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Abstract. The applications of heterogeneous embedded systems for biomedical 

engineering are promising, as quick response of biomedical systems is often 

required due to the life-saving nature of biomedical engineering, and multiple 

devices with completely different cores and designs can be involved in a single 

patient. In this paper, we propose a multiprocessing framework and then, with 

regard to the framework, we propose an architecture for heterogeneous embedded 

systems that uses finite state machines (FSMs). A multithreading method on an 

electrocardiogram (ECG) software is implemented as the verification of our 

framework. 
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1. Introduction 

Embedded systems play an important role in biomedical systems due to their response 

speed, reliability, portability, and ability to be designed for a specific biomedical use. 

Meanwhile, heterogeneous multi-core embedded systems take advantage of not only 

their potential in reducing power consumption, but the variety of techniques and cores 

used by biomedical devices for different patients and diagnoses. Therefore, we consider 

these two problems of (1) how embedded systems should be configured for specific 

biomedical uses, and (2) how we can improve the efficiency of the systems. 

At the side of biomedical system configuration, T. Hussain et al. developed a 

Biomedical Application Processing System which made use of both dual-core 

processor and Biomedical Application Specific Reconfigurable Accelerator (BASRA) 

[1]. Then, at the side of system efficiency, G. Xie et al. proposed models for hardware 

cost, reliability requirement (RR) and real-time requirement assessments, and then 

introduced exploratory hardware cost optimization (EHCO) algorithm with its derived 

algorithms, EEHCO and SEEHCO [2]. While those works give specific ideas about 

efficiency improvement and biomedical applications potentially feasible for embedded 

systems, we try to incorporate those ideas, among others, by introducing a 
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multiprocessing framework and then, with regard to the framework, proposing an 

architecture for heterogeneous embedded systems that uses finite state machines 

(FSMs). The framework will be introduced in Section II, while the architecture 

proposal will be introduced in Section III. Then, as a verification to the framework and 

architecture, a multithreading method on an electrocardiogram (ECG) software is 

implemented in Section IV. We conclude in Section V. 

2. Multiprocessing Framework 

We propose a multiprocessing framework as this: for an application which executes 

every input through a fixed set of tasks, we divide it into processing units of finite 

number. The tasks assigned to each of the units are also fixed, so that they can form a 

task dependency graph (TDG) that is a directed acyclic graph (DAG). Examples of 

TDGs, one DAG and the other non-DAG, are shown in Figure 1. 

We propose this framework with considerations on (1) efficiency, so that time 

wasted through task switching can be reduced and memory access schemes can be 

simplified, with every processing unit administrating a fixed set of tasks; (2) simplicity 

and flexibility, so that manual segmentations of tasks are possible in the absence of 

automatic task segmentation schemes, with the number of processing units being finite; 

(3) availability for real-time applications. 

 
Figure 1. Examples of task dependency graphs (TDGs) from the perspective of a single input. Here, every 

box represents a set of tasks enclosed in a processing unit, and every edge represents a dependency between 

two sets of tasks. In (a), no edges form cycles, and hence it is a directed acyclic graph (DAG), while for (b), 

because of the extra dependency from Task 6 to Task 1, Tasks 1-2-4-6-1 form a loop, and the graph is not a 

DAG. 

 

If the TDG is a DAG, all processing units can execute tasks in parallel, and both 

multiprocessing schemes, namely concurrent processing and parallel processing, can be 

used in accordance with the TDG. However, in case the processing units are not 

already well-defined or the dependencies of tasks in them cannot form a DAG, task 
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segmentation schemes need to be proposed. The difficulty comes at making the TDG a 

DAG. As illustrated in Figure 1 (b), any cycle formed in a TDG will make parallel 

processing unavailable. Makeshift methods, such as altering the algorithm and using 

extra memory for breaking the cycles of task dependencies, can be applied for making 

up DAGs, while efficient and automatic methods for breaking the cycles of 

dependencies are subject to further research. 

