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Abstract. In this paper, we study conditional preferences in abstract argumenta-
tion by introducing a new generalization of Dung-style argumentation frameworks
(AFs) called Conditional Preference-based AFs (CPAFs). Each subset of arguments
in a CPAF can be associated with its own preference relation. This generalizes ex-
isting approaches for preference-handling in abstract argumentation, and allows us
to reason about conditional preferences in a general way. We conduct a principle-
based analysis of CPAFs and compare them to related generalizations of AFs.
Specifically, we highlight similarities and differences to Modgil’s Extended AFs
and show that our formalism can capture Value-based AFs.
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1. Introduction

Preferences in argumentation have been studied from various points of view, be it in
terms of argument strength [1,2,3,4,5] or preferences between values [6,7]. Despite this,
conditional preferences have received only limited attention in the field of argumenta-
tion. Dung et al. investigated conditional preferences in the setting of structured argu-
mentation [8]. There, argumentation frameworks (AFs) are built from defeasible knowl-
edge bases containing preference rules of the form a1, . . . ,an → d0 � d1, where d0 and
d1 are defeasible rules. However, no work that deals with conditional preferences on the
abstract level is known to us. This is in contrast to unconditional preferences, which are
studied both in structured [9,10,11] and abstract [5,7] argumentation in the literature.

Conditional preferences can appear in many situations and formalisms. Dung et
al. [8] demonstrate this with the help of an example, which we now adapt:2

Example 1. Sherlock Holmes is investigating a murder. There are two suspects, Person 1
and Person 2. After analyzing the crime scene, Sherlock is sure:

• I1: Person 1 or Person 2 is the culprit, but not both.

Moreover, Sherlock adheres to the following rules:

• R1: If Person i has a motive but Person j, with j �= i, does not, then this supports
the case that Person i is the culprit.

1Corresponding Author: Michael Bernreiter; E-mail: michael.bernreiter@tuwien.ac.at.
2We specify the example in natural language. See [8] for how Dung’s original example can be modeled as a

defeasible knowledge base with conditional preferences. Our example can be formalized similarly.
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• R2: If Person i has an alibi but Person j, with j �= i, does not, then this supports
the case that Person j is the culprit.

• R3: Alibis have more importance than motives.

After interrogating the suspects, Sherlock concludes that:

• C1: Person 1 has a motive but Person 2 does not.
• C2: Person 1 has an alibi but Person 2 does not.

If C1 is trusted, but C2 is not, then this supports that Person 1 is the culprit. If C2 is trusted
then this supports that Person 2 is the culprit, regardless of our stance on C1.

This example demonstrates the importance of conditional preferences in common
reasoning tasks. We believe it is valuable to capture conditional preferences in argumen-
tation not only on the structured level as Dung et al. [8] did, but also on the abstract level.
Doing so will generalize existing formalisms for unconditional preferences in abstract
argumentation and provide a more direct target formalism for structured approaches.

To this end, we introduce Conditional Preference-based AFs (CPAFs), where each
subset of arguments S can be associated with its own preference relation �S. Preferences
are then resolved via so-called preference-reductions [5], which modify the attack rela-
tion based on the given preferences. As a consequence, S must be justified in view of its
own preferences, i.e., S must be an extension in view of �S.

We show that CPAFs generalize Preference-based AFs (PAFs), and demonstrate that
they are capable of dealing with conditional preferences in a general manner. Moreover,
we conduct a principle-based analysis of CPAF-semantics and show that especially com-
plete and stable semantics preserve desirable properties of regular PAFs. Lastly, we com-
pare CPAFs to related formalisms. Specifically, we show that CPAFs can capture other
generalizations of AFs such as Value-based AFs (VAFs) [6,7] in a straightforward way,
and compare CPAFs to Extended Argumentation Frameworks (EAFs) [12,13,14] in or-
der to highlight similarities and differences.

2. Preliminaries

We first define (abstract) argumentation frameworks [15].

Definition 1. An argumentation framework (AF) is a tuple F = (A,R) where A is a finite
set of arguments and R ⊆ A×A is an attack relation between arguments. Let S ⊆ A. We
say S attacks b (in F) if (a,b) ∈ R for some a ∈ S; S+F = {b ∈ A | ∃a ∈ S : (a,b) ∈ R}
denotes the set of arguments attacked by S. An argument a ∈ A is defended (in F) by S if
b ∈ S+F for each b with (b,a) ∈ R.

