
Parallel Scheduling of Complex Requests
for a Constellation of Earth Observing

Samuel SQUILLACI a,1, Stéphanie ROUSSEL a and Cédric PRALET a

a ONERA/DTIS, Toulouse, France

Abstract. Nowadays, the Earth observation systems involve multiple satellites,
multiple ground stations, and multiple end-users that formulate various observa-
tion requests. These requests might be heterogeneous (stereoscopic observations,
periodic observations, systematic observations, etc.), and one difficulty is that the
search space defined by the possible ways of performing the requests given the
multiple satellites and ground stations available is huge. This paper studies several
combinatorial optimization techniques for solving such an operational problem, in-
cluding a constraint programming approach and parallel scheduling techniques that
take advantage of the problem structure. These algorithms are evaluated on realistic
instances involving various request types and objective functions depending on the
cloud cover conditions, that highly impact the quality of the images collected.

Keywords. Scheduling, Parallel processing, Constellation of satellites

1. Introduction

Earth Observing Satellites (EOSs) are used for various needs, including the surveillance
of points of interest (e.g. for defence or environmental issues) or the punctual observa-
tions of areas of interest (e.g. for natural disaster monitoring or for mapping require-
ments). Over the years, many satellite systems were designed, and nowadays there is a
growing development of constellations of EOSs, including several already active sys-
tems. In this paper, we consider a future Earth observation system designed by an indus-
trial partner for this study. This system is composed of 16 low Earth orbit satellites and
multiple ground stations. Based on this system, one ambition is to reduce the total time
required to fulfil observation requests over relevant areas at the Earth surface. Another
objective is to answer new kinds of requests formulated by the end-users, such as high
frequency periodic requests (e.g., observation of a given area four times per day) or sys-
tematic requests (observe an area of interest a each time a satellite of the constellation
flies over a). For this new system, a key point concerns the development of a mission
planning tool able to take as an input a set of candidate imaging requests and a cloud
cover forecast, and return as an output a mission plan for each satellite of the constel-
lation over the next time period, e.g. for the next 24 hours. This raises several technical
challenges.

1Corresponding Author: S. Squillaci; E-mail: samuel.squillaci@onera.fr.

Satellites

PAIS 2022
A. Passerini and T. Schiex (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220068

100

• As usual for Earth observing satellites, the problem is generally over-constrained,
meaning that there is a need to select the subset of requests for which observation
activities will be performed over the next planning period.

• The mission planner must deal with heterogeneous requests. This implies that it
must be able to satisfy specific constraints associated with each request: for in-
stance, for so-called stereoscopic requests, there is need to perform two acquisi-
tions of a given area in a single pass of a satellite. This also implies that the plan-
ner must be capable of comparing two requests that might require very different
numbers of images and that might have very different cloud cover conditions.

• There may exist numerous alternatives to satisfy complex requests such as peri-
odic ones. For instance, if a user wants to observe a given ground area at 8am,
11am, 14pm, and 17pm each day, and if there are 5 observation opportunities
around each time reference, we end up with 625 combinations for a single request.

• The satellites we consider must be pointed to targets during observations and
pointed to ground stations for transferring data. As a result, observations and data
transfers cannot be performed in parallel.

• In addition to the complexity of the problem, the mission planner must be very
reactive, and we consider that we have approximately 5 minutes to build a plan
that is updated several times per day.

To answer these challenges, we study several optimization techniques for defining
the observation and data download activities of the satellites. Some of these techniques
try to exploit parallel search, the main idea being to take advantage of the structure of
the problem from the point of view of the temporal constraints. Indeed, the set of candi-
date observation and download activities can be partitioned since there are several inde-
pendent satellites and usually several independent orbits for each satellite. For instance,
with 16 satellites performing 15 revolutions per day, we obtain at least 240 subproblems
that are independent from a temporal point of view, and there might even exist further
decompositions within each orbit.

The rest of the paper is organized as follows. We first describe related works. We
then formalize the problem considered. After that, we present several scheduling algo-
rithms that exploit problem decomposition and parallel search. Last, we provide experi-
mental results over realistic scenarios together with perspectives for this work.

2. Related Works

Several techniques were proposed in the last decade to define an observation selection
and scheduling tool for a constellation of satellites. Some authors proposed to tackle a
unique global optimization problem to define the activities of the satellites, based on
Branch & Price [1,2] or MILP [3,4]. Several incomplete search methods were also tested
such as tabu search [5], evolutionary algorithms [6,7], simulated annealing [8], or Pareto
Search when multiple objective functions must be optimized [9,10].

