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Abstract. A major advantage of harvesting robots is automatic fruit detection. Fruit 

recognition is difficult due to complex environmental variables such as lighting 

change, branch and leaf occlusion, and tomato overlap. Based on YOLOv5, an 

enhanced tomato detection model dubbed Tomato-YOLO is provided in this study 

to address these issues. YOLOv5 has a dense architecture, which makes it easier to 

reuse features and develop a more concise and accurate model. Furthermore, for 

tomato localisation, the model uses a rectangle bounding box. The bounding boxes 

can then more accurately match the tomatoes, improving the Non-Maximum 

Suppression Intersection-over-Union (IoU) calculation (NMS). They also reduce the 

size of the prediction coordinates. This will afford for more advancements in edge 

deep learning models for in situ and real-time visual tomato detection, which is 

necessary for harvesting robot development. The effectiveness of these alterations 

was demonstrated in an excision research. The research demonstrated that the 

system can distinguish green and reddish tomatoes, even when they are shrouded by 

leaves. With the NVIDIA GEFORCE GTX Architecture platform, Tomato-YOLO 

had the best performance, with an F1-score of 66.15 percent, a mAP of 52.26 percent, 

and an inference time of 16.14 ms. 

Keywords. deep learning, digital image processing, robot harvesting, agricultural 

robots, YOLO 

 
1 Corresponding Author, Jude Hemanth D 1Department of Electronics and Communication Engineering, 

Karunya Institute of Technology and Sciences, Coimbatore, India; E-mail: judehemanth@karunya.edu. 

Models for the Detection of Tomato Berries 

Design Studies and Intelligence Engineering
L.C. Jain et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220049

429



1. Introduction 

Harvesting fruits is a time-consuming and labor-intensive process. Much of this 

job can now be done by a harvesting robot [1] because to advances in artificial 

intelligence. There are two processes to harvesting with robots. A computer vision 

system is used to first detect the fruit. Then, based on the detection results, a manipulator 

is instructed to select the fruits. Fruit detection is the more important and difficult of 

these two steps. It determines the detection accuracy as well as the manipulator's 

subsequent action. This endeavour is made more difficult by the complex settings and 

non-structural surroundings. 

Over the last few decades, many researchers have looked on fruit detection. [1,2] 

There have been significant advancements. Green apples were classified by Linker et al. 

[3] based on colour and texture. In order to determine the outcomes, a comparison was 

made between a detected circle and a heuristic model. It was reported that the accuracy 

was 85%. The results were greatly influenced by lighting variations such as direct 

sunshine and colour saturation. To remove fruits from background, Wei et al. [4] 

suggested a color-based segmentation approach. For segmentation, the OHTA colour 

space was employed. It is reasonable to conclude that lighting has a significant impact 

on performance. For the localization of mature apples, Kelman et al. [5] suggested a 

shape analysis method. A canny filter was used to identify the image's edges. It then used 

a pre-processing procedure and a convexity test to find the edges that belong to three-

dimensional convex objects. They discovered that illumination and leaves with convex 

surfaces similar to apples have a big impact on performance. To assess mango crop yield, 

Payne et al. [6] devised a colour and texture-based approach. The algorithm was a huge 

step forward from their previous method [7]. Artificial lighting, on the other hand, 

limited the scenario. Furthermore, the system employed a complex decision-making 

procedure with numerous predefined thresholds, making it difficult to adjust to different 

fruits or settings. To distinguish mature tomatoes, Zhao et al. [8] employed a feature 

images fusion approach. The a*-component and I-component from the L*a*b* colour 

space and luminance, in-phase, quadrature-phase (YIQ) colour space, respectively, were 

fused using the wavelet transformation. To separate the tomatoes from the background, 

an optimum threshold was applied to the fusion image. They claimed a 93 percent 

accuracy rate. The results were influenced by the lighting because only colour attributes 

were used in their investigation. 

More study into using machine learning to computer vision tasks in agriculture 

has resulted from the rise and development of artificial intelligence technology. For fruit 

and branch detection in natural situations, Lv et al. [9] utilised a Support Vector Machine 

(SVM) trained solely in RGB colour space. They claimed that this method had a fruit 

accuracy of 92.4 percent, outperforming earlier threshold-based methods by a wide 

margin. Nonetheless, illumination had a tendency to influence the outcomes. For 

immature peach detection, Kurtulmus et al. [10] used various different classifiers, 

including statistical classifiers, a neural network, and an SVM. For feature extraction, 

the circular Gabor filter and principal component analysis were used. The highest level 

of accuracy was 84.6 percent. Variations in illumination and occlusion were used to limit 

performance. For tomato detection, Yamamoto et al. [11] blended a pixel-based 

segmentation and a blob-based segmentation technique. A decision tree classifier and a 

random forest classifier were used in the technique. The recall and precision rates were 

