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Abstract. In this paper, we give an overview of several recent proposals for non-
admissible non-naive semantics for abstract argumentation frameworks. We high-
light the similarities and differences between weak admissibility-based approaches
and undecidedness-blocking approaches using examples and principles as well as
a study of their computational complexity. We introduce a kind of strengthened
undecidedness-blocking semantics combining some of the distinctive behaviours of
weak admissibility-based semantics with the lower complexity of undecidedness-
blocking approaches. We call it loop semantics, because in our new semantics, an
argument can only be undecided if it is part of a loop of undecided arguments. Our
paper shows how a principle-based approach and a complexity-based approach can
be used in tandem to further develop the foundations of formal argumentation.
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1. Introduction

Dung’s admissibility-based (AB) semantics have been challenged in various ways, lead-
ing to a variety of new semantics [8,9,11,5]. These have been compared and classified
on the basis of general principles as well as their computational complexity, such that
the best semantics can be chosen for an application. Two desirable properties stand out.
First, directionality together with SCC recursion lead to a kind of causal interpretation of
attack [6] and allow for compositional computation [4]. Second, low computational com-
plexity is not only advantageous for automated reasoning by artificial agents, but from
the perspective of cognitive science, it also increases explainability by and for humans.

The best known non-admissible semantics are naive-based (NB) semantics. Under
an NB semantics, each extension is a maximal conflict-free set of arguments. The most
prominent example of an NB semantics is the CF2 semantics [3]. To illustrate the core
idea, consider the framework (a) from Figure 1. In AB semantics, the only extension
is the empty set, whereas under the CF2 semantics, b is accepted. To get the desirable
properties of directionality and SCC-recursiveness, CF2 is defined in terms of a local
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Figure 1. Five argumentation frameworks.

function that computes the maximal conflict-free subsets for each strongly connected
component (or SCC) of a framework.

More recently, two new types of non-admissible semantics were introduced. They
were motivated by the behaviour of AB semantics in examples such as framework (b)
in Figure 1. Here, the set {b} is not admissible since it does not defend itself from its
attacker a3. Nevertheless, one can argue that b is acceptable since a3, being part of an
odd-length cycle of arguments that are never accepted, does not pose an actual threat.
Capturing this intuition thus requires a different notion of admissibility. The first type
takes a reduction-based approach and is called weak admissibility (WA) [5]. The second
type takes a labelling-based approach to define weaker acceptance criteria, called “un-
decidedness blocking” (UB) [11], which is analogous to “ambiguity blocking” and dis-
cussed in defeasible logics [15]. In contrast to the AB labelling approach, an undecided
argument in UB may attack arguments that are labelled in. Further semantics that belong
to the UB approach are the qualified and semi-qualified semantics [8]. These are defined
by adapting the SCC recursive algorithm but keeping the base function admissible. The
WA, UB and (semi-)qualified semantics all come in a grounded, complete and preferred
flavour. These developments raise two questions: (1) How do these approaches compare
in terms of examples, principles, and computational complexity? And (2) Which new
kinds of semantics can be explored based on this overview?

Concerning the first question, the semantics of WA and UB approaches are remark-
ably similar for most benchmark examples. For example, they give the same results for
the frameworks (b) and (c) from Figure 1. Moreover, both WA and UB preferred seman-
tics are SCC-recursive and directional. The main distinction is in their computational
complexity. As we show in this paper, the UB approach has a significantly lower compu-
tational complexity than the WA approach, for which we show PSPACE-completeness
also for recently introduced variants (thus complementing the results in [14]).

The second question is how our analysis can be used to define new semantics. In
particular, we are interested in approaches that combine the behaviour of WA semantics
with the lower complexity of UB approaches. We define a new kind of semantics called
loop semantics that extends UB with a new condition that ensures that arguments can
only be undecided if they are part of a loop of undecided arguments. In this sense, the role
of undecided arguments is to detect loops. We also define a notion of UB-admissibility,
a concept that was missing thus far in the definition of UB semantics.

In this paper, we only consider non-admissible and non-naive based semantics. We
do not consider the SCF2 semantics introduced by Cramer and van der Torre [7]. We
focus our complexity analysis on complete and preferred variants of various semantics.
Due to space limitations, we do not repeat all the variants of WA semantics described by
Dauphin et al. [9], but we do include their semantics in the complexity analysis. For the
same reason, for some of the proofs, we are only able to include proof sketches.
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The layout of this paper is as follows. We first provide a brief overview of semantics
based on weakly admissible and undecidedness blocking in Sections 2 and 3. We then
present our new loop semantics in Section 4. All these semantics are illustrated using ex-
amples and principles. In Section 6 we provide a complexity overview of fifteen different
kinds of non-admissible, non-naive semantics. We conclude in Section 7.