Other approaches explicitly identify on one hand an assignment problem that con-
sists in determining the satellite that should fulfil a given request among the satellites of
the constellation, and on the other hand a scheduling problem that consists in ordering
all the activities assigned to a given satellite so as to satisfy the temporal constraints.
For instance, [11] handles the assignment problem by selecting at each step an observa-

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 101

tion job maximizing a given scoring function and assigning this job to a satellite whose
workload is the lowest. [12] assigns jobs to satellites based on randomized heuristics
that take into account various features, such as the size of the observation windows or
the observation angle. It also couples this process with an Adaptive Large Neighborhood
Search (ALNS) that uses destroy and repair operations to try and decrease the number
of unscheduled jobs. In another direction, [13] assigns each job to the satellite that offers
the highest scheduling success probability according to a neural network success predic-
tion model and then performs tabu search to get a plan. Last, [14] studies assignment
strategies where the difficulty of inserting an observation in the plan of a given satellite
is taken into account. With regards to these previous works, one issue is that for the sys-
tem we consider, the central mission planner must deal with more complex observation
requests, such as the periodic imaging requests mentioned before.

A few studies have also been performed for complex observation requests (not lim-
ited to a single image acquisition). For instance, [15] optimizes a mission plan to re-
duce the error of a soil moisture estimator model based on observations made by differ-
ent instruments. A beam search is proposed to build such a plan. [16] introduces modes
coupling observations and data downloads to represent different ways to cover requests,
together with an LNS algorithm based on successive insertions and removals of modes.

As for parallel search, problem decomposition has already been exploited for satel-
lite constellations. [13] decomposes the problem into a prediction step that evaluates the
probability to successfully insert an observation in a given satellite plan, and a parallel
solving step that schedules the activities of every satellite. In this context, parallel solv-
ing is possible since the plan of each satellite is built after dispatching the observations.
[17] proposes an auction-based algorithm to share the satellite resources between users
computing bids in parallel. Parallel search techniques were also developed for planning
problems in general, like parallel A*, but we focus our literature review on parallel search
for satellite constellation planning.

3. Problem Modeling

We now describe the scheduling problem we have to solve given a set of satellites S. We
do not consider memory or energy capacity constraints since the main bottleneck for the
specific satellites we are working on comes from the temporal constraints.

3.1. Observation Requests

An observation request is defined by a polygon at the Earth surface and by an observa-
tion pattern specified by the end-user posting the request. In the following, we consider
polygons requiring a single picture from a satellite, together with four possible request
types:

• monoscopic requests: need to take a single picture of the polygon;
• stereoscopic requests: need to take two pictures from two different angles, using

a single pass of a satellite;
• periodic requests: need to cover the polygon periodically (e.g. 4 times per day);
• systematic requests: need to take a picture at each pass of a unique satellite over

the polygon.

The set of observation requests is denoted by R.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs102

3.2. Observation Opportunities

For each request r ∈ R, there is a set of observation opportunities Or. Each opportunity
o ∈ Or corresponds to a time window [Starto,Endo] during which a satellite Sato can
take a picture of the corresponding ground target area. Taking a picture takes a duration
δo within window [Starto,Endo], and there is a flexibility concerning the start time of
the observation within this window. The set of observation opportunities associated with
satellite s is referred to as Os (Os = ∪r∈R{o ∈ Or |Sato = s}).

3.3. Request Modes

To fulfil a given request r ∈ R, it is not necessary to use all observation opportunities in
Or. In the following, a subset of Or that suffices to complete request r is called a mode
for r, following the terminology used in scheduling problems like RCPSPs with modes.
The subset of observation opportunities associated with a mode m is denoted by Om and
the set of possible modes for r is referred to as Mr. Set Mr can be large but it does not
need to be defined in extension, and some methods studied thereafter are able to generate
new modes on-the-fly. Additionally, modes may have different qualities. For instance, for
monoscopic requests, there is a unique observation opportunity o in each mode and the
quality of the mode depends on features like the predicted cloud coverage for o given the
longitude and latitude of the area of interest and the cloud cover forecast. For periodic
requests, a mode is composed of several observation opportunities and its quality might
depend on the way the period is respected. To get a generic model, we simply associate a
global reward ωm with each mode m. Last, M denotes the set of all modes in the problem
(M=

⋃
r∈RMr).

3.4. Download Opportunities

Several ground stations are available to transfer acquisition data while the satellites move
on their orbits, and the satellites can communicate with these ground stations only dur-
ing some specific time periods. Formally, each download opportunity d associated with
a given satellite is defined by a time window [Startd ,Endd]. To separate the download
planning problem from the observation planning problem, we consider that an interval
of duration Δd must be booked within each download window [Startd ,Endd], the pre-
cise start time of this interval being flexible, as for the observation activities. The set of
download opportunities associated with satellite s is referred to as Ds.

3.5. Activities and Transition Times

The set of candidate activities As associated with a satellite s combines the set of observa-
tion opportunities Os for s and the set of download opportunities Ds for s (As =Os∪Ds).
The activities in Os are optional and their presences depend on the modes chosen for
the requests, while the activities in Ds are mandatory. Also, for each pair of activities
a,b ∈ As, there is a minimum duration τab required to perform a maneuver between the
two pointing directions corresponding to a and b. The set of activities is A= ∪s∈SAs.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 103

3.6. Optimization Problem

A solution plan σ is defined by:

• a subset R(σ)⊆R of requests that are selected in σ ;
• for each request r ∈R(σ), a mode mr(σ) chosen for r;
• for each satellite s, a sequence Πs(σ) containing all download opportunities in Ds

and all observation opportunities in Os that are involved in the selected modes.