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions [16]. We consider for σ the functions cf (conflict-free),
adm (admissible), com (complete), stb (stable), grd (grounded), and prf (preferred).

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), written as
S ∈ cf (F), if there are no a,b ∈ S, such that (a,b) ∈ R. For S ∈ cf (F) it holds that

• S ∈ adm(F) if each a ∈ S is defended by S in F;
• S ∈ com(F) if S ∈ adm(F) and each a ∈ A defended by S in F is contained in S;
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Figure 1. PAF F and its preference reducts from Example 2.

• S ∈ stb(F) if each a ∈ A\S is attacked by S in F;
• S ∈ grd(F) if S ∈ com(F) and there is no T ∈ com(F) with T ⊂ S;
• S ∈ prf (F) if S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;

Preference-based AFs enrich regular AFs with preferences between arguments.

Definition 3. A preference-based AF (PAF) is a triple F = (A,R,�) where (A,R) is an
AF and � is an irreflexive and asymmetric binary relation over A.

If a and b are arguments and a � b holds then we say that a is stronger than b. An
established method of resolving preferences in PAFs are so-called preference reductions,
of which there exist four in the literature [5]. If in a PAF (A,R,�) there is an attack
(a,b) ∈ R and a preference b � a then (a,b) is called a critical attack. In other words,
critical attacks are from weak to strong arguments. The preference-reductions resolve
preferences by dealing with these critical attacks, e.g., by removing or reverting them.

Definition 4. Given a PAF F = (A,R,�), a corresponding AF Ri(F) = (A,R′) is con-
structed via Reduction i, where i ∈ {1,2,3,4}, as follows:

• i = 1: ∀a,b ∈ A : (a,b) ∈ R′ ⇔ (a,b) ∈ R,b �� a
• i= 2: ∀a,b∈ A : (a,b)∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((b,a) ∈ R,(a,b) /∈ R,a � b)
• i = 3: ∀a,b ∈ A : (a,b) ∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((a,b) ∈ R,(b,a) �∈ R)
• i= 4: ∀a,b∈ A : (a,b)∈ R′ ⇔ ((a,b) ∈ R,b �� a) or ((b,a) ∈ R,(a,b) /∈ R,a � b)

or ((a,b) ∈ R,(b,a) �∈ R)

The preference-based variant of a semantics σ relative to Reduction i is defined as
σ i

p(F) = σ(Ri(F)).

Intuitively, Reduction 1 removes critical attacks while Reduction 2 reverts them.
Reduction 3 removes critical attacks, but only if the stronger argument also attacks the
weaker one. Reduction 4 can be seen as a combination of Reduction 2 and 3. Note that on
symmetric attacks, all four reductions function in the same way. The following example
demonstrates the reductions and PAF-semantics.

Example 2. Consider the PAF F = ({a,b,c},{(a,b),(b,a),(c,b)},�) with b � a and
b � c. Figure 1 depicts F as well as Ri(F), i ∈ {1,2,3,4}. It can be checked that, for
Reduction 1, adm1

p(F) = adm(Ri(F)) = { /0,{b},{c},{b,c}} and therefore com1
p(F) =

prf 1
p(F) = stb1

p(F) = {{b,c}}. If we use Reduction 2 for example we get different exten-
sions, namely adm2

p(F) = { /0,{b}} and com2
p(F) = prf 2

p(F) = stb2
p(F) = {{b}}.

A principle-based analysis of the four preference reductions was conducted for com-
plete, grounded, preferred, and stable semantics [4,5]. To this end, the following six
PAF-properties were laid out and investigated.
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R1 R2 R3 R4

P1 × CGPS CGPS CGPS

P2 × × CS ×
P3 × × CS ×
P4 × × CGS ×
P5 × × CG ×
P6 G G CGPS G

Table 1. Satisfaction of various PAF-principles. C stands for complete, G for grounded, P for preferred, and S
for stable. × indicates that none of those four semantics satisfy this principle.

Definition 5. Let σ i
p be a PAF-semantics. Let �′⊆ (A×A) be irreflexive and asymmetric.

• σ i
p satisfies P1 (conflict-freeness) iff for all PAFs F = (A,R,�) there is no S ∈

σ i
p(F) such that {a,b} ⊆ S and (a,b) ∈ R.

• σ i
p satisfies P2 (preference selects extensions 1) iff σ i

p(A,R,�∪�′)⊆ σ i
p(A,R,�)

holds for all PAFs (A,R,�) and all �′.
• σ i

p satisfies P3 (preference selects extensions 2) iff σ i
p(A,R,�)⊆ σ i

p(A,R, /0) holds
for all PAFs (A,R,�).

