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Abstract. Deep neural networks have recently been used to address surface anomaly 

detection in industrial quality control and have achieved much success. However, 

addressing the data imbalance problem, especially the Easy/Hard Examples (EHE) 

imbalance problem, remain a challenging task in anomaly detection. To alleviate 

this problem, we propose a two-stage convolutional neural network with a novel 

loss function, i.e., concentrated loss function. Specifically, the concentrated loss 

function enables the model to pay more attention to hard examples and improve the 

quality of segmentation for imbalanced data. To verify the effect of our method, we 

implement our method on the surface anomaly detection dataset, i.e., the 

KolektorSDD2 dataset. The experimental results show the superiority of our method 

over the other state-of-the-art approaches. 
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1. Introduction 

As a crucial part of the process of industrial production, product quality 

inspection has attracted increasing attention. The product quality inspection 

directly affects production efficiency. To improve product quality and 

production efficiency, numerous surface anomaly detection methods have 

been proposed. Traditionally, machine vision-based techniques have been 

applied to product quality inspection processes [1, 2]. These methods utilize 

hand-crafted features to detect defects generally, difficult to cope with 

various types of defects. 

With the development of big data and the enhancement of computing power, deep 

learning strategies have been applied to anomaly detection [3, 4, 5]. Deep learning 

methods can handle complex defect features well and adapt to changing scenarios in 

industrial applications. Concretely, anomaly detection networks can be divided into one-

stage and two-stage frameworks. The one-stage network combines the segmentation and 

classification modules into a joint structure [6, 7]. 

However, this network relies on a large number of training samples, 

showing poor performance when training samples are lacking. On the 

contrary, the two-stage network is composed of two sub-networks, i.e., the 
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segmentation network and the decision network. The segmentation network 

is used to locate the defect location. After the segmentation network, the 

decision network determines whether the defects exist based on the 

segmentation result. The two-stage networks can achieve excellent 

performance for addressing surface anomaly detection when there are fewer 

training samples. However, the data imbalance problem, which is frequently 

encountered in anomaly detection, restricts the two-stage network, and 

affects its detection accuracy. 

For the real-world dataset, the data imbalance problem is almost 

inevitable [8]. This problem leads to the major examples overwhelm training 

and degenerate models [9]. Concretely, data imbalance in the anomaly 

detection domain can be divided into two categories, Class Imbalance (CI), 

and Easy/Hard Examples (EHE) imbalance [10]. CI represents the positive 

(defective) examples occupy a smaller proportion than negative (non-

defective) examples on datasets. At present, there are many solutions to the 

problem of CI, and the specific methods are discussed in Section 2. Obtaining 

less attention, EHE imbalance refers to the number of hard examples that is 

much smaller than the number of easy examples. An easy example is shown 

in Figure 1 (a), which has an obvious defect target (marked by the red box) 

and is prone to be detected. In contrast, Figure 1 (c), shows a hard example 

that the defect target (marked by the red box) is difficult to be detected by 

anomaly detection algorithms, even for the human being. The detection of 

the hard examples on the dataset is the top priority to improve the accuracy 

of anomaly detection. 

In this paper, we propose a concentrated loss (CL) to alleviate the EHE 

imbalance problem. CL makes the anomaly segmentation model pay more 

attention to the hard examples and shows excellent performance to its 

anomaly detection. We implement our method in a two-stage anomaly 

detection network and verify it with KolektorSDD2 (KSDD2) dataset2. The 

experiments results, in Section 4.3, demonstrate the effectiveness of our 

method. 

 

 

  

  

(a) Easy example (b) Easy ground

truth 

(c) Hard example (d) Hard ground truth

Figure 1. Illustration of the EHE imbalance problem. Subfigures (a) and (c) show the instance 

of easy example and hard example, respectively. Subfigures (b) and (d) show the corresponding 

defective region. 

 
2 https://www.vicos.si/resources/kolektorsdd2 
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2. Related work 

Several related works explored the usage of deep learning methods in 

manufacturing industry anomaly detection [6, 7, 11, 12]. The work of Masci 

et al. [3] showed that deep learning methods are superior to traditional 

machine vision-based methods. They used a shallow network to detect steel 

anomalies and achieved excellent results. Further, Weimer et al. [4] evaluated 

several deep learning structures with different layers and conducted a more 

comprehensive study on deep network architecture. They are inefficient in 

classifying each individual image patch. A more efficient two-stage network 

for anomaly detection was proposed by Racki et al. [13]. The application of 

the two-stage network in anomaly detection tasks greatly improves detection 

accuracy [11]. However, the classification results of this method fluctuate 

greatly due to the data imbalance [10]. 