2. Weakly Admissible Semantics

An argumentation framework (abbreviated as AF) is a pair F = (A,→) where A is a set
of arguments and →⊆ A×A the attack relation. We assume in this paper that A is finite.
A set E ⊆ A is conflict-free if there are no x,y ∈ E such that x → y. A set E ⊆ A defends
an argument x ∈ A if for all y ∈ A such that y → x, there is a z ∈ E such that z → y [12].

We focus in this paper on new variants of the admissible, complete and preferred
semantics. The classical variants, denoted respectively by ad, co and pr, are defined as
follows [12]. Let F = (A,→) be an AF. An ad extension of F is a set E ⊆ A that is
conflict-free and defends all its members. A co extension is an admissible extension that
contains all arguments it defends. A pr extension is a maximal admissible extensions. In
what follows we use, given a semantics σ , σ(F) to denote the set of σ extensions of F .

Baumann, Brewka and Ulbricht [5] defined weak admissibility based on the principle
that, given an AF F = (A,→) and set E ⊆ A, an argument needs to be defended by E only
from arguments that are ‘serious’ in the sense that they appear in a weakly admissible set
of the E-reduct of F . The E-reduct of F is denoted by FE and defined by FE = (E∗,→
∩(E∗×E∗)) where E∗ = A\ (E ∪E+) and E+ = {y ∈ A|∃x ∈ E,x → y}. Let F = (A,→)
be an AF. A set E ⊆ A is weakly admissible (i.e., E ∈ adw(F)) if and only if E is conflict
free and for every attacker y of E we have y 	∈ ∪adw(FE). To define weakly complete
and preferred semantics we first define weak defence.

Definition 1 [5] Let F = (A,→) be an AF. A set E ⊆ A weakly defends a set X ⊆ A
whenever, for every attacker y of X, either E attacks y, or it is the case that y 	∈ ∪adw(FE),
y 	∈ E, and X ⊆ X ′ ∈ adw(F).

Definition 2 [5] Let F = (A,→) be an AF and E ⊆ A. The weakly complete and weakly
preferred semantics cow and prw are defined as follows: E ∈ cow(F) iff E ∈ adw(F) and
for every X such that E ⊆ X that is w-defended by E, we have X ⊆ E; and E ∈ prw(F)
iff E is ⊆-maximal in adw(F).

Dauphin et al. [9] defined several variants of the weak admissibility based semantics.
We omit the definitions due to space constraints but we include the complete variants
denoted cow∀, co∃ and co∀ in Table 1 as well as our complexity analysis in Section 6.

We conclude this section by pointing out a notable difference between the weakly
complete and preferred semantics with respect to the directionality principle [2]. Given
an AF F = (A,→) and a set U ⊆ A, we use F↓U to denote the AF (U,→∩U ×U) and,
given a set X ⊆ 2A, we use X↓U to denote the set {E∩U |E ∈ X}. A semantics σ is direc-
tional if, for every AF F = (A,→) and every unattacked set U of F (i.e., any set U ⊆ A
such that x ∈ U and y → x implies that y ∈ U) we have that E ∈ σ(F)↓U = σ(F↓U ).
The preferred and complete semantics both satisfy directionality [2]. However, while the
weakly preferred semantics also satisfies directionality [5], the weakly complete seman-
tics does not [8].
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Table 1. Various semantics applied to the AFs from Figure 1.

Semantics (a) (b) (c) (d) (e)

co [12] /0 /0 /0 /0, {b,d} /0, {a,d}, {b,d}
pr [12] /0 /0 /0 {b,d} {a,d}, {b,d}
adw [5] /0,{b} /0, {b} /0, {a1}, {b} /0, {d}, {b}, {b,d} /0, {a}, {b}, {a,d}, {b,d}, {d}
cow [5] {b} {b} {a1}, {b} {b,d} {a,d}, {b,d}, {d}
prw [5] {b} {b} {a1}, {b} {b,d} {a,d}, {b,d}
cow∀ [9] {b} {b} /0,{a1},{b} {b,d} {a,d}, {b,d}, {d}
co∃ [9] {b} {b} {a1},{b} {b,d} {a,d}, {b,d}, {d}
co∀ [9] {b} {b} /0,{a1},{b} {b,d} {a,d}, {b,d}, {d}

q-co {b} {b} /0 /0, {b,d} {a,d}, {b,d}, {c}
q-pr {b} {b} /0 {b,d} {a,d}, {b,d}
sq-co {b} {b} /0 /0, {b,d} /0, {a,d}, {b,d}
sq-pr {b} {b} /0 {b,d} {a,d}, {b,d}
ub-co /0,{c},{b} /0, {b} /0, {a1},{b} /0, {b,d}, {c} /0, {a,d}, {b,d}, {c}, {d}
ub-pr {c},{b} {b} {a1},{b} {b,d}, {c} {a,d}, {b,d}, {c}
ub2-co {b} {b} /0, {a1},{b} /0, {b,d}, {c} {a,d}, {b,d}, {c}
ub2-pr {b} {b} {a1},{b} {b,d}, {c} {a,d}, {b,d}
ub*-co {b} {b} /0, {a1},{b} /0, {b,d} {a,d}, {b,d}, {c}
ub*-pr {b} {b} {a1},{b} {b,d} {a,d}, {b,d}, {c}
ub2*-co {b} {b} /0, {a1},{b} /0, {b,d} {a,d}, {b,d}, {c}
ub2*-pr {b} {b} {a1},{b} {b,d} {a,d}, {b,d}