• σ i
p satisfies P4 (extension refinement) iff for all S′ ∈ σ i

p(A,R,� ∪ �′) there exists
some S ∈ σ i

p(A,R,�) such that S ⊆ S′.
• σ i

p satisfies P5 (extension growth) iff
⋂
(σ i

p(A,R,�))⊆⋂
(σ i

p(A,R,�∪�′)) holds
for all PAFs (A,R,�) and all �′.

• σ i
p satisfies P6 (number of extensions) iff |σ i

p(A,R,� ∪�′)| ≤ |σ i
p(A,R,�)| holds

for all PAFs (A,R,�) and all �′.

Intuitively, P1 states that if there is an attack between two arguments, then there is
no extension containing both of them. P2 expresses that adding more preferences to a
PAF can exclude extensions, but not introduce them. P3 is a special case of P2. P4 states
that adding preferences means extensions will be supersets of extensions in the original
PAF. P5 says that adding preferences will preserve skeptically accepted arguments, and
might cause new arguments to be skeptically accepted. P6 expresses that the number of
extensions will not grow if new preferences are added.

Table 1 shows which semantics satisfy which principle. In addition to these fun-
damental principles [4], four more principles were introduced later [5], but we do not
consider them at this point and leave them for future work.

3. Conditional Preference-Based Argumentation Frameworks

As argued in the introduction, our aim is to provide a framework for reasoning about
conditional preferences in abstract argumentation. This means that arguments themselves
must be capable of expressing preferences, and that those argument-bound preferences
are relevant only if the corresponding arguments are themselves accepted. How this is
implemented must be considered carefully, as Example 1 demonstrates. There, the fact
that Person 1 has a motive (let us refer to this as m1) and the fact that Person 1 has an
alibi (a1) result in opposing preferences. When accepting both m1 and a1 it seems natural
to combine these opposing preferences, i.e., to cancel them. But this does not allow us to
express that alibis are more important than motives, as required in Example 1. Therefore,
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Figure 2. CPAF F and its preference-reducts from Example 3.

we need to define our formalism in a general way such that the joint acceptance of argu-
ments must not necessarily result in the combination of their associated preferences. We
solve this by mapping each subset S of arguments to a separate preference relation �S.

Definition 6. A Conditional PAF (CPAF) is a triple F = (A,R,cond), where (A,R) is an
AF and cond : 2A → 2(A×A) is a function that maps each set of arguments S ⊆ A to an
irreflexive and asymmetric binary relation �S over A.

Note that we set no restriction on how exactly conditional preferences are repre-
sented. This is deliberate, as we wish to stay as general as possible. In practice, succinct
representations could be achieved, e.g., by expressing the cond-function via rules of the
form F → x � y where F is a propositional formula over the arguments.

Just as in regular PAFs, preferences in CPAFs are resolved with the help of the four
preference-reductions (cf. Definition 4). A set of arguments S is an extension of some
CPAF if it is an extension relative to its associated preference relation cond(S).

Definition 7. Let F = (A,R,cond) be a CPAF and let S ⊆ A. The S-reduct of F with
respect to a preference reduction i∈ {1,2,3,4} is defined as RS

i (F) =Ri(A,R,cond(S)).
Given an AF semantics σ , S ∈ σ i

cp(F) iff S ∈ σ(RS
i (F)).

Using CPAFs we can easily formalize our Sherlock Holmes example.

Example 3. We continue Example 1 and introduce two arguments c1 and c2 expressing
that Person 1 (resp. Person 2) is the culprit. Moreover, we introduce m1 and a1 to express
that Person 1 has a motive (resp. alibi) but Person 2 does not. c1 and c2 attack each other
while m1 and a1 have no incoming or outgoing attacks, but rather express preferences.
Formally, we model this via the CPAF F = ({c1,c2,m1,a1},{(c1,c2),(c2,c1)},cond)
with cond such that c1 �S c2 if m1 ∈ S but a1 �∈ S, c2 �S c1 if a1 ∈ S, and cond(S) = /0
for all other S ⊆ A. Figure 2 depicts F and the S-reducts of F. Note that m1 and a1 are
unattacked in all S-reducts of F. Therefore, both arguments must be part of any σ i

cp-
extension for σ ∈ {grd,com,prf ,stb} and we can conclude that σ i

cp(F) = {{m1,a1,c2}}.

