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Abstract. Categories are important elements of databases of Product Listings, for
e-commerce platforms, or of Points of Interest (POIs), for location-based services.
However, category annotations are often incomplete, which calls for automatic
completion. Hierarchical classification has been proposed as a solution to impute
missing annotations. We address this task in one of Naver’s production databases
(POIs), in order to enhance its quality. In real-life applications, like ours, however,
it is unrealistic to count on the existence of a perfectly annotated training set, and
noisy training labels prevent us from casting the task as a straightforward classifi-
cation problem. In order to overcome this difficulty, we propose an approach that
takes into account the type of noise in the training set. We identified that the main
deficiency is that the training labels tend to be under-specified i.e. they point to
categories found at higher levels of the hierarchy than the correct ones. This re-
sults in a lot of under-represented and a few over-represented categories. We call
categories that are over-represented, due to under-specified labels, joker classes. To
allow robust learning in the presence of joker classes we propose a simple and ef-
fective approach: First, we detect problematic categories, i.e. joker classes, based
on the misclassifications of an initial hierarchical classifier. Then we re-train from
scratch, introducing a weight to the standard cross-entropy loss function that targets
incorrect predictions related to joker classes. Our model has enabled the correction
of thousands of POIs in our production database.
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1. Introduction

Categories are important elements of databases of Product Listings, for e-commerce plat-
forms, or of Points of Interest (POIs), for location-based services, such as Google Maps
and Naver Maps. In this paper we are particularly interested in POIs, i.e. places that
someone may find interesting. POI categories, i.e. tags denoting that a POI is a Falafel
Restaurant, Bowling Alley etc., can be used not only to guide humans, but also as input
data to several applications such as recommender systems and trip planners. However,
in real-life applications, tags are incomplete or imprecise, especially for unpopular or
newly-established POIs [1].
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Figure 1. The orange line shows the original distribution of our dataset. The blue line the corrected distribu-
tion after our data analysis team performed manual verification, for the top 100 most popular categories, as ex-
plained in Section 3. Examples of under and over-represented categories are highlighted. Differences between
the two distributions are mainly due to POIs having been annotated with under-specified labels.

ML-based supervised category prediction has been proposed as a solution to impute
missing tags [2,3,4,5,6,7,8]. However, as Zhou et al. [6] argue, it is unrealistic to count
on the existence of a perfectly annotated training set. This is due to the fact that tags are
input either using automatic techniques (e.g. mining user comments), which necessarily
comprises errors, and/or by humans who often fail to annotate database items compre-
hensively, especially when there are thousands of categories to select from. Our data il-
lustrates this as well. In Figure 1, we show how the distribution of the top one hundred
most popular categories changes after our data analysis team verified and corrected our
original (manually annotated by users) dataset (c.f. Section 3).

In this paper, we propose a method that takes into account the fact that training
annotations may be noisy. In particular, we identify that a major source of errors re-
lates to under-specified hierarchical labels i.e. given a label hierarchy, a fully-specified
label is one that provides a path from the root node to the most specific correct node
(this can be either a leaf or an internal node of the hierarchy). An under-specified la-
bel has instead a path that terminates at a category found at higher levels of the hier-
archy. This results in a lot of under-represented and a few over-represented categories.
We call categories that are over-represented, due to under-specified labels, joker classes.
For instance, several POIs are tagged with a path terminating close to the top of the
hierarchy e.g. ”Restaurant||Korean Food”,2 while the actual correct path terminates at
a lower level e.g.”Restaurant||Korean Food||Seafood||Sliced Raw Fish||Saebyeok Raw
fish”. In that case, ”Restaurant||Korean Food” could be considered a candidate joker
class and ”Restaurant||Korean Food||Seafood||Sliced Raw Fish||Saebyeok Raw fish” an
under-represented one.

To allow robust learning in the presence of under-specified hierarchical labels we
propose a two step approach: 1. First, we automatically detect joker classes based on mis-
classifications of a hierarchical classification model; 2. Then, we introduce a weight to
the standard cross-entropy loss function that targets incorrect predictions of joker classes
only. More specifically, we penalise misclassifications that correspond to joker classes
located higher in the hierarchy than the corresponding training labels, when they share

2The symbol || denotes a sub-level in the hierarchy.
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similar paths. At the same time, we assign lower cost to misclassifications of categories
found lower in the hierarchy than joker class labels.

