
A Multi-Robot Planning Algorithm with
Quad Tree Map Division for Obstacles of

Irregular Shape

Tongpo ZHANGa, Chenyuan LIa, Xu (Judy) ZHUb, Enggee LIMa, Fei MAc, Limin

YUa,1

a
 School of Advanced Technology, Xi'an Jiaotong-Liverpool University

b
 School of Electronic and Information Engineering, Harbing Institute of Engineering,

Shenzhen
c

 School of Science, Xi'an Jiaotong-Liverpool University

Abstract. This paper proposes an algorithm to improve the efficiency of the multi-

robot system in simulated global information map containing obstacles. The

designed multi-AGV scheduling algorithm is based on an optimal shortest path

algorithm with the combination of the waiting mode and motion coordination. The

proposed shortest path algorithm not only has lower time delay but also decreases

the possibility of collision of the multi-robot system. In addition, simulated global

information maps are established to test the efficacy of the algorithm.

Keywords. Robot planning, shortest path algorithm, collision avoidance,

scheduling optimization

1. Introduction

A multi-robot system can generally be divided into two types, centralized control

architecture and decentralized control architecture. For the former, there is a central

control platform to convey useful information to each robot such as moving state of robot,

map information and mark information, and it needs to carry out the algorithm for all

robots [1]. Hence, the centralized control architecture has the properties of stability,

simple realization, low efficiency and high requirement of communication. This

architecture can be classified as coupled and decoupled. For the coupled architecture [2]

[3], it regards all robots as the same one and carries out the same algorithm with

considering the whole state and parameters, which means that its computation volume

will be huge if there are multi-robots in the map. In contrast, the decoupled architecture

does not consider all information but uses the tricks to deal with the coming conflicts or

dead locks. To reduce time complexity, this architecture needs to plan paths and

coordinate movements in real time. An apparent disadvantage of it is that it cannot

1 Corresponding Author.

Design Studies and Intelligence Engineering
L.C. Jain et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220007

24

consider the ideal optimal solution for the system. About movement coordination modes,

there are region control, time window and multi-agent system. This paper designs an

algorithm to construct the shortest path for each robot and combines the waiting mode

and collision avoidance algorithm to ensure there is no conflict in simulated maps.

 For a large number of robot systems, the coupled architecture is not feasible of

sustainable tasks because of the huge computation content. Thus, our idea emphasizes

the decoupled architecture, which means each robot needs to compute the optimal path

before moving and then implement a waiting or collision avoidance algorithm. For a path

planning algorithm, in the first step, it needs to examine the environment parameters to

construct a node-obstacle distribution graph [4]. Then, it uses an efficient shortest path

algorithm to avoid obstacles [5]. In this paper, the algorithm adopts the quad tree to

construct the lattice for the map. Unlike the general lattice map, using a quad tree can

quickly locate a precise position and adjust the resolution more simply. It will also

decrease time to compute the path planning and collision avoidance.

 To effectively plan the shortest path and coordinate every robot to avoid collision,

using decoupled architecture will be more suitable for the combination of waiting mode

and avoidance collision algorithm. [6] has proposed a two-layer architecture to control

the whole movement and local avoidance. They are macro level and micro level

respectively. This architecture strength is that it distributes the calculated amount to

different parts of the system. There are several other decoupled architectures with similar

technology to deal with different assumed situations appearing in the [7] [8] [9]. In

addition, to obtain dynamic information in real time, robot can communicate with

neighbors in the specified region [10]. The advantage is its stability, expandability and

flexibility. [11] has proposed a strategy that multi-robot system combines the guidance

algorithm and disperse policy decision.