Note that the preferred semantics defined above do not maximize over all admissible
sets of a CPAF, but rather over all admissible sets in the given S-reduct. This means that
if there is a set S that is admissible in the S-reduct of F , but there is also some T ⊃ S that
is admissible in the S-reduct of F , then S is not preferred in F . But this T does not have
to be admissible in F , since it might not be admissible in the T -reduct of F . Thus, the
following alternative semantics may be considered more natural:

Definition 8. Let F = (A,R,cond) be a CPAF and let S ⊆ A. Then S ∈ prf -glbi
cp(F) iff

S ∈ admi
cp(F) and there is no T such that S ⊂ T and T ∈ admi

cp(F).
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Intuitively, prf -glbi
cp maximizes globally over all admissible sets of a CPAF, while

prf i
cp maximizes locally over the admissible sets of the given S-reduct.

Example 4. Let F be the CPAF from Example 3 and recall that prf i
cp(F) = {{m1,a1,

c2}}. Observe that {m1,c1} is not preferred in the {m1,c1}-reduct of F, but it is a subset-
maximal admissible set in F. Thus, prf -glbi

cp(F) = {{m1,a1,c2},{m1,c1}}.

The difference between the two variants is not only philosophical, but impacts fun-
damental properties for maximization-based semantics such as I-maximality. A seman-
tics σ i

cp is I-maximal if, for all CPAFs F and all S,T ∈ σ i
cp(F), S ⊆ T implies S = T .

Proposition 1. prf -glbi
cp is I-maximal, but prf i

cp is not, where i ∈ {1,2,3,4}.

Proof. I-maximality of prf -glbi
cp follows from Definition 8. For our counter examples

we consider the preference-reductions separately. Reduction 1: consider the CPAF F =
({a,b},{(a,b)},cond} with cond such that b �{a,b} a. Then {a} ∈ prf 1

cp(F) and {a,b} ∈
prf 1

cp(F). Reductions 2 and 4: consider the CPAF F ′ = ({a,b,c},{(a,b),(b,c),(c,a)},
cond} with cond such that a �{a} c. Then /0 ∈ prf i

cp(F
′) and {a} ∈ prf i

cp(F
′). Reduc-

tion 3: consider the CPAF F ′′ = ({a,b,c},{(a,b),(b,a),(b,c),(c,a)},cond} with cond
such that a � /0 b. Then /0 ∈ prf 3

cp(F
′′) and {b} ∈ prf 3

cp(F
′′).

One may be tempted to deduce from the above proposition that prf -glbi
cp is more

suitable as a default preferred semantics than prf i
cp. However, we will see in Section 5.1

that prf i
cp allows us to capture the problems of subjective/objective acceptance in VAFs in

a natural way. In our subsequent analysis of CPAFs we consider both prf i
cp and prf -glbi

cp.
Like preferred semantics, stable semantics satisfy I-maximality on regular AFs. Interest-
ingly, on CPAFs, this depends on the preference-reduction.

Proposition 2. stb1
cp is not I-maximal, but stb j

cp is, where j ∈ {2,3,4}.

Proof. For stb1
cp we can use the same counter-example as for prf 1

cp (cf. Proposition 1).
For stb j

cp with j ∈ {2,3,4} we proceed by contradiction: assume there is a CPAF F =

(A,R,cond) with S,T ∈ stb j
cp(F) such that S ⊂ T . Then there is x ∈ T such that x �∈ S.

Since S ∈ stb j
cp(F) there is y ∈ S such that (y,x) ∈ RS

j (F). Reductions 2, 3, and 4 do not
remove conflicts between arguments, and thus either (y,x) ∈ R or (x,y) ∈ R. Therefore,
(y,x) ∈ RT

j (F) or (x,y) ∈ RT
j (F). But y ∈ S implies y ∈ T , i.e., T �∈ cf j

cp(F).

Another interesting point is that grounded extensions are not necessarily unique in
CPAFs: consider F = ({a,b},{(a,b)},cond) with cond such that b �{b} a. Then {a} ∈
grd2

cp(F) and {b} ∈ grd2
cp(F). We stress that each grounded extension S is still unique in

the S-reduct of the given CPAF and thus unique with respect to its own preferences.
Lastly, by the following proposition we express that all CPAF-semantics considered

here generalize their corresponding PAF-semantics, i.e., that CPAFs generalize PAFs.

