(n)) than the shortest path algorithm where n is the number of the vertices of 

the obstacles. In addition, the absolute shortest path is often one path. If the system has 

multi-robots, all of them will use this path, which increases the probability of collisions. 

Hence, the designed shortest path algorithm is more suitable for the multi-robot system. 

    The algorithm defines Landing point as the first vertex of that obstacle the robot 

needs to arrive at, and Separation point as the last vertex of that obstacle the robot needs 

to arrive at. The first step is to find a landing point. The algorithm will compute two 

angles formed by the source-destination line and source-visible point line where the 

visible point is defined that the most distant point AGV can see directly. Then, the 

algorithm chooses the landing point from a smaller angle.  

 

Figure 1. Obstacle in square shape and Obstacle in zigzag shape 

Because there is a sort of obstacles with different shapes, the algorithm needs to use 

different solutions to cope with them. If the condition is like Figure 1: square obstacle 

that the obstacle is just a general square, the algorithm needs to guide the robot to choose 

a different separation point. If the landing-destination line intersects with the interior of 

the obstacle, the robot needs to move current point to the next point along with the 

anticlockwise direction (if the point is located on the right side of the Source-destination 

line). 

    If the condition is that the landing-destination line intersects with the obstacle but 

does not cross the interior of the obstacle in Figure 1: zigzag obstacle, the algorithm 

needs move robot from landing point to next point in graph along with the anticlockwise 

direction (if the point is located in the right side of Source-destination line). The 

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division26



algorithm repeats the above steps until the point climbs the obstacle. After dealing with 

these two conditions, the shortest path algorithm can climb over all types of polygon 

obstacles. 

3. The designed system setup 

The designed system is the shortest path algorithm with the combination of the waiting 

mode and motion coordination. Waiting mode is aimed at solving the collision problems 

in the multi-robot system. Traditional waiting mode sets additional parking points for 

each robot that wastes space resources. Meanwhile, it needs a large amount of time. Thus, 

an idea was proposed that the waiting mode will be executed in the eventual condition 

based on the observation of the center control platform, which means that this algorithm 

will not be triggered all the time. waiting mode needs to avoid the collision, deadlock 

and live lock problems in the scheduling field. The algorithm needs to construct a control 

platform firstly to store all the paths information of the robots so that the control platform 

can dispatch robots.  

Once the path information is undated, the control platform will calculate the shared 

path of all robots. The shared path was defined as the repetitive part of the path of one 

robot with other paths of robots. Live lattice was defined as based on the volume of the 

robot; the algorithm will find the minimum area lattice that can contain one robot. If no 

three child-nodes are occupied by any object, this lattice is a live lattice. Dead lattice was 

defined as based on the volume of the robot; the algorithm will find the minimum area 

lattice that can contain one robot. If anyone lattice of three child-node is occupied, this 

lattice is dead lattice. If the next hop of the robot is in the shared path but any point in 

the shared path of this robot is occupied by other robots and any point of lattice of the 

shared path is dead lock, the robot cannot go to the next point and has to wait for other 

robots pass. All these behaviors are controlled by the center control platform. 

The motion coordination proposed in this paper is based on the lattices constructed 

by the quad tree. The quad tree was used to divide the simulated map into many specified 

areas of lattices. The waiting mode was improved through adding a new limitation 

condition based on the quad tree lattice. Under this condition, the waiting mode will only 

be triggered in a few cases. The quad tree is like other trees with parent nodes and child 

nodes. The difference is that each parent node has four child nodes standing for four 

regions in the map, left upper, left lower, right upper and right lower. Furthermore, each 

child region can also be divided into four regions if the system needs a higher accuracy 

degree. The advantage of this type of data type is that it can be simply realized and have 

low time complexity. As a result, each child nodes without any child node becomes 

minimum lattice in the map.  