The main contributions of this work are as follows.

• We propose an approach for robust learning in the presence of under-specified hi-
erarchical labels. To our knowledge this is the first study that identifies this prob-
lem in a real-world setting, and illustrates its impact on the quality of correspond-
ing categorisation models.

• We perform experiments on data from our POI database, one of the biggest search
and services platforms worldwide. We also report the impact of the deployment of
this model on our production database, where the categories of thousands of POIs
were corrected.

The rest of the paper is organised as follows. We review related work in Section 2
and the background in Section 3. We define the problem in Section 4 and describe our
approach in 5. Experiments are presented in Section 6 and a deployment case study in 7.

2. Related work

2.1. Point-of-Interest classification

Most of the work on Point-of-Interest classification has taken place in the context of
Location-Based Social Networks. There are two main approaches to the problem.

The first one requires access to check-in data and uses such data as input to the
prediction model [2,3,4]. This includes for instance POI unique identifiers, user unique
identifiers, the time and duration of the check-in, the number of check-ins, the lati-
tude/longitude of the user’s position, and sometimes users’ demographic information
(e.g. age range, gender). Based on this information, most of the existing work, attempts
to categorise POIs in very coarse-grained categories (e.g. home vs. work, or nightlife/bar
vs. restaurant) with the number of categories to predict ranging from 3 to 15. He et al. [5]
and Zhou et al. [6], in addition to check-ins, also try to use more fine-grained informa-
tion about the POIs. In the case of He et al. [5] this includes general tags that may be
related to categories but also to other information e.g. ”godzilla”. Zhou et al. [6] use
POI name and address tokens or more particularly token embeddings pre-computed on a
domain-specific corpus.

Recognising that collecting personal information may be difficult for a large number
of POIs, other works are rather based on POI metadata only. Lagos et al. [7] are the first
to focus on increasing the POI classifier’s coverage by using only the POI name, location,
and time of opening attributes. They achieve state-of-art results for a large, multilingual
POI database, illustrating that such an approach is feasible. Lie et al. [8] follow that line
of work and use only POI names and locations as input to their model. In addition, they
propose a voting ensemble of hierarchical classifiers to predict leaf categories. We also
use only the name and address of POIs, i.e. no user-related attributes, as inputs. However,
contrary to our approach, previous work does not deal with under-specified hierarchical
labels. Note that our work can complement techniques based on search queries and user
check-ins, but can also be independently used in the case that no such data is available.
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2.2. Hierarchical classification

Flat classification approaches ignore the hierarchical relations between categories and
treat leaf categories as an independent set of labels. These approaches are easy to imple-
ment, but tend to have worse results than hierarchical approaches when labels are organ-
ised in a large taxonomy [9]. In contrast, hierarchical classification (HC) systems predict
a hierarchically organised path of labels. They are usually divided in local and global
approaches [10]: Local approaches learn multiple independent classifiers, each classifier
specialised either to each node, parent node or hierarchy level. Global approaches consist
of a single model able to map samples to their corresponding category paths as a whole.
State-of-art performance has been recently achieved by hybrid approaches combining
the local and global paradigms. Wehrmann et al. [11] present a classifier trained with
both local and global losses. Giunchiglia and Lukasiewicz [12] propose coherent mul-
tilabel classification networks where labels predicted by the local and global classifiers
are hierarchically consistent. In this paper, we are also based on a hybrid hierarchical
classifier. In addition, we introduce a loss that allows robust learning in the presence of
under-specified hierarchical category paths.

3. Background and motivation

POI categorisation, is an important operation that can impact a lot of our location related
services. Therefore, enhancing the quality of our category annotations is of high priority.