3. Embedded System Architectures 

With our multiprocessing framework, we propose an architecture for embedded 

systems, aiming at taking advantage of the framework. An overview of the proposed 

architecture is given in Figure 2. As it shows, every processor has a finite state machine 

(FSM) attached to it, and a memory space for data access and storage. There is also a 

simple data processing unit (DPU), which contains concurrent processor algorithms, a 

memory supervisor as a centralized controller for the memory spaces of processors, and 

the necessary memory space for DPU itself. FSMs communicate with other 

components by sending and receiving signals. Here in this figure, reading request ( ) 

and writing request ( ) signals that FSMs send to DPU, as well as reading finished 

( ) and writing finished ( ) signals that DPU sends to FSMs, are presented. 

 
Figure 2. Proposed embedded system architecture based on our framework. Unarrowed edges indicate the 

communications between those components are by data passages or supervisions. Arrowed edges indicate the 

communications are by transitory signals. Dotted edges indicate the communications may exist but are 

dependent on other conditions. 

 

Figure 3 (a) and (b) show our proposed FSMs, namely FSM1 and FSM2. FSM1 is 

used for all processors except terminal processor(s), which are processors with no “next 

processors”, i.e., no processors dependent on them. An example is Task 5 in Figure 1 

(a). Terminal processors use FSM2 because they do not need a waiting state. 
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Figure 3. Two FSMs, namely (a) FSM1 and (b) FSM2, used according to our proposal. F indicates the task 

finishing signal sent from the respective processor. S indicates the state of the FSM of the respective 

processor. Inside the bracket, n indicates the processor the FSM corresponds to (current processor), and n-1 

and n+1 indicate the last and next processors. Outputs with the respective edges are colored in blue. “&&” is 

logical “and” and “!=” is “not equal to”. 
 

Concurrent processor algorithms generate collective  signals, or  in case 

there are more than one last/next processors for a specific processor. We apply a 

counter in order to indicate the generation of the  for every case where the number 

of last/next processors is larger than 1. Starting from 0, the counted number is added by 

1 every time an individual  is generated, and once it matches the quantity of 

last/next processors in the respective case, the  is generated, and then the number 

returns to 0. Take Figure 1 (a) for example,  should be generated for Task 1 as 

 and for Task 4 as . There is a counter for each of the cases, and 

both has their  generated when the number reaches 2. 

The architecture should be able to take the advantage of simplicity in terms of data 

storage. According to Figure 3 (a), for example, since there are 5 major states for non-

terminal processors, 3 bits of memory spared for every FSM of the first type is enough 

for the key part. For terminal processors, it will be 2 bits. As for the multiple states in 

the running part, since the operations are serial and non-stop, primary memory comes 

into consideration along with secondary memory. For example, if a byte of secondary 

memory is arranged for a non-terminal FSM, there will be 5 bits for the states in 
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running part. Then, primary memory will be used if the number of operations exceeds 

25 = 32. The number could also be less than 32 so that more primary memory is used to 

improve the speed. 

As for data access, since the advantage of inter-processor data passages is the 

usage of a fixed memory space for every processor, the process of data passage can be 

largely automated, resulting in distributed architectures. Nonetheless, we need a 

memory supervisor to decide when to enable data passage between the memory spaces 

of two processors with dependency, regarding the  or  signals it receives. After 

the data passage is finished, the memory supervisor sends a  signal to the FSM of 

the writing processor and  signal to that of the reading processor. We can skip the 

issue of priority by applying an individual bus to every FSM for sending  signals. 

We divide the conditions for data passages into two types: 1) uncrowded, which 

means when the writing processor gets its data ready, the FSM of the reading processor 

is at idle state, so the data passage can take place immediately; 2) crowded, which 

means when the writing processor gets its data ready, the reading processor is not at 

idle state, so the writing processor has to wait, and the data transition has to take place 

later. Because a processor stops reading new data and has its data stored in its memory 

space when its FSM is at waiting state, it owns only one set of data at one time, and the 

data will not stack up infinitely. And because the terminal processor(s) do not have 

waiting states, the non-terminal processors will not have its FSM at waiting state 

indefinitely either. In case the processors with their FSMs in waiting states stack up, 

and the enabled memory spaces form a chain in a TDG, we call it a waiting chain. This 

concept is potentially useful in improving the efficiency of the architecture, as when the 

end processor(s) in a waiting chain finished running tasks and writing data, the data 

passage on the chain can happen as quickly as possible. Thus, efficiency improvement 

schemes, such as using caches, can be investigated. 