 For a scheduling algorithm, the most important point is to coordinate robots to avoid

collisions on the map. Those solutions can be divided into two types, waiting mode and

motion coordination. To combine the stability of waiting mode and efficiency of

coordination motion, this paper aims proposing a decentralized algorithm to solve

collision avoidance problem of multi-robot system in a simulated map with polygon

obstacles. In previous algorithms, they did not consider the obstacles when dealing with

collision avoidance. In this paper, the designed algorithm uses quad tree to mark the map

and obstacles. The robot only communicates with others in a certain region based on

wanted accuracy, which reduces the computation complexity. Furthermore, there is a

central control platform to observe global information which has access to collect the

data from multi-robot to avoid the dead lock problem, which cannot be solved in [1]

 The rest of this paper is described as the structure below. Section 2 introduces a

path-planning algorithm containing how to climb obstacles. Section 3 introduces a

designed system which combines the waiting mode and motion coordination. Section 4

displays some simulations of the multi-robot system. Section 5 concludes the paper and

discusses possible future work.

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division 25

2. Robot planning

First, assuming there is only one robot moving on the map where there are some resource

points and polygon obstacles. To avoid the condition that the robot moves from one

resource point to another resource point crossing through one unnecessary resource point,

the robot is guided to move along with several resource points but not just from the

source point to the destination point. To climb a group of obstacles between the resource

point and destination point, the positions of the obstacles should be arranged. Then, the

designed algorithm will check all obstacles that hinder the robot and find the distance

between the source point and the obstacle. The distance value is calculated by the formula

of distance between the point and straight line.

 A shortest path algorithm to climb the polygon obstacles between the resource

points is created. This algorithm is different from the previous shortest path algorithm

which used the subdivision of the map and wave front to obtain the absolute shortest path

[1]. The realization of the previous algorithms is complex and has higher time complexity

of O(n*log(n)) than the shortest path algorithm where n is the number of the vertices of

the obstacles. In addition, the absolute shortest path is often one path. If the system has

multi-robots, all of them will use this path, which increases the probability of collisions.

Hence, the designed shortest path algorithm is more suitable for the multi-robot system.

 The algorithm defines Landing point as the first vertex of that obstacle the robot

needs to arrive at, and Separation point as the last vertex of that obstacle the robot needs

to arrive at. The first step is to find a landing point. The algorithm will compute two

angles formed by the source-destination line and source-visible point line where the

visible point is defined that the most distant point AGV can see directly. Then, the

algorithm chooses the landing point from a smaller angle.

Figure 1. Obstacle in square shape and Obstacle in zigzag shape

Because there is a sort of obstacles with different shapes, the algorithm needs to use

different solutions to cope with them. If the condition is like Figure 1: square obstacle

that the obstacle is just a general square, the algorithm needs to guide the robot to choose

a different separation point. If the landing-destination line intersects with the interior of

the obstacle, the robot needs to move current point to the next point along with the

anticlockwise direction (if the point is located on the right side of the Source-destination

line).

 If the condition is that the landing-destination line intersects with the obstacle but

does not cross the interior of the obstacle in Figure 1: zigzag obstacle, the algorithm

needs move robot from landing point to next point in graph along with the anticlockwise

direction (if the point is located in the right side of Source-destination line). The

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division26

algorithm repeats the above steps until the point climbs the obstacle. After dealing with

these two conditions, the shortest path algorithm can climb over all types of polygon

obstacles.

3. The designed system setup

The designed system is the shortest path algorithm with the combination of the waiting

mode and motion coordination. Waiting mode is aimed at solving the collision problems

in the multi-robot system. Traditional waiting mode sets additional parking points for

each robot that wastes space resources. Meanwhile, it needs a large amount of time. Thus,

an idea was proposed that the waiting mode will be executed in the eventual condition

based on the observation of the center control platform, which means that this algorithm

will not be triggered all the time. waiting mode needs to avoid the collision, deadlock

and live lock problems in the scheduling field. The algorithm needs to construct a control

platform firstly to store all the paths information of the robots so that the control platform

can dispatch robots.

Once the path information is undated, the control platform will calculate the shared

path of all robots. The shared path was defined as the repetitive part of the path of one

robot with other paths of robots. Live lattice was defined as based on the volume of the

robot; the algorithm will find the minimum area lattice that can contain one robot. If no

three child-nodes are occupied by any object, this lattice is a live lattice. Dead lattice was

defined as based on the volume of the robot; the algorithm will find the minimum area

lattice that can contain one robot. If anyone lattice of three child-node is occupied, this

lattice is dead lattice. If the next hop of the robot is in the shared path but any point in

the shared path of this robot is occupied by other robots and any point of lattice of the

shared path is dead lock, the robot cannot go to the next point and has to wait for other

robots pass. All these behaviors are controlled by the center control platform.