For different robots, they may have different volumes in reality, which means they 

need different sizes of lattice. Thus, the designed algorithm chooses the minimum size 

of the lattice that can contain one size of the robot. For example, in the simulation of the 

multi-robot system, the experiment sets a 100*100 m^2 map and has tried several 
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different numbers of divisions. The floor area of one robot is assumed to be about 1.5 

m^2. Eventually, the experiment finds the six divisions are suitable for this size of the 

map, which means there will be totally 4 + 4� + 4� + 4� + 4� + 4� = 5460 lattices in 

the map. Therein, there are 4� = 4096 minimum size of the lattice and the minimum 

size is (100 � 100)/4� = 2.44 that can contain one robot, so it is suitable. In this paper, 

the minimum precision is 2.44 m^2 and resolution is 1.22 m^2 that can be adjusted by 

the depth of the quad tree. The algorithm assumes that the map area is S. The AGV floor 

area is N and the number of the division of the quad tree is n. The function can be 

concluded as follows: 

 (1) 

Through this equation, the algorithm can calculate the maximum n value. In the 

next step, the algorithm needs to assign different states to those lattices and robots, so 

that the algorithm can be realized quickly through checking these states. Occupied state 

is defined as if the minimum lattice contains any robot or the part of the obstacle, this 

lattice will be marked as occupied. Private state is defined as if the parent lattice of the 

minimum lattice contains any robot, this lattice will be marked as private. Free state is 

defined as there is nothing in the lattice. Then, the algorithm still needs to define some 

states for robots. Idle state is defined as if the robot has no transportation task, the robot 

will be marked as idle. Running state is defined as if the robot has the transportation task, 

the robot will be marked as running. Removal state is defined as if the robot is avoiding 

other robots, the robot will be marked as removal. Blocked state is defined as if the robot 

is in the waiting mode or it meets one robot with state of removal, the robot will be 

marked as blocked. 

The motion coordination is distributed in each robot and it will be executed through 

checking the state of the lattice in the control platform and state of other lattice by 

communicating with them. To establish a checking standard, the robot can detect the 

same size of the region as the size of itself towards the direction of moving, which means 

each robot can only detect the next minimum lattice in the map towards the direction of 

moving. During the process of moving, the robot will constantly check the next lattice 

state and will face two states it needs to solve. If the state is Free, it can freely move to 

the next lattice. If the state is private, which means collision will take place soon, the 

robot will implement motion coordination. Firstly, the robot will check the other three 

child lattices whether they are located in the straight line of the direction of the moving. 

If any child lattice is so, the robot will ignore it and check the state of the rest lattices. If 

the state is not occupied, the robot will change its next hop into the center point of this 

lattice. If there is not any lattice the robot can avoid, it will mark itself as blocked. It 

should be noticed that this situation would only happen as a result of other robots 

occupying the lattice because the waiting mode has avoided the occupation of the 

obstacle. 

NS
n �

4
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For the collision avoidance problem, the robot will face three different situations 

which are head-on collision, rear collision and intersection collision. Head-on collision 

is described as two robots move at the same time in the opposite direction. Rear collision 

is described as two robots move in the same direction, but the back robot has higher 

speed. Intersection collision is described as two robots will pass the same node at the 

same time. This decision can reduce the time of implementing the motion coordination 

because only the head-on collision needs to coordinate through analysis and other two 

types of collision the robot can only wait for others in site. 

4. Simulation result 

The simulation of the multi-robot system is based on the python matplotlib module. This 

module can create a visual graph to observe the simulation result. For each robot, the 

designed experiment can adjust their velocity, task and control platform. For the control 

platform, it contains the lattice information based on the quad tree and all path 

information of the robots, which will be used to implement the waiting mode and motion 

coordination. The map is 100*100 size and contains totally 16 resource points and 3 

obstacles. The visual graph is in the Figure 3: simulation environment. The blue points 

represent the resource points which are labeled, the black polygons represent the 

obstacles, the red point represents the robot, and the yellow points represent the parking 

points. 