A solution plan σ is valid if sequence Πs(σ) is feasible from a temporal point of view,
taking into account the time windows and the minimum transition times between the
activities. Our objective is to find a valid solution plan maximizing the sum of the rewards
of the selected modes.

3.7. Problem Decomposition: Connected Components of Activities (CCAs)

We now introduce problem decompositions that will be exploited by the solving tech-
niques defined in the next sections. Basically, we can identify groups of activities that
are independent from a temporal point of view. To do this, it suffices to build, for each
satellite s, a graph Gs containing one node per activity a ∈ As and one edge per pair
of activities a,b ∈ As such that Starta ≤ Startb and Startb < Enda + τab hold (case of a
direct possible temporal interaction between a and b).

The set of connected components of graphs Gs over all satellites s is denoted by
CCA like “connected components of activities”, and each connected component in CCA is
called a CCA. The main idea is then that once the request modes are chosen, the activities
located in two distinct CCAs are independent and can be scheduled in parallel.

Moreover, in a solution σ , the global sequence of activities of satellite s can be equiv-
alently represented as a set of sequences containing one sequence per CCA of s. More
formally, in a solution σ , we can decompose Πs(σ) as Πs(σ) = ∪c∈CCAs Πc(σ) where
CCAs denotes the set of CCAs related to satellite s and Πc(σ) stands for the sequence of
activities planned in CCA c.

s1
o1 o4

o5 o8

o2

o9

s2 o3 o7

o6 o10 o11

o1

o4

o5

o8

c1

o3 o6

o7o10

c2

o2

o9

c3

o11

c4

R= { r1 , r2 , r3 }

s1
o1

o8

s2 o7

o6 o11

Figure 1. Example of CCAs c1,c2,c3,c4 (left) and example of a solution (right)

Figure 1 illustrates CCAs for a problem involving 2 satellites (s1, s2) and 3 requests
(r1, r2, r3). Request r1 is monoscopic and has 3 modes m1

1 = {o1}, m1
2 = {o2}, m1

3 = {o3}.
Request r2 is stereoscopic so each mode is composed of two observations opportunities:
m2

1 = {o6,o7}, m2
2 = {o4,o5}. Request r3 is periodic and consists in observing a ground

area twice. Its modes are m3
1 = {o10,o11}, m3

2 = {o8,o11}, m3
3 = {o8,o9}, m3

4 = {o10,o9}.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs104

If we consider null transition times, there are 4 CCAs c1,c2,c3,c4. As o1 and o5 are
observation opportunities that overlap, they are connected in Gs1 and belong to the same
CCA (c1). Opportunities o5 and o8 do not overlap, but they belong to the same CCA
because they are indirectly connected through o4.

4. Global CP Approach

To solve the problem defined in the previous section, a first idea is to directly reuse an
existing combinatorial optimization engine. More precisely, we reuse a Constraint Pro-
gramming (CP) tool, namely IBM Ilog CP Optimizer (CPO) that offers both a powerful
declarative modeling language and efficient constraint-based scheduling techniques im-
proved over the years. This approach is referred to as GCPS for Global Constraint Pro-
gramming Search. The model exploited by GCPS considers several decision variables:

• ∀m ∈M, ym ∈ {0,1}: selection of mode m; as the number of possible modes can
be very large, we reduce the number of modes in M by considering only the k
best modes in terms of rewards for each request;

• ∀s ∈ S , ∀o ∈ Os, itvo in [Starto,Endo] and of duration δo: interval variable corre-
sponding to observation opportunity o; in constraint-based scheduling, an interval
variable is a composite object that covers the start time and end time of a task, its
duration, and its presence (0 or 1) in the schedule, referred to as presenceOf (itvo);

• ∀s ∈ S,∀d ∈ Ds, itvd in [Startd ,Endd] and of duration Δd : interval variable repre-
senting the slot booked for satellite s in download opportunity d.

The problem to solve is then defined as follows. The goal is to maximize the total
reward (1). At most one mode is selected for each request (2). The interval associated
with each observation is present iff one mode containing it is selected (3). Intervals as-
sociated with download opportunities are necessarily selected (4). For each connected
component of activities c in CCA, there is no overlap between the intervals of activities
in c given the required transition times expressed in τ (5). The latter constraint uses the
specific noOverlap function available in CPO.

maximize ∑
m∈M

ωm ·ym (1)

∀r ∈R, ∑
m∈Mr

ym ≤ 1 (2)

∀s ∈ S,∀o ∈ Os, presenceOf (itvo) = ∑
m∈M |o∈Om

ym (3)

∀s ∈ S,∀d ∈ Ds, presenceOf (itvd) = 1 (4)

∀c ∈ CCA, noOverlap({itva |a ∈ c},τ) (5)

Thanks to the preprocessing performed at the level of modes, the model obtained
using the CP technology is clear and compact, and as shown in the experiments it gives
very good results. However, from an operational point of view, it has several drawbacks.
First, for the end-users, there is a need to dispose of a robust anytime mission planner
that quickly delivers good-quality solutions, and constructive solvers that start from an
empty plan and insert requests one by one in the current solution are often preferred. Such

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 105

methods are standard for operational satellite mission planning systems. Second, the
model presented in this paper makes some simplifying assumptions with regards to the
transition times between activities, which are actually time-dependent in the full version
of the problem. To the best of our knowledge, even if there exist works on time-dependent
constraints in CPO [18], the corresponding techniques are not available yet in the public
version of the solver. For these reasons, we study constructive search techniques for
which we are sure that they can be extended to a time-dependent context.