As a first step to improving category annotations, we implemented and tested the
flat POI classifier of Lagos et al. [7].3. The classifier encodes POI names and addresses
using 1-gram character-based LSTMs and feeds the corresponding embeddings to a sim-
ple feedforward neural network. 4 In addition to the standard micro and macro prediction
quality metrics [15] calculated on the development dataset (c.f. Section 6.1), it was ex-
tremely important to qualify the errors made by the system before being able to deploy it.
Most importantly, knowing that we have a very long tail in our data distribution, we had
to understand the behaviour of the system on the corresponding POIs. As illustrated in
Figure 2, while the system was doing well on category paths in the middle of the range,
and comparatively well for paths with few POIs (the performance was deteriorating when
only one POI was related to a specific category path), the performance was lower than
expected on paths that were heavily populated.

To qualify better the errors we extracted a set of 1000 misclassifications for further
analysis. The sample was representative of the prediction probabilities one could find in
the misclassifications of the development set i.e. if 15% of the misclassifications on the
development set had a probability of over 0.9, then we kept the same ratio in the set we
extracted. Details of the analysis are presented in Table 1.

As shown in Table 1, misclassifications, i.e. disagreements between the labels pre-
dicted by the ML model and the ones found in the development dataset (which included

3This classifier is very competitive in our setting, even when compared to other, attention-based, flat-
classification alternatives. Details can be found in our technical report [13]

4It is important to note here, that a word-based representation didn’t perform better. We assume this is partly
due to the fact the we deal with Korean (NFC encoding), where one character is actually similar to a syllable,
rather than a single letter, in Indo-European languages [14].
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Figure 2. Performance of the initial flat hierarchical classifier in relation to the number of POIs attributed to
category paths.

Table 1. Verification of disagreements between the silver test dataset and the prediction generated by our flat
classifier. The model is able to correct the human annotations at high probability thresholds, or recommend
correct alternative tags. The resulting verified dataset is considered as the gold standard in the rest of the paper.

Probability Correct(%) Acceptable(%)

>0.9 66.63 7.62
0.7-0.9 ∼32 7-12
0.4-0.7 13-15 31-40
<0.4 <3 <5

existing, manually entered, data), were largely due to incorrect labels in the development
dataset. Errors in the original label annotations were the cause of almost up to two thirds
of the misclassifications when the probability given by the ML model was over 0.9, and
almost of one third when the value was between 0.7 and 0.9. Ontological and multi-
labeling issues (i.e. two different categories being correct for the same POI), were also
discovered. For instance, semantically similar categories, such as ||Cafe, Dessert||Cafe5

and ||Cafe, Dessert, accounted up to one third of the model’s misclassifications when the
output probability was between 0.4 and 0.7 (Acceptable column in Table 1).

Based on the above analysis we found that:

• The distribution of labels in the verified, corrected dataset is different from the one
in our existing, manually entered, data. More specifically, several POIs initially
attributed to over-represented classes were re-attributed to more specific category
paths , and most importantly to long-tail classes 6. In our experiments we use the
verified, corrected dataset as our gold standard.

• Minimising the number of under-specified labels is particularly important for im-
proving data pertinence e.g. tagging a POI as ||Korean Food||Seafood||Sliced Raw
Fish||Sashimi instead of ||Korean Food is much more informative.

• Setting an appropriate threshold for the ML output probabilities is paramount. In
our case, we set it at 0.4.

• The ML model can be useful not only for imputing labels for new POIs but also
for curating existing annotations, in a principled manner.

5|| denotes a sub-level in the hierarchy. We omit the root category Restaurant for clarity.
6Details can found in our technical report [13].
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4. Problem definition

In our setting, a POI p is represented as p = {xxx,y} = {x(1),x(2),y} where xxx is a vec-
tor, representing POI’s name, x(1), and address, x(2), as well as a label y, representing a
hierarchical category path.

We assume a tree structured hierarchy of categories T = (C,E) where C = {c0
0, ..,c

k
n}

is the set of n pre-defined categories with a maximum depth of k, such that E =
{(ch

� ,c
h+1
j ) ∈C|ch

� ≺ ch+1
j ,h ≤ k}, where h is an index indicating the level of the hierar-

chy (i.e. hierarchy depth) and ≺ denotes the sub-category-of relation. For instance, if we
have the root-to-leaf path of categories ”Restaurant||Korean Food||Seafood||Sliced Raw
Fish||Sashimi”, as shown in Figure 3, and ch

� is the path ”Restaurant||Korean Food” then
ch+1

j would be the path ”Restaurant||Korean Food||Seafood”.