To address these problems, some methods have made a great contribution 

[14, 9, 15]. The earliest work by Chawla et al. [16] used over-sampling 

techniques to address the class imbalance. However, the algorithm has a 

certain degree of blindness when selecting neighbors. Further, Han et al. [17] 

improved based on the SMOTE algorithm [16] for refining the class 

imbalance of data. Furthermore, for the EHE imbalance problem of datasets, 

Shrivastava et al. [18] proposed online hard example mining (OHEM). The 

method retains examples with higher loss and ignores easy examples. 

Similarly, Lin et al. [9] proposed a novel loss function based on a one-stage 

network, i.e., focal loss function. This loss function reduced the weight of a 

large number of easy examples in training and achieved excellent results for 

addressing the problem of data imbalance. Inspired by the success of the focal 

loss function on semantic segmentation, we propose the concentrated loss 

function for anomaly detection. The proposed strategy can improve the 

identification of hard examples on the two-stage network. 

3. Proposed method 

In this section, we show the details of our method. In practice, the EHE 

imbalance weakens the deep learning-based anomaly detection method. To 

reduce the impact of the EHE imbalance, we propose a concentrated loss 

(CL) function. CL down-weights easy examples and thus induces the model 

to focus on the hard examples. We implement CL on the segmentation 

network of the two-stage network. Through the combination of CL and the 

segmentation network, our model obtains better extraction performance on 

hard examples. As shown in Figure 2, the proposed network contains two 

sub-networks. The segmentation network locates the defects by extracting its 

mask, while the decision network based on the segmentation result 

determines whether there are defects on the surface of products. With two-

stage cascade and biased minibatch sampling mechanisms, our two-stage 

network shows robust to class imbalance [9]. 
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3.1.  Network architecture 

In this paper, we propose a novel two-stage network based on Tabernik et al. [11]. As 

shown in Figure 2, our network is consisting of two components, i.e., the segmentation 

network and the decision network. 

 

 

 

Figure 2. The structure of our neural network. In the figure we utilize “ S  number and D  
number” to represent layers of segmentation network and decision network.

 

 

For the segmentation network, we add convolutional layers (layer S7) 

based on the segmentation subnetwork proposed by Tabernik et al., to 

enhance the feature extraction ability. However, with the increase of 

convolutional layers, the extracted defect information is more likely to be lost 

in forward propagation [19]. To save the extracted information, 

deconvolutional layers are adopted. Four deconvolutional layers (layers S8-

S11) are inserted before each max-pooling layer and after the last 

convolutional layer. For convenience, we call the feature map after 

deconvolutional layers e-feature. These e-features are integrated by three 

convolutional layers i.e., the layers S12-S14. Finally, we obtain the defect 

segmentation result by fusing the four integrated e-features via a convolution 

layer (layer S15). For the decision network, the channel of the input feature 

is adjusted to a single channel. It takes the segmentation result as input and 

outputs the predicted class of input image. The architecture details of our 

network are shown in Table 1. 

3.2.  Concentrated loss 

Inspired by focal loss [9], we propose the concentrated loss (CL). CL is the 

product of basic loss function and concentrated factor as follow:
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Table 1. Architecture details for segmentation and decision sub-networks. 

Segmentation network Decision network 

No. Layer Kernel Channel No. Layer Kernel Channel

S0 Input image - 3  D0
Segmentation 

Result 
- 1

S1 2×Convolutional 3×3 16 D1 Convolutional 1×1 512 

S2 Max-Pooling 2×2 16 D2 Max-Pooling 2×2 512

S3 3×Convolutional 3×3 32 D3 Convolutional 5×5 128 

S4 Max-Pooling 2×2 32 D4 Max-Pooling 2×2 128 

S5 4×Convolutional 3×3 48 D5 Convolutional 5×5 16 

S6 Max-Pooling 2×2 48 D6 Convolutional 5×5 32 

S7 5×Convolutional 3×3 64 D7 Max-Pooling Global 32

S8 Deconvolutional 1×1 1 D8 Mean-Pooling Global 32 

S9 Deconvolutional 2×2 1 D9 Concatenate - 64 

S10 Deconvolutional 4×4 1 D10 Full connect - 54 

S11 Deconvolutional 8×8 1     

S12 - S14 Convolutional 3×3 1     

S15 Convolutional 3×3 1

 

 

In Eq. (1),  denotes the ground truth mask of input samples, 

while is denoted as the corresponding prediction of the model. 