4. Test on Software 

We tested the feasibility of our framework on software by modifying an open-source 

electrocardiogram (ECG) detection and classification program. [3] The objective of the 

test is to verify the availability of the proposed multiprocessing framework via the 

multithreading implementation, so maintained performances in accuracy and speed are 

primarily expected. If there are available resources in hardware such as thread 

executions being distributed to multiple cores, improved speed will also be expected. 

The ECG program is written in C language, which is the same language to be used 

in our modification. The database it uses for performance evaluation is MIT-BIH 

database. [3][4] 25 ECG records are used in total, each of which has around 1000 to 

3000 beats (QRS component) for detection and classification. Through code analysis, 

we divided the program into subtasks and determined their dependencies. Thus, they 

made up 6 modules as shown in the DAG of Figure 4, and their functionalities are 

shown in Table 1. Then, for multithreading implementation, we made use of the 

POSIX Threads model, or “pthread” header file. Every module was therefore fit into a 

thread. In code modification, we introduced a flag between every two individual 

threads where dependency exists. Writing and reading threads here correspond to 

writing and reading processors in our architecture. Collective flags, corresponding to 

collective  signals, are simply implemented by logical AND operators. For data 
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storage and access, we largely replaced variables by arrays, and arrays by double arrays, 

in order to store the buffering data to be used. Public data to be used by one thread 

were converted into private ones as an implementation of reading process. Similarly, 

private data were copied to public ones as a writing process. Proper mutual exclusion 

functions, such as “pthread_mutex_lock”, were applied. 

 
Figure 4. TDGs with our task segmentation method for testing. M/T represents module/thread. 

 

Table 1. The functionality within every module 

No. of module Main functionality 

1 Read sample, init, detect beat, etc. 

2 Estimate noise 

3 Downsample beat 

4 Update beat queue 

5 
BC init, check muscle noise, check rhythm, analyze 

beat, etc. 

6 

BestMorphMatch (find the template that best 

matches the beat), update beat type, other BC tasks, 

other BDAC tasks, output beat type, etc. 

 

We tested our modified program using GNU Compiler Collection (GCC) for 

compiling and compared it with the original program. The computer we used for 

testing is installed with the Intel i7-6700 CPU which has 4 cores, and Microsoft 

Windows 7 operating system. We tested the running time for every record using (1) the 

“clock” function via “time.h” header, and (2) a manual timer, according to when the 

start of execution of every record was printed. With the clock function method, the 

printed running time per record for the original program is around 500 – 1,000 ms, 

while for our multithreaded method it is around 90,000 – 120,000 ms. According to the 

manual timer, however, the running time per record is around 14 - 17 s for both 

programs. In terms of accuracy, we achieved “almost” the same performance in 

accuracy as the original program for the multithreaded program. Figure 5 shows some 

of the results to illustrate our observations. The results from manual timer method meet 

our expectations and are more convincing to us as the time measurement inside the 

program may be disrupted by pthread functions. As for the fact that no speed 

improvements are observed, as is understood, there are several obstacles in the 

effective time reduction for a multithreaded program such as the inability for user-level 

threads to save the running time, and the incompatibility between C language and 

multithreading functions as well as that between pthread functions and Windows OS. 
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Figure 5. Test results of our modified multithreaded program for three ECG records (Records 104, 105 and 

106) in comparison with the original results. Lowercase letters are beat types through classification, while 

uppercase letters are real beat types. 

5. Conclusion 

We proposed a framework for multiprocessing adjustable for biomedical applications, 

and then an embedded system architecture with finite state machines and a data 

processing unit that handles memory access and storage for different processors. We 

verified the feasibility of the framework by implementing a respective multithreading 

scheme on an ECG detection and classification program on software. In the future, we 

aim at addressing other issues such as load balancing and real-time system 
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architectures. as well as investigating in more specific biomedical systems and 

modifying our proposals accordingly. 
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