The motion coordination proposed in this paper is based on the lattices constructed

by the quad tree. The quad tree was used to divide the simulated map into many specified

areas of lattices. The waiting mode was improved through adding a new limitation

condition based on the quad tree lattice. Under this condition, the waiting mode will only

be triggered in a few cases. The quad tree is like other trees with parent nodes and child

nodes. The difference is that each parent node has four child nodes standing for four

regions in the map, left upper, left lower, right upper and right lower. Furthermore, each

child region can also be divided into four regions if the system needs a higher accuracy

degree. The advantage of this type of data type is that it can be simply realized and have

low time complexity. As a result, each child nodes without any child node becomes

minimum lattice in the map.

For different robots, they may have different volumes in reality, which means they

need different sizes of lattice. Thus, the designed algorithm chooses the minimum size

of the lattice that can contain one size of the robot. For example, in the simulation of the

multi-robot system, the experiment sets a 100*100 m^2 map and has tried several

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division 27

different numbers of divisions. The floor area of one robot is assumed to be about 1.5

m^2. Eventually, the experiment finds the six divisions are suitable for this size of the

map, which means there will be totally 4 + 4� + 4� + 4� + 4� + 4� = 5460 lattices in

the map. Therein, there are 4� = 4096 minimum size of the lattice and the minimum

size is (100 � 100)/4� = 2.44 that can contain one robot, so it is suitable. In this paper,

the minimum precision is 2.44 m^2 and resolution is 1.22 m^2 that can be adjusted by

the depth of the quad tree. The algorithm assumes that the map area is S. The AGV floor

area is N and the number of the division of the quad tree is n. The function can be

concluded as follows:

 (1)

Through this equation, the algorithm can calculate the maximum n value. In the

next step, the algorithm needs to assign different states to those lattices and robots, so

that the algorithm can be realized quickly through checking these states. Occupied state

is defined as if the minimum lattice contains any robot or the part of the obstacle, this

lattice will be marked as occupied. Private state is defined as if the parent lattice of the

minimum lattice contains any robot, this lattice will be marked as private. Free state is

defined as there is nothing in the lattice. Then, the algorithm still needs to define some

states for robots. Idle state is defined as if the robot has no transportation task, the robot

will be marked as idle. Running state is defined as if the robot has the transportation task,

the robot will be marked as running. Removal state is defined as if the robot is avoiding

other robots, the robot will be marked as removal. Blocked state is defined as if the robot

is in the waiting mode or it meets one robot with state of removal, the robot will be

marked as blocked.

The motion coordination is distributed in each robot and it will be executed through

checking the state of the lattice in the control platform and state of other lattice by

communicating with them. To establish a checking standard, the robot can detect the

same size of the region as the size of itself towards the direction of moving, which means

each robot can only detect the next minimum lattice in the map towards the direction of

moving. During the process of moving, the robot will constantly check the next lattice

state and will face two states it needs to solve. If the state is Free, it can freely move to

the next lattice. If the state is private, which means collision will take place soon, the

robot will implement motion coordination. Firstly, the robot will check the other three

child lattices whether they are located in the straight line of the direction of the moving.

If any child lattice is so, the robot will ignore it and check the state of the rest lattices. If

the state is not occupied, the robot will change its next hop into the center point of this

lattice. If there is not any lattice the robot can avoid, it will mark itself as blocked. It

should be noticed that this situation would only happen as a result of other robots

occupying the lattice because the waiting mode has avoided the occupation of the

obstacle.