 

Figure 2. Simulation environment 

The designed simulation can increase the number of robots in the system to observe 

the efficiency of the system. Main indexes are completed task number, waiting time and 

ratio which is the waiting time over the running time. To observe them constantly, each 

robot will get a random task after they complete a task. The completed task numbers can 

represent the efficiency of the whole system. The waiting time and ratio of the waiting 

time over the running time can represent the efficiency of the algorithm where waiting 

time represents the total time of waiting mode and motion coordination when there will 

be a collision happening. Running time represents the time of executing the tasks. The 

unit of waiting time and running time is seconds. Ratio meansWaitingTime divided by 

RunningTime. 
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    The experiment has done the 2-robot system, 3-robot system 4-robot system 

simulation tables during the 300 seconds of the experiment. For each experiment, we 

choose the time when each robot completes 2, 10, 20 and 30 task numbers and analyze 

their waiting time and running time. 

Table 1.  2-robot system 

Robot number Task number Waiting time (s) Running time (s) Ratio (%) 
1 2 0 3.4 0 

2 2 0 8.5 0 

1 10 0 66 0 

2 10 0.8 101 0.8 

1 20 0.5 158 0.3 

2 20 1.3 195 0.6 

1 30 0.8 243 0.3 

2 30 1.3 294 0.4 

Table 2. 3-robot system 

Robot number Task number Waiting time (s) Running time (s) Ratio (%) 
1 2 0 4.5 0 

2 2 0 11 0 

3 2 0 15 0 

1 10 0.6 62 0.9 

2 10 0.8 88 1.0 

3 10 0.8 83 1.0 

1 20 2.9 182 1.5 

2 20 1.5 172 0.9 

3 20 1.7 145 1.1 

1 30 4.3 277 1.5 

2 30 3.9 270 1.4 

3 30 3.3 245 1.3 

Table 3. 4-robot system 

Robot number Task number Waiting time (s) Running time (s) Ratio (%) 
1 2 0 5.7 0 

2 2 0 5.7 0 

3 2 0 14 0 

4 2 1.1 15 7.3 

1 10 1.9 100 1.9 

2 10 1.9 122 1.6 

3 10 0.9 112 0.8 

4 10 3.0 148 2.0 

1 20 6.3 233 2.7 

2 20 6.2 246 2.5 

3 20 1.8 244 0.7 

4 20 4.3 296 1.4 

    We also plot the line chart to compare the different systems in the Fig 3. The blue 

line is the 2-robot system, the orange line is the 3-robot system and the green line is the 

4-robot system. From this chart, we can know that the total waiting time of the system 

within the 300 second time frame increases about 8 seconds per one additional robot 

which is acceptable, and if the map is larger, this parameter will be lower. 
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Figure 3. Performance Comparison 

    When the robot number increases, the total completed task numbers are 69, 99 and 

93 respectively. It can be shown that the total system efficiency becomes saturated and 

waiting time does not increase more than 10 seconds with the robot number is increasing. 

Regarding the ratio of waiting time and running time, we want the ratio value to be as 

low as possible, which means the majority of the time is used for the task. After analysis 

of the data, we find that it has a similar trend to the last index. The saturated ratio value 

is about 2% in the designed system. It demonstrates that each robot is executing its tasks 

continuously with efficiency.    

5. Conclusion 

This paper proposed a new scheduling algorithm for the multi-robot system. It contains 

the functions of path-planning, obstacle climbing, waiting mode and motion coordination. 

These functions can help multi-robot to find path, avoid obstacles, and adjust their paths. 

Furthermore, with the application of the quad tree, it is convenient for the robot to mark 

the map using the adjustable lattice structure. More importantly, this strategy can not 

only be applied to a multi-robot system but also be used to assist other agent devices like 

artificial intelligence robot to achieve information marking and acquisition. 

    The innovation of the system design lies in the shortest path algorithm with 

combination of the waiting mode and motion coordination, as well as the new motion 

coordination method based on quad tree division. For the shortest path algorithm, it not 

only has a lower time delay but also decreases the possibility of collision in the multi-

robot system. The quad tree division of the map plays an important role. It has reduced 

computation complexity than the general graph like Voronoi graph, and is flexible for 

the multi-robot system.  

   For the future work, more attention should be paid to the study of dynamic nature of 

the robot colony. More limitations and different costs imposed by the environment and 

hardware will be considered. 
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