5. Parallel CCA-based Search (PCCAS)

We now study constructive search methods that insert requests one by one into the satel-
lite plans. As mentioned before, a large number of CCAs increases the opportunity to
perform computations in parallel, and the second kind of approaches studied is called
Parallel CCA-based Search (PCCAS). Compared to GCPS, this approach does not re-
quire to compute all request modes beforehand. Instead, it starts with the best mode for
each request and generates new modes on-the-fly when some activity insertions fail.

In PCCAS, we use a controller solver that maintains a global view of the problem
together with worker solvers performing computations over a single CCA at each step.
The controller solver initially computes all CCAs of the problem, based on all candidate
activities. It then sends jobs to the worker solvers to ask for the insertion of a set of atomic
activities within multiple CCAs in parallel. For each job, the set of atomic activities can
be composed either by activities involved in a unique mode (so-called Unit PCCAS), or
by activities involved in multiple modes (so-called Batch PCCAS). These two options
lead to different algorithms defined in the two next sections.

6. Unit Parallel CCA Search (UPCCAS)

The first version of PCCAS is called Unit Parallel CCA-based Search (UPCCAS). In this
approach, each worker solver attempts to schedule the activities of a single new mode in
the CCA over which it works, and then returns the solution to the controller solver.

UPCCAS: overview The UPCCAS controller solver is composed of three main proce-
dures (Figure 2). The first one, in the “Initialization” block, simply initializes data struc-
tures: for instance, it builds an empty sequence of activities for each CCA and generates
the best mode associated with each request (one mode generation procedure per request
type). After that, the “Send jobs” block consists in sending jobs to the worker cores,
while there is still some job left and a free CPU. Then, the “Analyze the results” block
reads the messages received from the worker cores and updates the current solution and
the search state depending on the content of these messages. If time has not ran out and
there are still some unplanned requests, the algorithm goes back to the “Send jobs” step.
Last, when time is out, a message is sent to the worker cores to stop the search process.
Further details on the different components of the algorithm are provided below.

UPCCAS: job definition For UPCCAS, the definition of the set of new modes to insert
in a given CCA c is straightforward. This set is reduced to a singleton corresponding to
the mode that has the highest reward among the request modes requiring activities in c.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs106

Figure 2. UPCCAS overview

UPCCAS: Send jobs At each step, the controller knows (1) the jobs being processed
by the worker cores, (2) the jobs that have already been completed, and (3) the jobs that
still need to be sent to a worker core. The “Send jobs” procedure consists in picking a
job among the set of remaining ones and in sending it to a free worker core. Our goal
is to insert modes into CCAs while respecting the greedy order defined by the mode
rewards. Since modes are generated on-the-fly, future modes might appear in each CCA
c , possibly interfering with the set of modes currently known for c.

To overcome this difficulty, we proceed as follows. First, a future mode for a request
r might appear in a CCA c if some activities of r belongs to c and r is neither validated,
nor rejected yet. Second, our mode generation process guarantees that for a given request
r, the modes of r are generated by non-increasing reward (if inserting mode m fails
for request r, then the next possible mode m′ generated on-the-fly for r always satisfies
ωm′ ≤ ωm). With these two points in mind, the algorithm is allowed to plan a mode m in
c only if ωm is higher than or equal to the reward of all current modes associated with
requests that still have candidate activities in c, to be sure that m will never interfere with
modes that have a higher reward.

UPCCAS: Analyze the results When the result of a job is analyzed by the controller,
two cases can occur:

• Case 1: mode failure. If mode m of request r is rejected by a CCA required by m,
then we cancel the mode in every CCA involving m (both for the CCAs where the
insertion of m has already succeeded and for the CCAs still working on m). Then,
if possible, we generate the next candidate mode for r, while taking in account the
rejection explanation failures (the set of rejected activities) collected all along the
search process. If there is no next possible mode for r, then r is rejected forever.

• Case 2: mode acceptance. If mode m of request r is accepted, then there is one less
CCA for which an insertion validation is required. If there is no more validation
waited for, the current mode of r is fully validated and r is completed. This might
unlock some CCAs containing activities associated with request r.

UPCCAS: worker solver A job received by a worker solver is composed of a single
mode m whose activities must be inserted in a given CCA c. This mode covers a set of
activities A in c (possibility to have several activities in A, for instance if the correspond-
ing request is stereoscopic). The worker solver then tries to add activities in A one by one

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 107

to the current sequence of activities currently planned for c. When the insertion of one
activity fails, the worker solver also tries to change the ordering of the activities already
planned in c. If a feasible solution is found, it is sent to the controller, otherwise a failure
message is returned. Note that adding one activity to the current plan of a CCA is ac-
tually equivalent to searching for a solution to a TSPTW (Traveling Salesman Problem
with Time Windows), where the customers are the activities and the travel time between
two customers corresponds to the transition time between two observations.