Figure 3. Example of under-specified and fully-specified hierarchical labels. Notice that a fully-specified hi-
erarchical label can correspond to a correct non-terminal path of categories i.e. a path that terminates at an
internal node. Our objective is to design a classifier robust to under-specified hierarchical labels.

Given T , y should ideally represent a fully-specified path of categories t =
(c0,c1, ...,cm).7 Note that in our setting, we may also have correct non-terminal paths
i.e. m < k, which means that a fully-specified correct path does not have to include cat-
egories up to the leaf nodes of the hierarchy, but it can instead terminate at an internal
node. Back to our example, the path ”Restaurant||Korean Food||Seafood||Sliced Raw
Fish” could be correct if the corresponding POI served several different types of sliced
raw fish. In addition, and most importantly, in our real-world case we find that observed
paths t ′ = (c0, ...cz), in the training data, may be under-specified i.e. z < m, and thus in-
correct. For instance, t ′ could be ”Restaurant||Korean Food”. Our objective is to design
a classifier robust to the above data characteristics.

5. Our Approach

To allow robust learning in the presence of annotations with under-specified hierarchical
labels, we propose the approach illustrated in Figure 4: (1) We develop a hybrid hier-
archical classifier that combines one global and potentially several local classifiers (c.f.
Section 5.1) using standard categorical cross-entropy losses; (2) We automatically detect
problematic categories i.e. candidate joker classes, (c.f. Section 5.2.2) based on the mis-
classifications of the classifier of step (1); and (3) We introduce a cost-based weight to

7We omit subscripts for clarity.
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the global classifier’s loss and re-train the model from scratch. The weight specifically
penalises misclassifications having shorter category paths than the ones found in the cor-
responding human annotations, while accordingly it assigns lower cost to misclassifica-
tions having longer category paths.

Figure 4. Our Approach. (1). We train a hybrid hierarchical classifier that combines one global (represented
with the suffix G in the Figure) and potentially several local classifiers (represented with the suffix L in the
Figure) (c.f. Section 5.1); (2). We automatically detect problematic categories i.e. candidate joker classes, (c.f.
Section 5.2.2) based on the misclassifications of the classifier trained at step (1). For instance, ”||Korean Food”
and ”||Korean Food||Seafood” are such candidates as shown in the Figure; (3). We introduce a cost to the
global classifier’s loss, which accounts for misclassifications involving joker classes, and repeat step (1) (i.e.
re-train the model from scratch with the same configuration as in step (1)), as described in Sections 5.2.1 and
5.2.2. For instance, when ”||Korean Food||Seafood” is the predicted label, and the observed label is ”||Korean
Food”, then the cost is alonger . On the other hand, if the observed label represents a longer path, e.g. ”||Korean
Food||Seafood||Sliced Raw Fish” than the predicted one, then the cost is ashorter .

5.1. Hybrid hierarchical classification model

Wehrmann et al. [11] have shown that a hierarchical classifier that performs both local
and global optimisation, has significant advantages over adopting one of the two ap-
proaches only. Following [11], we implement a multiple-output deep neural network, as
illustrated in Figure 4. In the Figure, each Ah

G represents intermediate (hidden) layers,
where h index the index of the hierarchical level. For instance, h = 1 corresponds to the
root node (there may be several root nodes in the data). Each Ph

x represents an output
layer, where x = L indicates the output of a local classifier and x = G the output of the
global classifier. As shown in the Figure, the architecture has one local output per hierar-
chical level, with a corresponding local loss function L h

L , and one global output for the
full category path, with a global loss LG. The input of the first local classifier, indicated
as X , corresponds to the same 1-gram character-based LSTM embeddings given to the
flat classifier of Lagos et al. [7], as described in Section 3. Each local classifier thereafter
has as input the concatenation of the initial inputs and an intermediate embedding rep-
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resenting the feature space of the previous local classifiers i.e. a dense layer, before the
output layer, of the previous local classifier. Dense layers are activated with a non-linear
function (i.e. ReLU). The output layer of the global classifier has as input the concate-
nation of the initial inputs and the embedding given also to the last local classifier Ar