NS
n �

4

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division28

For the collision avoidance problem, the robot will face three different situations

which are head-on collision, rear collision and intersection collision. Head-on collision

is described as two robots move at the same time in the opposite direction. Rear collision

is described as two robots move in the same direction, but the back robot has higher

speed. Intersection collision is described as two robots will pass the same node at the

same time. This decision can reduce the time of implementing the motion coordination

because only the head-on collision needs to coordinate through analysis and other two

types of collision the robot can only wait for others in site.

4. Simulation result

The simulation of the multi-robot system is based on the python matplotlib module. This

module can create a visual graph to observe the simulation result. For each robot, the

designed experiment can adjust their velocity, task and control platform. For the control

platform, it contains the lattice information based on the quad tree and all path

information of the robots, which will be used to implement the waiting mode and motion

coordination. The map is 100*100 size and contains totally 16 resource points and 3

obstacles. The visual graph is in the Figure 3: simulation environment. The blue points

represent the resource points which are labeled, the black polygons represent the

obstacles, the red point represents the robot, and the yellow points represent the parking

points.

Figure 2. Simulation environment

The designed simulation can increase the number of robots in the system to observe

the efficiency of the system. Main indexes are completed task number, waiting time and

ratio which is the waiting time over the running time. To observe them constantly, each

robot will get a random task after they complete a task. The completed task numbers can

represent the efficiency of the whole system. The waiting time and ratio of the waiting

time over the running time can represent the efficiency of the algorithm where waiting

time represents the total time of waiting mode and motion coordination when there will

be a collision happening. Running time represents the time of executing the tasks. The

unit of waiting time and running time is seconds. Ratio meansWaitingTime divided by

RunningTime.

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division 29

 The experiment has done the 2-robot system, 3-robot system 4-robot system

simulation tables during the 300 seconds of the experiment. For each experiment, we

choose the time when each robot completes 2, 10, 20 and 30 task numbers and analyze

their waiting time and running time.

Table 1. 2-robot system

Robot number Task number Waiting time (s) Running time (s) Ratio (%)
1 2 0 3.4 0

2 2 0 8.5 0

1 10 0 66 0

2 10 0.8 101 0.8

1 20 0.5 158 0.3

2 20 1.3 195 0.6

1 30 0.8 243 0.3

2 30 1.3 294 0.4

Table 2. 3-robot system

Robot number Task number Waiting time (s) Running time (s) Ratio (%)
1 2 0 4.5 0

2 2 0 11 0

3 2 0 15 0

1 10 0.6 62 0.9

2 10 0.8 88 1.0

3 10 0.8 83 1.0

1 20 2.9 182 1.5

2 20 1.5 172 0.9

3 20 1.7 145 1.1

1 30 4.3 277 1.5

2 30 3.9 270 1.4

3 30 3.3 245 1.3

Table 3. 4-robot system

Robot number Task number Waiting time (s) Running time (s) Ratio (%)
1 2 0 5.7 0

2 2 0 5.7 0

3 2 0 14 0

4 2 1.1 15 7.3

1 10 1.9 100 1.9

2 10 1.9 122 1.6

3 10 0.9 112 0.8

4 10 3.0 148 2.0

1 20 6.3 233 2.7

2 20 6.2 246 2.5

3 20 1.8 244 0.7

4 20 4.3 296 1.4

 We also plot the line chart to compare the different systems in the Fig 3. The blue

line is the 2-robot system, the orange line is the 3-robot system and the green line is the

4-robot system. From this chart, we can know that the total waiting time of the system

within the 300 second time frame increases about 8 seconds per one additional robot

which is acceptable, and if the map is larger, this parameter will be lower.

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division30

Figure 3. Performance Comparison

 When the robot number increases, the total completed task numbers are 69, 99 and

93 respectively. It can be shown that the total system efficiency becomes saturated and

waiting time does not increase more than 10 seconds with the robot number is increasing.

Regarding the ratio of waiting time and running time, we want the ratio value to be as

low as possible, which means the majority of the time is used for the task. After analysis

of the data, we find that it has a similar trend to the last index. The saturated ratio value

is about 2% in the designed system. It demonstrates that each robot is executing its tasks

continuously with efficiency.