UPCCAS: optimizations In our implementation, we add optimizations to reuse some
previous results. More specifically, when the mode of a request is changed from m to
m′, there might exist common observations associated with m and m′. If all observations
associated with a given CCA c have already been validated for m and are still contained
in m′, then the corresponding solution is kept for c.

UPCCAS: example We illustrate UPCCAS on the example of Figure 1. We assume that
for each request r j (j ∈ [1..3]), we have ωm j

i
> ωm j

i′
iff i < i′. Requests r1, r2, r3 start

with their best modes, namely m1
1 = {o1}, m2

1 = {o6,o7}, and m3
1 = {o10,o11}. Let us

assume that m1
1 is the mode that has the highest reward among m1

1,m
2
1,m

3
1. All the CCAs

containing observations for m1
1 can be asked to insert the corresponding observations

(here o1 requested on CCA c1). Then, we try to start scheduling activities for other CCAs
while guaranteeing that the request reward order is always respected. For CCA c2, it is
not possible to start adding observations o6 and o7 belonging to m2

1, since if the insertion
of o1 in c1 fails, it might be the case that o3 is part of a mode that has a better reward
than ωm2

1
. For CCA c3, no computation is triggered because no activity of c3 belongs to

the modes considered at this stage. For CCA c4, observation o11 belonging to mode m3
1

is not challenged by any another mode of another request, hence the insertion of o11 in
c4 can be requested to a worker solver.

We now assume that the insertion of o1 in c1 succeeds. In this case, mode m1
1 is

validated since all its observations have been successfully inserted. Consequently, all
observations associated with request r1 and that do not belong to m1

1 can be deactivated.
The deactivation of o3 implies that request r2 becomes the request with the highest reward
in c2 and the insertion of o6 and o7 in c2 can now be requested to a worker solver.

In parallel, let us assume that the insertion of o11 succeeds. In this case, mode m3
1

is not validated yet because o10 has not been scheduled. Suppose now that the insertion
of o6 and o7 succeeds. Then, mode m2

1 becomes validated and request r3 now has the
highest reward in c2. As a result, the insertion of o10 in c2 can be requested to a worker
solver. If the insertion of o10 fails, we cancel mode m3

1, i.e. we remove all observations of
this mode that were planned before (o11 in the example), and we generate the next mode
for r3 taking into account the insertion failure for o10. Here, the new mode generated is
m3

2 = {o8,o11} and we try to fulfil this mode following the same process as before.

7. Batch Parallel CCA Search (BPCCAS)

In UPCCAS, modes are planned one by one in each CCA. This results in a lot of mes-
sages exchanged between the controller solver and the worker solvers, and the associated
communication time is not negligible compared to the total computation time available.
To overcome this issue, we introduce another approach called BPCCAS where larger

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs108

jobs are sent to the worker solvers, by requesting to plan at each step a batch of modes
within a given CCA instead of a single one.

BPCCAS: overview The BPCCAS controller procedure is composed of the same three
blocks as UPCCAS. The first main difference is the connection between the blocks.
Indeed, we iterate here and often go back to the Initialization step to simultaneously
generate new modes for several requests. The definition of a job is also different here
because we send batches of modes to each worker solver, and each worker plans activities
in the order specified by the mode rewards, so that the worker somehow collaborate by
inserting modes in the same order. Further details are given below.

Figure 3. BPCCAS overview

BPCCAS: job definition For each CCA c, the goal is simply to schedule the batch of
all modes m currently involved in c.

BPCCAS: Initialization The initialization procedure is mainly the same as in UPCCAS.
The main difference is that it is called at the beginning of every iteration rather that once
and for all, since in BPCCAS, we wait for the result of all jobs before generating new
modes for the rejected requests. Note that at the beginning of each iteration, we start
from an empty schedule because a new set of modes means a new greedy order.

BPCCAS: Send jobs Contrarily to UPCCAS, each job is a batch of modes.

BPCCAS: Analyze the results When a message is received from a worker solver con-
cerning a CCA c, BPCCAS updates the set of rejected modes and records the observa-
tions whose insertion has failed. If all computations required over all CCAs are over and
if some modes have been rejected, the set of candidate modes is updated. More precisely,
for each request r whose current mode is m, three cases can occur after each iteration:

• mode acceptance: m is kept for the next iteration;
• mode failure: a new mode is generated for r for the next iteration;
• unknown status: one worker core has reached a certain amount of mode failures

and did not try to schedule m. In this case, m is kept for the next iteration.