Proposition 3. Let F = (A,R,cond) be a CPAF such that the preference function cond
maps every set of arguments to the same binary relation, i.e., there is some � such
that cond(S) = � for all S ⊆ A. Let σ ∈ {cf ,adm,stb,com,prf ,grd}. Then σ i

cp(F) =

σ i
p(A,R,�). Furthermore, prf -glbi

cp(F) = prf i
p(A,R,�).
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4. Principle-Based Analysis

In this section, we generalize the principles of Kaci et al. for PAFs (cf. Definition 5)
to account for conditional preferences. We then investigate by which semantics these
principles are satisfied, and show that there are differences to the case of regular PAFs.

Definition 9. Let σ i
cp be a CPAF-semantics. In the following, given a CPAF (A,R,cond),

we denote by cond′ an arbitrary function such that cond(S) ⊆ cond′(S) for all S ⊆ A.
Furthermore, cond /0(S) = /0 for all S ⊆ A.

• σ i
cp satisfies P1∗ (conflict-freeness) iff for all CPAFs F = (A,R,cond) there is no

S ∈ σ i
cp(F) such that {a,b} ⊆ S and (a,b) ∈ R.

• σ i
cp satisfies P2∗ (preference selects extensions) iff for all CPAFs (A,R,cond) it

holds that σ i
cp(A,R,cond′)⊆ σ i

cp(A,R,cond).
• σ i

cp satisfies P3∗ (preference selects extensions 2) iff for all CPAFs (A,R,cond) it
holds that σ i

cp(A,R,cond)⊆ σ i
cp(A,R,cond /0).

• σ i
cp satisfies P4∗ (extension refinement) iff for all S′ ∈ σ i

cp(A,R,cond′) there exists
some S ∈ σ i

cp(A,R,cond) such that S ⊆ S′.
• σ i

cp satisfies P5∗ (extension growth) iff for all CPAFs (A,R,cond) it holds that
⋂
(σ i

cp(A,R,cond))⊆⋂
(σ i

cp(A,R,cond′)).
• σ i

cp satisfies P6∗ (number of extensions) iff for all CPAFs (A,R,cond) it holds that
|σ i

cp(A,R,cond′)| ≤ |σ i
cp(A,R,cond)|.

The following lemma establishes some relationships between the CPAF-principles
and is a generalization of known relationships between PAF-principles [5].

Lemma 4. If σ i
cp satisfies P2∗ then it also satisfies P3∗, P4∗, and P6∗. If σ i

cp always
returns at least one extension, and if it satisfies P2∗, then it also satisfies P5∗.

Observe that, since CPAFs are a generalization of PAFs (cf. Proposition 3), a CPAF-
semantics σ i

cp can not satisfy P j∗ if the corresponding PAF-semantics σ i
p does not satisfy

P j. Moreover, it is obvious that P1∗ is still satisfied under Reductions 2, 3, and 4, as con-
flicts are not removed by these reductions even if we consider conditional preferences.
We can also show that satisfaction of P2 carries over from PAFs to CPAFs.

Lemma 5. If some σ i
p satisfies P2 then σ i

cp satisfies P2∗.

Proof. Assume σ i
cp does not satisfy P2∗. Then there is a CPAF F = (A,R,cond) and

cond′ with cond(S)⊆ cond′(S) for all S ⊆ A such that σ i
cp(A,R,cond′) �⊆ σ i

cp(A,R,cond).
Thus, there is E ⊆ A such that E ∈ σ i

cp(A,R,cond′) but E �∈ σ i
cp(A,R,cond). Then E ∈

σ(Ri(A,R,cond′(E))) but E �∈ σ(Ri(A,R,cond(E))), i.e., σ i
p does not satisfy P2.

Lemma 5 implies that complete and stable semantics satisfy P2∗ on CPAFs under
Reduction 3. By Lemma 4 these semantics also satisfy P3∗, P4∗, and P6∗. However, we
can not use Lemma 4 to show that complete semantics satisfy P5∗, since conditional
preferences allow for frameworks without complete extensions. Indeed, we can find a
counter-example in this case. Counter-examples for the satisfaction of various principles
can also be found for grounded semantics and both variants of the preferred semantics.
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R1 R2 R3 R4

P1∗ × CGPS CGPS CGPS

P2∗ × × CS ×
P3∗ × × CS ×
P4∗ × × CS ×
P5∗ × × × ×
P6∗ × × CS ×

Table 2. Satisfaction of CPAF-principles. C stands for complete, G for grounded, P for preferred (local and
global maximization), and S for stable. × indicates that none of those semantics satisfy this principle.