3. Existing Semantics Based On Undecidedness Blocking

We now review a number of recently proposed semantics that are based, like weak ad-
missibility, on weaker acceptance criteria. They are defined in terms of labellings. A la-
belling L of an AF F is a function that maps each argument of F to a label I (in, or
accepted), O (out, or rejected) or U (undecided). We use L(F) to denote the set of all
labellings of F . A labelling-based semantics σ maps each AF F to a set Lσ (F)⊆L(F).
A labelling L corresponds to the extension containing all arguments labelled I by L.

The semantics we review in this section are based on an “undecidedness blocking”
mechanism. While in an admissible labelling, an argument is labelled I only if all its
attackers are labelled O, these semantics allow I-labelled arguments to be attacked by U-
labelled arguments. The semantics we discuss differ in the conditions under which this is
allowed. As we will see, these semantics are, for most benchmark examples, remarkably
similar to the weak admissibility based semantics from the previous section. We start
with the qualified and semi-qualified schemes due to Dauphin et al. [8]. Both schemes
rely on the decomposition of an AF into its SCCs (strongly connected components). We
denote the set of the SCCs of F by SCCS(F). Given an AF F = (A,→), an outparent of
an SCC S of F is an argument x ∈ A \ S such that x → y for some y ∈ S. We denote by
OPF(S) the set of the outparents of S. Given a labelling L ∈L(F), we denote by L↓S the
restriction of L to S and, given a set X ⊆ L(F), denote by X↓S the set {L↓S | L ∈ X}.

Qualified Semantics The qualified scheme is based on the SCC decomposability prin-
ciple, which states that the set of the labellings of an AF F is decomposable into the
product of the labellings of each SCC S as a function of the labels of the outparents of S.
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Definition 3 An AF with input is a tuple (F,Ain,→in,Lin) where: F = (A,→) is an AF,
Ain is a set of input arguments such that A∩Ain = /0, →in⊆ Ain ×A is an input attack
relation, and Lin ∈ L(Ain) is an input labelling. A local function f assigns to every AF
with the input (F,Ain,→in,Lin) a set f (F,Ain,→in,Lin)⊆L(F). We say that f represents
the semantics σ if for every AF F, L ∈ Lσ (F) if and only if ∀S ∈ SCCS(F), L↓S ∈
f (F↓S,OPF(S),→∩OPF(S)×S,L↓OPF (S)). A semantics σ is SCC decomposable if it is
represented by some local function.

Examples of SCC decomposable semantics are the complete and preferred seman-
tics. We denote by fco and fpr the local functions representing these semantics. Their
definitions can be found in [1]. The qualified variant of an SCC decomposable seman-
tics σ (denoted as q-σ ) is based on applying the local function representing σ with one
change: when determining the labellings of an SCC S, the label U for an outparent x of S
is treated like the label O. Thus, if x is attacked by an U-labelled argument y, and x and y
belong to different SCCs, then the undecidedness of x does not propagate to y.

Definition 4 [8] Let σ be an SCC-decomposable semantics represented by the local
function fσ . We define the qualified σ (q-σ ) semantics as the semantics represented by
the local function fq-σ defined by fq-σ ((A,→),Ain,→in,Lin) = fσ ((A,→),Ain,→in,L′

in),
where L′

in is defined by L′
in(x) = I if Lin(x) = I, and L′

in(x) = O if Lin(x) = O or Lin(x) = U.

Table 1 shows the q-co and q-pr extensions of the AFs from Figure 1. Here, we see
that the q-pr extensions coincide with the weakly preferred extensions of AFs (a), (d) and
(e), and that the q-co extensions coincide with the weakly complete extensions of AF (a).
AF (e) demonstrates a crucial difference compared to weak admissibility. Here, {c} is
not weakly admissible because this set does not defend itself from a and b, both of which
appear in weakly admissible sets of the {c}-reduct. However, under q-co semantics, the
undecidedness of a and b does not propagate to c, as witnessed by the q-co labelling
(a = U,b = U,c = I,d = O) with corresponding extension {c}.