BPCCAS: worker solver The worker solver is mainly the same as in UPCCAS, and it
basically solves TSPTWs to determine whether new activities can be planned in a CCA.
The only difference is the definition of a job. Indeed, a set of modes are scheduled here,
in the greedy order in terms of mode reward.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 109

BPCCAS: optimizations In our implementation, to speed up the search process, we do
not replan from scratch each time a single mode is rejected. More precisely, in each CCA
c where a set of new modes M must be planned, we first determine the highest reward ω
associated with a mode in M. Then, we keep all modes m that were successfully inserted
in c and such that ωm ≥ ω , since these modes cannot be challenged by the new ones
given the greedy nature of the mode insertion algorithm.

BPCCAS: example As for UPCCAS, we initially select the best mode for each request,
that is m1

1 = {o1}, m2
1 = {o6,o7}, and m3

1 = {o10,o11} for the example of Figure 1. Then,
we simultaneously consider all the selected modes: in terms of atomic observation ac-
tivities, we try to schedule {o1} in c1, {o6,o7,o10} in c2, nothing in c3, and {o11} in c4.
Once all CCAs have been processed, we analyze the results to determine the requests for
which some observations are rejected for their current mode. For every rejected requests,
the next possible mode is generated, if any, and the whole scheduling process is triggered
again. For instance, if the insertion of observation o10 fails (rejection of mode m3

1 by c2),
a new mode m3

2 = {o8,o11} is generated. The sets of observations to schedule become
{o1,o8} in c1, {o6,o7} in c2, nothing in c3, and {o11} in c4. As previously mentioned,
previous results can be kept to avoid recomputing plans from scratch in each CCA.

8. Perturbation Process

In several situations, UPCCAS and BPCCAS terminate before the time limit. To exploit
the full computation time available, once the first run is over, we randomize the greedy
order and rerun the algorithm as many times as possible. To perform such an iterated
greedy stochastic search, we generate, at the kth run, a noise σ (k)

r ∼ U([−k σ0
2 ,k σ0

2]) for
each request r, with σ0 a parameter of our method. Then, the reward of each mode m
becomes ω(k)

m = ωm +σ (k)
r and we run the algorithm with the updated rewards.

9. Experiments

Benchmarks For the experiments, we consider a Walker constellation composed of 16
satellites (8 orbital planes and 2 satellites per plane) and a one-day long scheduling hori-
zon. Request targets are randomly generated in Europe. We consider a unique ground
station and book a download duration of 3 minutes within each download window.

Several instances composed of 50, 200, 500 and 1000 requests are generated. For
each size, we generate several combinations of types of requests and each instance is
denoted by “m,s,y,p” where m, s, y, p correspond to the number of monoscopic, stereo-
scopic, systematic, and periodic requests respectively. For each combination, we gener-
ate several instances with a different seed and calculate mean results. In accordance with
the real catalogues of requests provided by our industrial partner for this study, there are
less systematic and periodic requests than monoscopic and stereoscopic ones. Periodic
requests all follow the same pattern: they are composed of 4 observations that should be
performed around 8am, 12pm, 4pm, and 8pm. Each observation opportunity is given a
duration and a score in [0,1] depending on the cloud coverage forecast. We use historical
weather data of January 2020 to get realistic observation scores. The reward of a mode
corresponds to the sum of the scores of its observations. The observation durations fol-

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs110

low a normal truncated distribution in range [1,60] (in seconds) centered in 15 with a
variance of 10. Long observation durations allow to capture videos of ground areas. The
sizes of the connected components vary a lot. For one of the 0,1000,0,0 instances, the
components contain 40 activities on average, but the smallest and largest ones respec-
tively contain 1 and 892 activities. For one of the 200,200,30,70 instances, the compo-
nent sizes range from 1 to 456 activities, with a mean equal to 29.

Experimental setup All the algorithms are implemented in Python 3.8.5. The Global
Solver uses DOcplex 2.22.213. Two versions of this solver are tested, namely “GCPS 5
modes” and “GCPS 15 modes” that respectively take as an input the best 5 and 15 modes
for each request. For UPCCAS and BPCCAS, the worker solvers use LKH3 to check
whether a given set of activities can be scheduled in a CCA [19]. Experiments were run
on a 20-core Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz, 62GB RAM, with a time
out of 1 minute, 5 minutes, or 30 minutes per run. Each run is allowed to use 10 CPUs,
and DOcplex automatically parallelizes search over the number of cores specified.

Comparisons Table 1 presents the results wrt the total rewards obtained for a represen-
tative set of instances, as well as results concerning mode generation. More precisely, for
each request r, the solution produced uses mode number kr for request r, and the table
gives the maximum and mean values of kr over all requests, averaged over the number
of runs (columns max and mn respectively).

Table 1 first shows that for GCPS, the version using the 5 best modes is better than
the version using the 15 best modes on average when the computation time equals 1
minute or 5 minutes. The main reason is that finding a good solution takes more time
when the search space is larger.