G,
which as Wehrmann et al. [11] highlights is the cumulative information of the feature
space of all local classifiers, concatenated with the initial inputs. The final loss is the
sum of the global output loss LG and all local output losses L =LG+∑r

h=1 L h
L , where

r ≤ k. As we want the classes to be mutually exclusive for each level, we use the standard
categorical cross-entropy loss for each L h

L and for LG.
Differently to Wehrmann et al. [11], we also want to account for non-terminal paths

i.e. observed paths that do not terminate at a leaf node but at an internal one. To achieve
that, we (i) use a special category token to denote when the end of a non-terminal path
has been reached (ii) we allow r < k, thus effectively allowing the implementation of
different networks that incrementally cover more levels of the hierarchy, until an optimal
depth is found.

5.2. Cost-based approach for incomplete category paths

5.2.1. Joker class-agnostic cost

To account for under-specified category paths, we propose to penalise more misclassifi-
cations with shorter paths than the ones observed in the training data, when that shorter
path is shared by both the prediction and the observed label, than misclassifications with
longer paths. In addition, we want the latter case to be penalised less than the rest of
the errors i.e. when the prediction and observed label do not share, at least in part, a
common path. For instance, assume that y represents the path t ′ = ”Restaurant||Korean
Food||Seafood”. If ŷ denotes the prediction with shorter path t̂ = ”Restaurant||Korean
Food”, then we want this prediction to be penalised more than if it represented the one
with longer path ”Restaurant||Korean Food||Seafood||Sliced Raw Fish”. Specifically, let
aŷi,yi denote the cost associated with assigning the label ŷ to the sample i that has an
observed label y. If we denote ashorter the cost of predicting a shorter path than the ob-
served one and alonger the cost of predicting a longer path, then alonger < ashorter. Both
alonger and ashorter are set empirically8. Accordingly, we change LG from the standard
categorical cross-entropy to the following weighted-by-sample loss.

L ′
G =

1
N

N

∑
i=1

aŷi,yiLG,i (1)

where LG,i is the standard global categorical cross-entropy loss for sample i and

8Based on grid search: (i) alonger , range 0.1-1.0 with a step of 0.1 (ii) ashorter , range 1.0-10.0 with a step of
0.1 between 1.0-2.0, and then with a step of 0.5 for the range 2.0-10.0. Detailed ablation study is included in
our technical report [13].
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Above, t̂i is the path corresponding to the ŷi prediction and t ′i is the observed path
corresponding to yi. The prefix path o f function indicates a ”strict” prefix i.e. the two
paths cannot be identical.

5.2.2. Joker class-specific cost

The global loss defined in the previous section applies to all category paths. However,
only a small set of unique paths correspond to the majority of real incorrect misclas-
sifications, the ones we referred to in Section 1 as joker classes. By applying the cost
in a joker class-agnostic manner, we over-punish training samples related to non-joker
classes (i.e. intuitively, we make the model less confident for some correct annotations).

To tackle this issue, we propose to automatically identify candidate joker classes
based on the misclassifications of the initial hierarchical classification model and ap-
ply the alonger and ashorter costs only to samples that have labels corresponding to these
classes. More specifically, we rely on the following assumptions:

• The first one is related to a widely-used assumption in weakly-supervised learn-
ing [16] : Although the hierarchical classification model, i.e. our base learner, is
not optimal, it is still able to predict the correct category for the majority of the
samples for which the model is most confident. We consider as an indication of
confidence the probability the model assigns to a prediction.

• The second assumption is related to an observation: As found in a preliminary
qualitative analysis of the development set, the majority of the misclassifications
for which our base learner is very confident (i.e. probability >0.9) is related to
predictions that have longer paths than the ones found in the corresponding manual
annotations. So, finding frequent paths related to misclassifications with a high
prediction probability, can be an indication that they correspond to joker classes.