5. Conclusion

This paper proposed a new scheduling algorithm for the multi-robot system. It contains

the functions of path-planning, obstacle climbing, waiting mode and motion coordination.

These functions can help multi-robot to find path, avoid obstacles, and adjust their paths.

Furthermore, with the application of the quad tree, it is convenient for the robot to mark

the map using the adjustable lattice structure. More importantly, this strategy can not

only be applied to a multi-robot system but also be used to assist other agent devices like

artificial intelligence robot to achieve information marking and acquisition.

 The innovation of the system design lies in the shortest path algorithm with

combination of the waiting mode and motion coordination, as well as the new motion

coordination method based on quad tree division. For the shortest path algorithm, it not

only has a lower time delay but also decreases the possibility of collision in the multi-

robot system. The quad tree division of the map plays an important role. It has reduced

computation complexity than the general graph like Voronoi graph, and is flexible for

the multi-robot system.

 For the future work, more attention should be paid to the study of dynamic nature of

the robot colony. More limitations and different costs imposed by the environment and

hardware will be considered.

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division 31

Acknowledgment:

This research was funded by Research Enhancement Fund of XJTLU (REF-19-01-04),

National Natural Science Foundation of China (NSFC) (Grant No. 61501380), and by

AI University Research Center (AI-URC) and XJTLU Laboratory for Intelligent

Computation and Financial Technology through XJTLU Key Programme Special Fund

(KSF-P-02).

References

[1] ��������	
����������������������������������
������	����������	�������	�����!���"�	������#�$���-robot

�&���'�� �	�+$��	�'�$�� /���<�$��	��+==�������	���� IEEE Transactions on Automation Science and
Engineering, 13 (2016), 4: 1433-1447.

[2] �� "�������� >�� ?������� @�� +	�������	�� \�� _���� �	�� ��� ���	���� ��	��������� '����	� =��		�	�� �	��

������	����	�#����	�$���������<������� Proc. 24th Int. Conf. Autom. Planning Scheduling, 2014.

[3] H. Andreasson ���������+$��	�'�$�����	�=������<�����`�/<����{�������	��{<������'����	��� IEEE Robot.
Autom. Mag., 22 (2015), 1:64-75

[4] "����������������+����+��+�'���������"��?��|}	�����	��|��|��������~�|$	������+��������&��	������$����	�

method for ground global path p��		�	���������	���������'������ Expert Syst. Appl., 137 (2019), 232-252

[5] \��\������"��"�=�������\��\��	� �	����������&����� �@�$������� �==����<��� �	� ������ =��<�=��		�	�`�+�

�$���&�� Robot. Auto. Syst., 86 (2016), 13-28

[6] S. Manca, A. Fagiolini and L. ?�������	��������	�����!���������	����	��&���'�#���'$���=��� robots in a

���$��$�����	����	'�	��� IFAC Proc., 44 (2011), 1: 6005-6010.

[7] ����<�	������\�	���/���$��	�����������������$������	����� �#�'$���-robot system based on regional

��	�����'������ Prod. Eng., 7 (2013), 4: 433-441.

[8] �������	�������������	���"������<���	��"��>�	�$!!����@������<��������##�����	�����#���=�������&�����	�����!���

coordination of multi robot �&���'�� �	� �	�$��������	����	'�	���� Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pp. 6144-6149, May/Jun. 2014.

[9] ���"�	��'���+��>������	�� �	�����?�������	��� ��������$����'$���-level motion planning for autonomous

��<�������	��������������	�$��������	����	'�	���� Proc. IEEE 18th Conf. Emerg. Technol. Factory Autom.
(ETFA), pp. 1-8, Sep. 2013.

[10] /�����=��������+��$����	������	����	#����-free operation of robot���	�����$������=����&�� Comput. Ind.
Eng., 126 (2018), 472-481

[11] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal
on Computing, 28 (1999), 6:2215-2256

T. Zhang et al. / A Multi-Robot Planning Algorithm with Quad Tree Map Division32

	1. Introduction
	2. Robot planning
	3. The designed system setup
	4. Simulation result
	5. Conclusion
	Acknowledgment:
	References