Second, for the PCCAS algorithms, Table 1 shows that BPCCAS is much faster than
UPCCAS, mainly because it directly handles batches of modes As shown in Figure 4, the
usage of the worker cores on a single run (before the perturbation) is far better distributed

Time Instance #A GCPS 5 modes GCPS 15 modes UPCCAS BPCCAS
limit rwd mode rwd mode rwd mode rwd mode

max mean max mean max mean max mean

1min

50,0,0,0 1347 46.2 0.0 0.0 46.2 7.0 1.0 46.2 0.0 0.0 46.2 0.0 0.0
15,15,10,10 1110 87.8 4.0 0.8 87.8 11.4 1.3 87.8 0.0 0.0 87.8 0.0 0.0
70,70,10,50 3505 361.5 4.0 0.9 361.0 13.0 1.9 356.8 2.4 0.2 355.6 3.0 0.2
250,250,0,0 8499 512.5 4.0 1.7 475.0 14.0 3.9 497.0 18.0 1.4 586.7 20.0 1.4
0,500,0,0 5702 445.6 4.0 1.7 448.0 7.0 2.0 462.5 6.2 0.8 468.7 7.0 0.7
200,200,30,70 8544 548.5 4.0 1.7 507.0 14.0 4.1 530.2 21.2 1.8 642.3 20.6 1.5
0,1000,0,0 11161 0.0 0.0 0.0 0.0 0.0 0.0 457.4 6.6 0.9 507.8 6.8 0.6
400,400,60,140 16830 119.2 2.0 0.9 0.0 0.0 0.0 393.3 21.8 3.5 710.8 21.6 2.4
440,440,40,80 16835 109.4 2.2 1.1 0.0 0.0 0.0 436.9 21.4 3.1 745.4 21.4 2.2

5min

70,70,10,50 3505 365.0 4.0 0.7 364.1 13.4 1.7 356.8 2.4 0.2 355.6 3.0 0.2
250,250,0,0 8499 563.6 4.0 1.5 544.5 13.4 2.5 598.9 18.4 1.4 594.8 19.6 1.4
0,500,0,0 5702 517.3 4.0 1.5 502.1 7.0 1.8 479.4 6.4 0.8 480.5 6.4 0.7
200,200,30,70 8544 595.5 4.0 1.5 579.1 14.0 3.2 652.9 20.8 1.6 653.9 20.8 1.4
0,1000,0,0 11161 585.4 4.0 1.8 554.7 6.8 2.0 528.3 6.8 0.9 519.7 6.8 0.6
400,400,60,140 16830 760.1 4.0 1.8 627.9 14.0 5.2 683.0 21.8 3.5 826.7 21.6 2.4
440,440,40,80 16835 766.1 4.0 1.8 666.4 14.0 5.3 750.5 21.4 3.1 812.0 21.4 2.2

30min

70,70,10,50 3505 366.3 4.0 0.7 365.9 13.4 1.5 356.8 2.4 0.2 355.6 3.0 0.2
250,250,0,0 8499 578.1 4.0 1.4 578.3 13.2 2.1 608.3 18.8 1.5 595.4 20.0 1.4
0,500,0,0 5702 541.0 4.0 1.4 533.6 7.0 1.6 485.5 6.6 0.8 481.2 6.6 0.7
200,200,30,70 8544 611.4 4.0 1.4 625.7 14.0 2.5 666.5 21.6 1.8 656.4 20.6 1.5
0,1000,0,0 11161 662.5 4.0 1.6 654.2 6.8 1.7 536.0 6.6 0.8 526.0 7.0 0.6
400,400,60,140 16830 821.4 4.0 1.7 819.2 14.0 4.3 834.0 21.0 2.7 828.7 21.4 2.4
440,440,40,80 16835 822.2 4.0 1.7 838.5 14.0 4.4 840.1 21.0 2.7 820.9 21.2 2.3

Table 1. Total reward, maximum and mean modes for the selected requests, for several instances

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 111

in BPCCAS. Nevertheless, Table 1 shows that UPCCAS catches up BPCCAS after 30
minutes. Theoretically speaking, UPCCAS and BPCCAS should reach the same solu-
tions during the whole search process, so they should converge to the same best rewards.
However, our implementation still involves some sources of non-determinism, e.g. on the
way the rejection of activities are used to generate new modes on-the-fly, or on the way
modes having the same reward are handled. This can explain the differences observed.

Last, when comparing GCPS with the PCCAS algorithms, we can see that all the
approaches are equivalent on small instances (50 requests), where all the requests are
satisfied with their best mode. On large instances (200 requests and more), the compar-
ison depends on the time limit. After 1 minute, BPCCAS provides the best results. Al-
though the difference tends to decrease while the time elapsed, it remains significant on
specific very large instances (see 400,400,60,140 after 5 minutes) or on instances where
the number of modes generated is high (see instances 250,250,0,0 and 200,200,30,70
after 30 minutes). In this case, GCPS deals with a limited number of modes whereas
UPCCAS and BPCCAS are able to generate new modes on-the-fly. Therefore, UPCCAS
and BPCCAS do not explore the same search space as GCPS. Additionally, GCPS seems
to be slow at finding a first good-quality solution on the very large instances, but it pro-
vides the best results on several instances. Even if GCPS will not be able to handle the
time-dependent aspects in our future works, the solutions found can still be used to test
the efficiency of UPCCAS and BPCCAS on time-independent problems.