Based on the above, finding candidate joker classes amounts to identifying category
paths that are frequently misclassified by the model with a high certainty, as shown in
Algorithm 1. In Algorithm 1, we also define the minimum support s, i.e. the minimum

number of samples that should be related to a category, and the depth d to which the
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search for joker classes should stop. The latter is related to the nature of our problem:
as most joker classes tend to be located at higher levels of the hierarchy by definition,
the benefit of the algorithm is becoming potentially less important as we are moving
lower in the hierarchy, while the real misclassification error rate tends to increase. In
our experiments we set d to 3, i.e. we consider the top half of the hierarchy, and s is set
empirically to 100. We set pt > 0.9 and rt to the median of the remaining categories,
resulting in 22 candidate joker classes.

6. Experimental setting

The focus of the experiments was twofold (i). evaluate the capability of the model to
predict POI categories, and (ii). understand the impact of under-specified labels.

6.1. Data

We run our experiments on a large dataset including 828K POIs and 4093 unique cate-
gory paths (we count only paths that appear as the label of at least one POI). Each POI is
labelled with exactly one path. The maximum depth of the categorisation hierarchy is 5.
The hierarchy is very fine-grained. For instance, there are 70 sub-categories of the Pizza
category located at the third level in the hierarchy. To our knowledge this is the first work
dealing with such a rich hierarchy in the POI classification domain.9

The dataset is heavily imbalanced in terms of the number of POI instances attributed
to each category 10. For instance, the top ten categories have more than 40% of the POIs
attributed to them, while 461 categories have fewer than 5 POIs, resulting in a very long
queue of sparsely represented categories.

To generate training and test data, we used stratified sampling. Consequently, we
allocated the 828K POIs proportionally into 70% for training, 20% for development,
and we kept 10% for future testing purposes. The gold standard includes 1000 POIs
that we carefully verified. It is important to highlight that the gold standard contains

only misclassifications of the preliminary flat classifier as per the silver standard,

thus consists exclusively of samples that are very difficult to categorise. Figure 1, in
Section 1, shows the distribution of the gold standard when compared to the silver one.

6.2. Models and implementation details

The models we evaluate are described below:
Base [7]: We use the flat classifier of Lagos et al. [7] as our baseline. In detail, we

have implemented an architecture with one hidden dense layer, followed by a dropout
layer, and a softmax output layer. We use the Rectified Linear Unit as the activation
function of the hidden layer. The dropout rate is set to 0.3. The loss we use is categorical
crossentropy. We have set an early stopping criterion for the training based on a pre-
defined threshold that takes into account the delta of the loss between two consecutive
epochs. We set the maximum number of epochs to 50. We consider both POI attributes

9The actual characteristics of our dataset are closer to previous work in item classification for online product
listings [17].

10Details can be found in our technical report [13].
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as sequential features with a length of 50. For the LSTM layer we set the dimensions of
the embedding layer vector space to 128 and the number of the LSTM hidden units to
128. The LSTM has recurrent droupout rate of 0.3. The rest of the models have the same
hyper-parameter values.

Hcls: Hcls stands for the hybrid hierarchical model described in Section 5.1. In
Table 2, we report only the model that performs the best (the one that takes into account
only the second level of the hierarchy)11. After each dense layer that corresponds to a
hierarchical categorisation level (c.f. Section 5.1), we insert a dropout layer (dropout rate
of 0.3). The rest of the implementation details are the same as for the baseline.

Focal,cb: Given the fact that a lot of POIs are re-attributed in our gold dataset to
long-tail categories, we have also implemented state-of-art approaches that counter the
effect of a skewed data distribution by adjusting the weights of the samples from the
small classes in the loss function . In that context, focal-loss [18], as well as its combina-
tion with class-balanced loss have shown the most promising results recently [19]. Focal
loss adds a modulating parameter γ to the cross-entropy loss to allow focusing on long
tail samples. Class-balanced loss offers an alternative to using inverse class frequency, by
introducing the concept of the class effective number via the hyperparameter β , which is
used to calculate the weight of each class in the loss term [19]. We replace the categor-
ical cross-entropy loss of the global output with these losses in our setting. We set the
modulating parameter γ of focal loss at 1.0 and the β parameter of the class-balanced
loss at 0.2, after performing a grid search with step size of 0.1. We refer the reader to
[18] and [19] for more details on these methods.