80 percent and 88 percent, respectively. For tomato detection, Zhao et al. [12] employed 

a mix of AdaBoost classifier and colour analysis. To train the classifier, they used a Haar-
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like feature. Although the technology produces acceptable results, its speed is 

insufficient to meet the real-time requirements of a harvesting robot. Luo et al. [13] also 

proposed a grape cluster recognition framework that focuses on AdaBoost and colour 

features. Experiments showed that this strategy can lessen the effects of weather, leaf 

occlusion, and lighting variation to some extent. For mature tomato detection, Liu et al. 

[14] suggested a coarse-to-fine framework. SVM and False Color Removal were used in 

their research. 90.00 percent recall and 94.41 percent precision were achieved, 

respectively. For overlapping and occluded tomatoes, however, the approach is 

insufficient.  

Although conventional machine learning has improved computer vision 

significantly, the majority of approaches rely on handcrafted features, which have a 

number of disadvantages. To begin with, designing these features is difficult. Second, 

such characteristics have a low level of abstraction and can only adapt to a limited 

number of circumstances. As a result, flexibility is compromised. Furthermore, 

transferring these techniques from one fruit to multiple others is difficult. These limits 

of conventional machine learning were overcome with the breakthrough of deep learning 

on computer vision problems [15,16], because features extracted with a deep 

convolutional neural network (DCNN) are more abstract and generalizable. The 

availability of big data, in particular, has cleared the door for the use of deep learning 

approaches in farm vision tasks [17]. Fruit detection was used by Sa et al. [18], who used 

the Faster R-CNN [19] detector. Two fusion algorithms were utilised to combine the data 

from the RGB and Near-Infrared images. This method yielded better outcomes than prior 

methods. However, the approach has difficulty detecting little fruits, and its speed needs 

to be increased for real-time in-field harvesting robot operation. Based on the Faster R-

CNN approach, Bargoti et al. [20] created a fruit detection model for orchards. F1 score 

of over 90% was achieved in their report. The majority of the missing fruits came from 

a scenario where the fruits were clumped together. For fruit counting, Rahnemoonfar et 

al. [21] implemented a modified Inception-ResNet architecture [22]. With genuine 

photos, this approach was able to obtain a 91% average accuracy. The approach, on the 

other hand, only tallied the fruits and did not discover them. In order to detect objects, 

Redmon et al. presented the You Only Look Once (YOLO) models [23–25]. YOLO 

models immediately predict bounding box coordinates and their respective classes using 

a single feed forward network, in contrast to previous region proposal-based detectors 

[19,26] that execute detection in a two-stage pipeline. As a result, they can greatly 

increase the speed while maintaining respectable accuracy, making them actual real-time 

detectors. However, there are just a few studies that use YOLO models to detect fruit.  

In this study, a detection model based on the DCNN was presented to detect 

tomatoes in complicated environments. To improve detection performance, two basic 

ideas have been offered. 

To begin, the model introduced dense architecture [27] into YOLOv3 [25] to 

simplify feature reuse and allow the model to acquire richer tomato representation 

properties. 
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2. Materials and Methods 

2.1 Image Acquisition 

The tomato datasets for this research were collected on a tomato field nearby 

Coimbatore between July and November 2020. A digital camera (Sony DSC-W170) with 

a resolution of 3648 X 2056 pixels was used to capture the photographs. All the pictures 

were acquired in natural daylight with a variety of occlusion, overlap, and illumination 

variations.  

A total of 950 tomato photos were taken and split into two groups: training and 

testing. The training set comprised of 700 photos containing 2500 tomatoes, whereas the 

test set consisted of 250 images containing 900 tomatoes. Figure 1 depicts some of the 

dataset's samples in various contexts. 

 
Figure 1: Sample images in the dataset 

2.2 Image Augmentation 
 

This research employed the data augmentation technique. Each image was 

randomly sampled using one of the following alternatives during training, before being 

input into the model: 

– the original image in its entirety  

– cropping and scaling 

The images was first resized with a random factor in the range [1.15, 1.25] for 

the resizing and trimming operation. The resized image was then arbitrarily cropped into 

a patch the same size as the original. Each image was horizontally flipped with a 

probability of 0.5 following the sampling stage.  

 

2.3 Proposed Tomato-YOLO
Figure 2 depicts a broad view of the suggested tomato detection model. A dense 

architecture was built on top of the YOLOv5 model to improve feature reuse and 

representation. A Tomato-Yolo system is proposed for training and detection of tomato 

berries. 