time (s)

C
PU

in
de

x

time (s)

C
PU

in
de

x

Figure 4. CPU usage on a single run of UPCCAS (left) and BPCCAS (right) on instance 200,200,30,70

10. Conclusion and perspectives

In this paper, we considered an application related to the management of complex user
requests for a constellation of Earth observation satellites. From an AI technology point
of view, we tested both on-the-shelf CP methods (GCPS approach) and ad-hoc construc-
tive search procedures exploiting problem decompositions and parallelization (UPCCAS
and BPCCAS). Both approaches have their strengths and weaknesses. To combine the
best of the two worlds, the next step is to look for hybrid techniques combining on one
side a constructive search procedure acceptable from an operational point of view, and
on the other side AI combinatorial optimization methods. To get such an hybrid search
scheme, Large Neighborhood Search would be a very good candidate. Overall, the long
term objective for us is to show that it is possible to go beyond the simple requests man-
aged by many existing satellite systems and bring new functionalities to the end-users.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs112

Acknowledgement This work has been performed with the support of the French
government, in the context of the BPI PSPC project “LiChIE” of the “Programme
d’Investissements d’Avenir”.

References

[1] Han C, Wang X, Song G, Leus R. Scheduling multiple agile Earth observation satellites with multiple
observations. arXiv:181200203. 2018.

[2] Hu X, Zhu W, An B, Jin P, Xia W. A branch and price algorithm for EOS constellation imaging and
downloading integrated scheduling problem. Computers & Operations Research. 2019;104:74-89.

[3] Kim J, Cho DH, Ahn J, Choi HL. Task scheduling of multiple agile satellites with transition time and
stereo imaging constraints. arXiv:191200374. 2019.

[4] Xiao Y, Zhang S, Yang P, You M, Huang J. A two-stage flow-shop scheme for the multi-satellite observa-
tion and data-downlink scheduling problem considering weather uncertainties. Reliability Engineering
& System Safety. 2019;188:263-75.

[5] Bianchessi N, Cordeau JF, Desrosiers J, Laporte G, Raymond V. A heuristic for the multi-satellite,
multi-orbit and multi-user management of Earth observation satellites. European Journal of Operational
Research. 2007;177(2):750-62.

[6] Wang J, Zhu X, Yang LT, Zhu J, Ma M. Towards dynamic real-time scheduling for multiple Earth
observation satellites. Journal of Computer and System Sciences. 2015;81(1):110-24.

[7] Eddy D, Kochenderfer MJ. A maximum independent set method for scheduling Earth observing satellite
constellations. arXiv:200808446. 2020.

[8] Holvoet N, Vongsantivanich W, Chaimatanan S, Delahaye D. Mission planning for non-homogeneous
Earth observation satellites constellation for disaster response. In: 15th International Conference on
Space Operations; 2018. p. 1-15.

[9] Sun K, Li J, Chen Y, He R. Multi-objective mission planning problem of agile Earth observing satellites.
In: 12th International Conference on Space Operations; 2012. p. 2802-10.

[10] Li Z, Li X. A multi-objective binary-encoding differential evolution algorithm for proactive scheduling
of agile Earth observation satellites. Advances in Space Research. 2019;63(10):3258-69.

[11] Dishan Q, Chuan H, Jin L, Manhao M. A dynamic scheduling method of Earth-observing satellites by
employing rolling horizon strategy. The Scientific World Journal. 2013;3.

[12] He L, Liu X, Laporte G, Chen Y, Chen Y. An improved adaptive large neighborhood search algorithm
for multiple agile satellites scheduling. Computers & Operations Research. 2018;100:12-25.

[13] Du Y, Wang T, Xin B, Wang L, Chen Y, Xing L. A data-driven parallel scheduling approach for multiple
agile Earth observation satellites. IEEE Transactions on Evolutionary Computation. 2020;24:679-93.

[14] He Y, Chen Y, Lu J, Chen C, Wu G. Scheduling multiple agile Earth observation satellites with an
edge computing framework and a constructive heuristic algorithm. Journal of Systems Architecture.
2019;95:55-66.

[15] Levinson R, Nag S, Ravindra V. Agile satellite planning for multi-payload observations for Earth sci-
ence. In: International Workshop on Planning and Scheduling for Space; 2021. p. 89-97.

[16] Squillaci S, Roussel S, Pralet C. Managing complex requests for a constellation of Earth observing
satellites. In: International Workshop on Planning and Scheduling for Space; 2021. p. 150-8.

[17] Picard G. Auction-based and distributed optimization approaches for scheduling observations in satellite
constellations with exclusive orbit portions. In: International Workshop on Planning and Scheduling for
Space; 2021. p. 108-16.

[18] Aguiar-Melgarejo P, Laborie P, Solnon C. A time-dependent no-overlap constraint: application to deliv-
ery problems. In: 12th International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research; 2015. p. 1-17.

[19] Helsgaun K. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European
Journal of Operational Research. 2000;126(1):106-30.

S. Squillaci et al. / Parallel Scheduling of Complex Requests for a Constellation of EOSs 113