Lemma 6. com3
cp does not satisfy P5∗. grdi

cp, with i ∈ {1,2,3,4}, does not satisfy any of
P4∗, P5∗, or P6∗. Moreover, prf 3

cp and prf -glb3
cp do not satisfy P6∗.

Proof. For complete semantics, consider A = {a,b}, R = {(a,b),(b,a)}, cond such that
a � /0 b and a �{b} b, as well as cond′ such that a �′

/0 b, a �′
{b} b, and b �′

{a} a. Then
com3

cp(A,R,cond) = {{a}} while com3
cp(A,R,cond′) = /0.

For grounded semantics, consider A = {a,b}, R = {(a,b),(b,a)}, cond such that
a � /0 b and a �{a} b, as well as cond′ such that a �′

/0 b, a �′
{a} b, and b �′

{b} a. Then

grdi
cp(A,R,cond) = {{a}} while grdi

cp(A,R,cond′) = {{a},{b}}.
For preferred semantics, consider A = {a,b,c}, R = {(a,c),(c,a),(b,c),(c,b),

(c,c)}, cond such that cond(S) = /0 for all S ⊆ A, and cond′ such that c �′
{b} a, c �′

{a} b,

c �′
{a,b} a, and c �′

{a,b} b. Then prf 3
cp(A,R,cond) = prf -glb3

cp(A,R,cond) = {{a,b}}
while prf 3

cp(A,R,cond′) = prf -glb3
cp(A,R,cond′) = {{a},{b}}.

The above results constitute an exhaustive investigation of the six CPAF-principles
for all semantics considered in this paper. Thus, we can conclude:

Theorem 7. The satisfaction of CPAF-principles depicted in Table 2 holds.

To summarize, complete and stable semantics preserve the satisfaction of PAF-
principles in almost all cases. Grounded semantics no longer satisfy any of the principles
on CPAFs except P1∗ (conflict-freeness) since grounded extensions are not unique on
CPAFs, and since there are even CPAFs without a grounded extension (cf. Lemma 6).
Unlike on PAFs, complete semantics do not satisfy P5∗ (extension growth) under Re-
duction 3. Furthermore, neither variant of preferred semantics satisfies P6∗ (number of
extensions) under Reduction 3.

5. Related Formalisms

We now investigate the connection between CPAFs and two related formalisms. First,
we show that Value-based Argumentation Frameworks (VAFs) [6,7] can be captured
by CPAFs in a straightforward way. Secondly, we consider Extended Argumentation
Frameworks (EAFs) [12,13,14] and highlight similarities and differences to CPAFs.

5.1. Capturing Value-Based Argumentation

VAFs, similarly to CPAFs, are capable of dealing with multiple preference relations. But,
in contrast to CPAFs, these preferences are not over individual arguments but over values
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T ∩P = {p2}

a b

c d

(d) CPAF (x ∈ {a,b},y ∈ {c,d})

Figure 3. A VAF with two audiences p1 (v1 � v2) and p2 (v2 � v1) translated to a CPAF.

associated with arguments. Which values are preferred depends on the audience. A set
of arguments may then be accepted in view of one audience, but not in view of another.

More formally, a VAF is a quintuple (A,R,V,val,P) such that (A,R) is an AF, V is
a set of values, val : A → V is a mapping from arguments to values, and P is a finite
set of audiences. Each audience p ∈ P is associated with a preference relation �p over
values, and FP = (A,R,V,val,�p) is called an audience-specific VAF (AVAF). The ex-
tensions of VAFs are determined for each audience separately. Specifically, an argument
x successfully attacks y in Fp iff (x,y) ∈ R and val(y) ��p val(x). Conflict-freeness and
admissibility are then defined over these successful attacks. In essence, this boils down
to using Reduction 1 on Fp, i.e., deleting attacks that contradict the preference ordering.

For example, Figure 3a shows a VAF with two values v1 and v2. Let us say there
are two audiences in this VAF, p1 with the preference v1 � v2 and p2 with v2 � v1. The
AFs associated with p1 and p2, i.e., the AFs containing only the successful attacks in the
AVAFs of p1 and p2, are depicted in Figures 3b and 3c.