CL : CL stands for the cost-based loss introduced in Section 5.2.1, which is ag-
nostic to the classes that the samples belong. The cost for misclassifications where the
predicted labels have longer paths than the observed ones, is set to 0.5, while the cost for
misclassifications with shorter paths is set to 1.4.

CJL : CJL corresponds to the joker-class specific loss introduced in Section 5.2.2.
The suffixes indicate the cost values used. For instance, CJL1.4,0.5, corresponds to the
same cost values as the ones used for the C-L model, while CJL5.0,0.5, means that the
cost given to misclassifications with shorter paths is 5.0.

All experiments were run on a single GPU instance (1 GPU with 16GB VRAM, 4
CPUs, with 256GB RAM). Training was performed with a batch size of 128. We used
the Adam optimiser with the default parameters. We use the standard macro and micro
metrics for the evaluation calculated using the scikit-learn package [15].

6.3. Results

Our models achieve the best results, as shown in Table 2. We achieve improvements up
to 4.89% in micro-F1 and 3.98% in macro-F1 on the gold standard. Please note that the
absolute scores may seem quite low, however, the gold standard consists exclusively of
a subset of examples that the preliminary flat model fails to classify correctly as per the
silver dataset, thus being very difficult to categorise (c.f. Section 3).

The Hcls+CJL models performs better than the class-agnostic model, Hcls+CL ,
especially in terms of micro-F1. The difference is less important in macro-F1, as
Hcls+CL applies costs to all misclassifications, implicitly pushing the model to pre-
dict long-tail categories in a stronger manner than in the case of the Hcls+CJL models.

11An ablation study is included in our technical report [13].
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Table 2. Average performance (%) over 5 runs on the silver and gold standards. Best results per dataset are in
bold. Standard deviation is also reported. Hcls+CJL1.4,0.5 performs well on both the silver and gold standards.
Hcls+CJL5.0,0.5 has the best overall performance on the gold standard.

Dataset Silver standard Gold standard

Model Metric

Micro-prec. Micro-rec. Micro-F1 Micro-prec. Micro-rec. Micro-F1

Base [7] 70.41±0.27 63.78±0.26 66.93±0.2 46.57±2.02 32.62±0.47 38.36±0.88
Hcls 72.85±0.26 63.90±0.26 68.08±0.05 50.32±1.14 31.99±0.46 39.11±0.58
+Focal 72.64±0.18 63.59±0.23 67.81±0.06 51.39±0.85 32.41±0.45 39.75±0.51
+Focal-cb 72.96±0.26 63.30±0.31 67.79±0.07 50.99±0.73 32.00±0.84 39.32±0.79

Ours

+CL 73.27±0.41 62.90±0.59 67.69±0.22 52.67±0.51 31.94±1.00 39.76±0.78
+CJL1.4,0.5 73.34±0.4 63.37±0.27 67.99±0.17 53.60±1.17 33.51±0.26 41.23±0.4
+CJL1.4,− 73.70±0.17 62.97±0.18 67.91±0.05 53.67±1.64 32.31±0.34 40.34±0.70
+CJL−,0.5 72.84±0.30 63.93±0.28 68.09±0.03 51.41±1.71 33.22±0.91 40.36±1.01
+CJL5.0,0.5 73.58±0.57 59.09±0.37 65.54±0.43 62.62±0.99 33.04±0.77 43.25±0.56

Macro-prec. Macro-rec. Macro-F1 Macro-prec. Macro-rec. Macro-F1

Base [7] 79.18±1.00 80.38±0.86 78.72±0.91 47.75±1.6 37.80±1.39 39.82±1.33
Hcls 80.29±0.18 82.23±0.51 80.08±0.32 49.66±1.69 38.38±1.10 40.92±1.33
+Focal 79.77±1.12 81.11±0.61 79.19±0.62 49.10±1.63 38.34±0.72 40.86±0.59
+Focal-cb 80.23±0.69 82.01±0.58 79.83±0.39 49.34±0.83 38.40±0.86 40.77±0.78