It has been demonstrated in [27] that a direct connection between any two layers 

allows for feature reuse across networks, which aids in the learning of more concise and 

accurate models. A deep convolutional framework is integrated into the YOLOv5 

framework, to better reuse the characteristics for tomato detection. The retrieved 

characteristics may now be used more efficiently, specifically those from low-level 

layers, which should enhance detection accuracy. 
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A dense architectural specification used in this investigation. This architecture 

is made up of five dense blocks, each with six, twelve, twenty-four, sixteen, and sixteen 

dense layers. A 1X1 bottleneck layer [28] and a 3 X 3 convolutional layer are placed 

together for each dense layer. A transition layer was inserted between (any) two 

successive thick layers to make the model more compact. Figure 2 depicts the structure 

of a dense block. Since each layer within the dense block have a direct connection, the 

network learns more complex features to improve its representation of tomatoes. Six 

convolutional layers are present in front of each detection layer in the original YOLOv5 

model. The original six levels were reduced to two layers before each detection layer due 

to dense architecture's better usage of features. The first four layers were removed. 

 

 
 

Figure 2: Training and Detection Phase 

 

2.4 Experimental Setup 
 An R-Bbox is typically used to localise the target in general object detection 

tasks, such as Pascal VOC [29] and COCO [30], because item shape varies by class. 

When concentrating on a single activity, however, a customised bounding box shape 

could be employed to boost detection performance. In this work, a C-Bbox is proposed 

as the detection target since the detection target is tomato (a circle shape). The proposed 

C-Bbox, when compared to the regular R-Bbox, is said to have two major advantages 

because tomatoes and C-Bboxes are a better match. On the one hand, the IoU of two 

anticipated C-Bboxes is more accurate than the IoU of R-Bboxes, which is crucial in the 

NMS process. The C-Bbox, on the other hand, has fewer parameters than the R-Bbox, 

making it easier for the CNN model to regress from previous anchors to predictions. 

 The studies were carried out on a PC with Intel i5 quad-core CPUs running at 

3.30 GHz and an NVIDIA GeForce GTX 1070Ti GPU. Images with a resolution of 416 

x 416 pixels were fed into the model as input. Batch size was limited to 8 due to GPU 

memory limits. The model was trained for 160 epochs with a 10-3 learning rate, then 

divided by 10 after 60 and 90 epochs. The weight and momentum decay rates were set 

as 0.9 and 0.0005, respectively. 

To assess the suggested method's performance, a set of experiments were carried out. 

The following are the indexes for evaluating the trained model: 

Recall =  
��

�����
         (1) 
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Precision = 
��

�����
         (2) 

 

Where True positives (accurate detection), false negatives (miss), and false positives 

(false positives) are abbreviated as TP, FN, and FP, respectively (false detection).

F1 score was used as a trade-off between recall and precision to better represent the 

model's overall performance, as specified in Equation (3): 

           F1 =     
��	
��

���
������

	
��

���
������
         (3) 

3 Results and Discussions 
The following evaluation criteria were taken into consideration:

� Recall precision curve;  

� mAP (mean Average Precision);  

� Total recall;  

� Total precision; 

� F1-score; 

� Inference time. 

 

94.58 % of the tomatoes were recognized under mild occlusion conditions. This was 

4.5% higher than the severely obstructed cases. The presence of the tomato berries in 

severe occlusion situations differed significantly from that of the undamaged tomatoes, 

resulting in the loss of some semantic information as shown in Figure 3. With the 

addition of contextual information such as calyx, detection accuracy should improve. 

Another possible enhancement would be to zoom in on candidate places by approaching 

the tomatoes with the cameras, and then only perform detection on these areas. Figure 4 

and Figure 5 depicts the F1 curve and precision – recall curve respectively. The markers 

indicate the points where recall and precision are obtained when the confidence threshold 

equals 0.78 

               

Figure 3: Berry detection Figure 4: F1 curve
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Figure 5: Precision- Recall curve 

4 Conclusions and future work 
The Tomato-Yolo detector, based on the YOLOv5 model, was proposed in this paper for 

tomato detection. The effect of illumination fluctuation, overlap, and occlusion can be 

reduced using this strategy. Two methods were used to do this. The first used a dense 

architecture for feature extraction, which allows for better feature reuse and aids in the 

learning of more precise models. This method's performance revealed that it can be used 

to detect tomatoes by harvesting robots. 

The contextual information surrounding tomatoes will be used in future research to 

increase detection performance, particularly for badly obstructed tomatoes. In addition, 

data on tomato maturity will be analysed and combined to detect tomatoes at various 

stages of development. 
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