The reasoning tasks typically associated with VAFs are those of subjective and ob-
jective acceptance. Let F = (A,R,V,val,P) be a VAF and x ∈ A. Then x is subjectively
accepted in F iff there is p ∈ P such that x is in a preferred extension of the AVAF
(A,R,V,val,�p). Similarly, x is objectively accepted in F iff for all p ∈ P we have that x
is in all preferred extensions of the AVAF (A,R,V,val,�p).

We now provide a translation where an arbitrary VAF F = (A,R,V,val,P) is trans-
formed into a CPAF Tr(F) = (A′,R′,cond) such that the subjectively and objectively
accepted arguments in F correspond to the credulously and skeptically preferred ar-
guments3 in Tr(F) respectively. Firstly, each audience in the initial VAF becomes an
argument in our CPAF, i.e., A′ = A ∪ P. Secondly, the attacks of the VAF are pre-
served and symmetric attacks are added between all audience-arguments, i.e., R′ =
R∪{(p, p′),(p′, p) | p, p′ ∈ P}. Lastly, the preferences in our CPAF correspond to the
preferences of each audience and are controlled by the newly introduced audience-
arguments, i.e., cond is defined such that for S ⊆ A′ we have a �S b iff there is p ∈ P with
S∩P = {p} and val(a)�p val(b). See Figure 3 for an example of this transformation.

Observe that the successful attacks in some AVAF Fp = (A,R,V,val,�p) are also
attacks in R

S∪{p}
1 (Tr(F)), where S ⊆ A, and vice versa. Thus, the admissible sets in the

initial VAF F stand in direct relationship to the admissible sets in our constructed CPAF.

Lemma 8. Let F = (A,R,V,val,P) be a VAF, S ⊆ A, and p ∈ P. Then S is admissible in
the AVAF Fp = (A,R,V,val,�p) iff S∪{p} ∈ adm1

cp(Tr(F)).

3As for regular AFs, we say that an argument x is credulously (resp. skeptically) preferred in a CPAF w.r.t.
Reduction i iff x ∈ S for some (resp. for all) S ∈ prf i

cp(F).
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Note that all audience-arguments in Tr(F) attack each other, i.e., an admissible set in
Tr(F) contains at most one audience-argument. In fact, each audience-argument defends
itself, and thus every preferred extension in Tr(F) must contain exactly one audience-
argument p∈P if we appeal to the prf 1

cp-semantics. Therefore, the direct correspondence
between admissible sets observed in Lemma 8 carries over to preferred extensions.

Theorem 9. Given a VAF F = (A,R,V,val,P), x ∈ A is subjectively (resp. objectively)
accepted in F iff x is credulously (resp. skeptically) preferred in Tr(F) w.r.t. Reduction 1.

Our translation highlights the versatility of our formalism. On the one hand, con-
ditional preferences can be tied to dedicated arguments (in this case the audience-
arguments). On the other hand, these dedicated arguments themselves may be part of the
argumentation process. Note that we used CPAFs with Reduction 1 since preferences in
VAFs are usually handled by deleting attacks. However, our approach also allows for the
use of other preference-reductions in VAF-settings.

5.2. Relationship to Extended Argumentation Frameworks

EAFs allow arguments to express preferences between other arguments by permitting
attacks themselves to be attacked. While EAFs are related to our CPAFs conceptually,
we will see that there are crucial differences in how exactly preferences are handled.

Formally, an EAF is a triple (A,R,D) such that (A,R) is an AF, D ⊆ A×R, and if
(a,(b,c)),(a′,(c,b)) ∈ D then (a,a′),(a′,a) ∈ R. The definition of admissibility in EAFs
is quite involved and requires so-called reinstatement sets. Essentially, a set of arguments
S is admissible in an EAF if all arguments x ∈ S are defended from other arguments
y∈ A\S, and if all attacks (z,y) used for defending x are in turn defended from attacks on
attacks (w,(z,y)) and thus reinstated. It is possible that a chain of such reinstatements is
required which is formalized with the aforementioned reinstatement sets. Formally defin-
ing these concepts is not necessary for our purposes, but the corresponding definitions
can be found in [12]. Observe that the notion of attacks on attacks in EAFs is similar to
Reduction 1 in the sense that attacks between arguments can be unsuccessful, but they
are never reversed. Therefore, we will compare EAFs to CPAFs with Reduction 1.