Basic loss function is a conventional loss function, which can be 

a single loss function like the Cross Entropy loss function or a combination 

of different loss functions. Concentrated factor 

 is a coefficient that dynamically changes 

according to the segmentation results.  is the intersection over 

union (IOU) of and , while is a coefficient, control the 

down-weighting degree for easy examples. IOU is the ratio of intersection 

and union of prediction and ground truth, which is formulated as 

 

In the Eq. (2), � is a small nonzero constant to prevent the denominator from being 

zero. The CL is visualized for several values of 

p

in Figure 3. Take an instance 

of a hard example as input. When the network confronts a hard example, the 

segmentation network is difficult to extract defects, meaning the  is a small 
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value. In this case, the concentrated factor is close to 1 and CL is almost equal to the 

basic loss. In contrast, if the input image is an easy example, the segmentation network 

can segment the defect well with the  close to 1. In this situation, the 

concentrated factor is close to 0 and CL is much smaller than the basic loss. By 

adjusting the proportion of loss from the examples with different categories, 

the model can learn knowledge with balancing hard samples and easy 

samples. 

In the experiment, we follow the previous study [20] adopting the 

weighted sum of Dice loss  and Cross Entropy loss  to 

alleviate the class imbalance problem. Our loss function is formulated as 

follows: 

 

 

 

Figure 3. The visualization of CL. As shown in the figure, with the � increases, the down 

weighting degree for easy examples increases as well. 

4. Experiment 

4.1. Dataset 

In order to verify the effectiveness of our proposed algorithm, we utilize the 

KolektorSDD2 dataset as training and testing data. The dataset is constructed 

from images of defective production items that were provided and annotated 

by the Kolektor Group [12]. The images were captured in a controlled 

industrial environment and included different defect types such as scratches, 

small spots, and surface defects etc. This dataset contains 356 images with 

visible defects and 2979 images without any defect, in which each picture 

with a resolution of 632 × 232 pixels. Thereinto, the training set has 246 

positive and 2085 negative images, and the test set has 110 positive and 894 

negative images.
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4.2.  Performance metrics and implement detail 

In the experiments, we mostly measure the performance in terms of the 

average precision (AP), which is calculated as the area under the precision-

recall curve. AP is one of the commonly used metrics to measure the 

performance of classification models. A larger AP value indicates better 

classification capability.  

The proposed method is implemented on Ubuntu 18.04 with Intel(R) 

Xeon(R) E5-2630 v4 CPU and NVIDIA GeForce GTX 2080 Ti GPU. The 

parameter  in our method controls the down-weighting degree for easy 

examples, while the parameter  adjusts the proportion of Dice loss and Cross 

Entropy loss. In this paper, we set and to 0.5 and 0.95, respectively. For 

both the segmentation and the decision sub-networks, we apply the random 

initialization of the standard normal distribution to the model parameters and 

use the Adam algorithm [21] to optimize the parameters. We train the 

segmentation model 200 epochs on the KSDD2 dataset with a learning rate 

of 0.1 and batch size of 2, while the decision model is optimized for 100 

epochs. 

4.3. Anomaly detection results 

In this section, we verify that our method has the ability to alleviate the 

impact of the EHE imbalance. We propose the concentrated loss (CL) 

function to induce anomaly detection models to pay more attention to hard 

examples. The intuitive details are shown in Figure 4. It can be seen from 

Figure 4 that our method is accurate for hard and easy examples extraction. 

 
 

Figure 4. Segmentation results of our methods. The red boxes are adopted to label the location 

of defect regions. 

 

 

Furthermore, we compare with two state-of-the-art methods, i.e., Mixed supervision 

[12] and PSIC-Net [22]. Mixed supervision is a representation of the one-stage anomaly 

detection method, while PSIC-Net represents the two-stage anomaly detection method. 
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As shown in the rightmost column of Figure 5, our method obtains the AP of 96.1%, 

which is better than PSIC-Net and Mixed supervision 2.8 and 0.7 percentage points, 

respectively. In order to illustrate the effectiveness of CL, we conducted an ablation 

experiment on CL. Concretely, we only keep the basic loss by removing the 

Dice loss in Eq. (3), i.e., , for the segmentation network. The result is 

shown in the third column of Figure 5. Compared with , the AP is 

improved by 0.4 percentage points when . The above results prove the 

validity of our method. 

 

 

 

Figure 5. Anomaly detection comparison of related methods.

 

 

5. Conclusion 

Product quality inspection is becoming more and more important for the 

manufacturing industry. In this article, we aim to alleviate the Easy/Hard 

Examples imbalance problem in product anomaly detection. Concretely, we 

propose the concentrated loss function to down-weight the loss of easy 

examples on the segmentation network and thus induce the anomaly 

detection model to pay more attention to hard examples. After deploying it 

with the two-stage neural network, we achieve excellent detection accuracy 

for both easy examples and hard examples. The comparison results show that 

our method achieves superior performance over other state-of-the-art.  
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