Ours

+CL 80.50±0.36 82.89±0.18 80.51±0.29 50.60±1.5 40.87±1.4 43.08±1.04
+CJL1.4,0.5 80.72±0.2 83.46±0.29 80.87±0.22 51.04±0.92 40.54±0.51 42.98±0.41
+CJL1.4,− 80.65±0.13 83.10±0.22 80.67±0.09 52.12±0.77 41.48±0.82 43.93±0.74

+CJL−,0.5 80.76±0.14 83.50±0.43 80.90±0.14 49.94±0.67 40.37±0.21 42.57±0.36
+CJL5.0,0.5 80.34±0.48 83.37±0.39 80.55±0.42 51.04±1.66 41.50±1.45 43.80±1.51

Because of that, more POIs from head categories12, are wrongly misclassified, result-
ing in the drop in micro-F1. To some extent, the additional POIs attributed to long-tail
categories13, smooth out this difference in macro-F1.

The two costs related to shorter and longer paths have different impacts. As shown in
Table 2, keeping only the cost related to shorter paths, i.e. CJL1.4,−, gives better micro-
precision scores than when the cost for longer paths is used, i.e. CJL−,0.5. On the other
hand, micro-recall mainly benefits from the cost given to longer paths. On the macro-
scores, the latter cost does very well on the silver standard, while the former on the gold
standard. The combination of both costs i.e. CJL1.4,0.5, does not always give the best
score, but achieves a balanced performance, in terms of F1.

On the silver standard, the cost-related models achieve better results in terms of
macro-F1, gaining up to 2.18 points compared to the baseline and 0.82 points to the

12Most heavily populated categories.
13Less heavily populated categories.
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initial hierarchical model, Hcls. This is due to long-tail POIs being predicted more often.
On the other hand, the Hcls model has comparable (or even slightly better) micro-F1.
This is not surprising, considering that the silver standard shares the same issue of joker
classes with the training data. The results on the gold standard, where the cost-related
models have significantly better scores than Hcls, is also a strong indication of that.

Surprisingly, the Hcls+focal-cb model does not have singificantly better scores when
compared to the initial Hcls model on the gold standard. More work is required to un-
derstand the underlying reasons. We note that to our knowledge this is the first work
combining hierarchical classifiers with data imbalance losses. A detailed ablation study
can be found in our technical report [13].

7. Deployment case study

We developed the classification system and model for the dataset described in this paper
in September 2020. We have released the model for the full POI database in November
2020. Among other things, corresponding predictions were used to semi-automatically
correct existing annotations in the production database. For instance, on the dataset used
in this paper alone, >11.4K POIs were corrected in just a few days, as we focused on
misclassifications with probability greater than 0.9 (≈17K predictions). Corrected POIs
are currently available online via Naver Maps. Note that data curation is resource inten-
sive, so having a tool that allows to organise it in a principled manner is very useful.

8. Conclusions

In this paper, we presented our approach to POI category prediction in Naver. In this
setting, category prediction is a hierarchical classification problem, as categories are or-
ganized in a detailed tree structure. However, in real-life applications, like ours, it is un-
realistic to count on the existence of a perfectly annotated training set. This prevented us
from casting the task as a straightforward classification problem. In order to overcome
this difficulty, we identified that the main deficiency of the training set is that the train-
ing labels tend to be under-specified i.e. they point to categories found at higher levels
of the hierarchy than the correct ones. This resulted in a lot of under-represented and a
few over-represented categories. To allow robust learning in that context we proposed
the following approach: First, we detected problematic categories, i.e. over-represented
categories, based on the misclassifications of an initial hierarchical classifier. Then we
re-trained from scratch, introducing a weight to the standard cross-entropy loss func-
tion that specifically targeted incorrect predictions of these categories only. We find that
on our gold standard we achieve improvements up to 4.89% in micro-F1 and 3.98% in
macro-F1. Accordingly, our system has enabled the correction of thousands of POIs in
our production database, showing that the resulting classifier may be used not only to
impute categories to new POIs, but also to curate and correct manually added ones.
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