Recall our Sherlock Holmes example from the introduction (Example 1) that we
modeled as a CPAF (Example 3). Let us first consider a slimmed-down variation without
an argument stating that Person 1 has an alibi. We can model this as an EAF with three
arguments c1 (Person 1 is the culprit), c2 (Person 2 is the culprit), and m1 (Person 1 has a
motive) in which m1 attacks the attack from c2 to c1. The corresponding EAF is depicted
in Figure 4b. Compare this to the formalization via a CPAF in Figure 4a. Note that {c1}
is admissible in the EAF but {c2} is not since (c2,c1) is used to defend against (c1,c2)
but not reinstated against (m1,(c2,c1)). In the CPAF, {c2} is admissible (but not stable).

This simple example highlights a fundamental difference in how preferences are
viewed in the two formalisms. In CPAFs, preferences are relevant exactly if the argument
that expresses them (e.g. m1) are part of the set under inspection. In EAFs, preference
are relevant even if the argument that expresses them is not accepted. Modgil [12] states
that admissibility for EAFs was defined in this way because it was deemed important
to satisfy Dung’s Fundamental Lemma [15], which says that if S is admissible and x is
acceptable w.r.t. S then S∪{x} is admissible. This Fundamental Lemma is not satisfied in
our CPAFs. However, in our opinion, this is no drawback but rather a necessary property
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(c) Conflicting preferences

c1 c2
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a1

m1,a1

(d) Combining preferences

Figure 4. The Sherlock Holmes example modeled via EAFs and a simple CPAF.

of formalisms that can deal with conditional preferences in a flexible way. For example,
in Figure 4a it is clear that {c2} should be admissible since, when considering only
admissibility, we are not forced to include the unattacked m1, i.e., we do not have to
accept that Person 1 has a motive. The inclusion of unattacked arguments in CPAFs is
handled via more restrictive approaches such as stable or preferred semantics, as usual.

Another difference between CPAFs and EAFs becomes clear when considering the
entire Sherlock Holmes example. Recall our formalization for CPAFs (cf. Figure 2). In
order to express our preference in case Person 1 has an alibi we extend our EAF from
Figure 4b by adding an attack from a1 to the attack (c1,c2), as shown in Figure 4c. Note
that a1 and m1 must attack each other in this EAF by definition since they express con-
flicting preferences. But this formalization is unsatisfactory since it should be possible
for Person 1 to have both a motive and an alibi. The fact that the preference of one ar-
gument may change in view of another argument must be modeled indirectly in EAFs.
For example, we can introduce an additional argument to express that Person 1 has both
a motive and an alibi. This is depicted in Figure 4d. Thus, we can see that CPAFs allow
for more flexibility when combining preferences associated with several arguments.

To summarize, CPAFs are designed to express conditional preferences in abstract ar-
gumentation, whereas preferences in EAFs are unconditional in the sense that they may
always influence the argumentation process, even if the argument associated with the
preference is not accepted. Moreover, since our CPAFs can make use of all four prefer-
ence reductions, they allow for more flexibility in how preferences are handled compared
to EAFs, in which unsuccessful attacks are always deleted. However, the two formalisms
are similar in that arguments are capable of reasoning about the argumentation process
itself, i.e., they constitute a form of metalevel argumentation [17].

6. Conclusion

In this paper, we introduce Conditional Preference-based AFs (CPAFs) which generalize
PAFs and allow to flexibly handle conditional preferences in abstract argumentation. We
show that the satisfaction of I-maximality can depend on how maximization is dealt with
(in case of preferred semantics) and on which preference-reduction is chosen (in case
of stable semantics). We conduct a principle-based analysis for CPAFs and show that
complete and stable semantics satisfy the same principles as on PAFs in most cases while
grounded semantics no longer satisfy the majority of principles. Moreover, we compare
CPAFs to related formalisms: on the one hand we show that CPAFs can be used to capture
VAFs via a straightforward translation; on the other hand, we demonstrate that CPAFs
exhibit significant differences to EAFs in terms of how preferences are handled.
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For future work, we plan to introduce an alternative grounded semantics which en-
forces unique extensions, examine the computational complexity of CPAFs, and consider
restricted (e.g. transitive or linear) preference orderings. Moreover, we intend to investi-
gate the relationship between CPAFs and existing approaches in structured argumenta-
tion [8] in detail. Related to this last point, it may also be interesting to see whether con-
ditional preferences can be adapted to other formalisms such as bipolar argumentation
frameworks [18], in which both attack and support relations are present. As for prefer-
ence representation, it could be investigated how existing formalisms designed to handle
conditional preferences such as CP-nets [19] can be used in the context of CPAFs.
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