Semi-qualified Semantics In the semi-qualified scheme, the label U of an outparent is
treated like the label O, but only if there is no other labelling in which that outparent is
labelled I. This is formalised using the notion of weak SCC decomposability.

Definition 5 An AF with total input is a tuple (F,Ain,→in,Lin,Sin) where F,Ain,→in and
Lin are defined as in Definition 3, Sin ⊆ L(Ain), and Lin ∈ Sin. We call Sin the total input
labellings and Lin ∈ Sin the actual input labelling. A weak local function g assigns to every
AF with total input (F,Ain,→in,Lin,Sin) a set g(F,Ain,→in,Lin,Sin) ⊆ L(F). A weak
local function g represents a semantics σ whenever, for every AF F, L ∈ Lσ (F) if and
only if ∀S∈ SCCS(F), L↓S ∈ g(F↓S,OPF(S),→∩OPF(S)×S,L↓OPF (S),Lσ (F)↓OPF (S)).
A semantics σ is weakly SCC-decomposable if some weak local function represents σ .

Definition 6 [8] Let σ be an SCC-decomposable semantics. Let fσ denote the local
function that represents σ . We define the semi-qualified σ (or sq-σ ) semantics as the
semantics represented by the weak local function gsq-σ defined by gsq-σ ((A,→),Ain,→in
,Lin,Sin) = gσ ((A,→),Ain,→in,L′

in), where L′
inis defined by: L′

in(x) = I if Lin(x) = I;
L′

in(x)= O if Lin(x)= O; L′
in(x)= O if Lin(x)= U and there is no L∈ Sin such that L(x)= I;

and L′
in(x) = U if Lin(x) = U and there is some L ∈ Sin such that L(x) = I.
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Table 1 shows the sq-co and sq-pr extensions of the AFs shown in Figure 1. Note
that the AF (e) no longer has a sq-co labelling where c is accepted. The sq-co and
sq-pr semantics are different from the weak admissibility-based semantics in that the AF
(c) only has an empty sq-co and sq-pr extension. This is because the (semi-)qualified
scheme applies its base semantics unchanged to single-SCC AFs. The UB semantics that
we present next addresses this problem. Before moving on we note that all variants of
the (semi-)qualified semantics considered here satisfy directionality [8].

UB and UB2 Semantics Dondio and Longo [11] proposed a semantics based on the
following definition. Note that this definition equals that of a standard complete labelling
if we add as a third condition that an argument is labelled I only if all its attackers are
labelled O. This semantics can thus be understood as a variant of the complete semantics
where I-labelled arguments may also be attacked by U-labelled arguments. We refer to
this semantics as UB semantics and define a complete and preferred variant.

Definition 7 Let F = (A,→) be an AF. A ub-co labelling of F is a labelling L such that
(1) L(x) = O iff for some y ∈ A s.t. y → x, L(y) = I, and (2) if L(x) = U then for some
y ∈ A s.t. y → x, L(y) = U. A ub-pr labelling is a ub-co labelling that is maximal with
respect to I-labelled arguments.

Looking at Table 1, we see that the weakly preferred and ub-pr extensions of the
single-SCC AF (c) coincide. One way in which UB semantics diverges from weak ad-
missibility is demonstrated by AF (a). Here, we have not only extension {b} but also {c}
and /0. This behaviour is due to the fact that, under UB semantics, the undecidedness of
a may be blocked not only by b, but also by c or not at all. To avoid this behaviour, and
to enforce the rule that undecidedness is blocked as early as possible, Dondio and Lungo
propose to combine UB semantics with the SCC-recursive scheme [3]. These semantics,
which we refer to as UB2, are directional by virtue of being SCC-recursive.

Definition 8 Let F = (A,→) be an AF. The ub2-co semantics is defined by L ∈
Lub2-co(F) iff the following conditions hold: If |SCCS(F)| = 1, then L ∈ Lub-co(F); If
|SCCS(F)|> 1, then for all S ∈ SCCS(F): (1) L↓(S\DF (S,L)) ∈Lub2-co(F↓(S\DF (S,L))), and
(2) ∀x ∈ DF(S,L),L(x) = O, where DF(S,L) = {x ∈ S|∃y ∈ A \ S,y → x,L(y) = I} de-
notes the set of arguments in S that are attacked by an accepted argument not in S. The
ub2-pr is defined similarly by replacing co with pr in this definition.

Indeed, looking again at Table 1, the ub2-pr semantics coincides with the weakly
preferred semantics in all of the examples we consider except for AF (d), where we see
similar behaviour to that under ub-pr semantics: the undecidedness of a may be blocked
not only by b, but also by c or not at all. The reason is that AF (d) consists of a single
SCC, which leads to the same extensions under UB and UB2 semantics.

4. A New Semantics Based on Undecidedness Blocking

We now propose a new variant of UB semantics called UB*. Our aim is to ensure that
only arguments that are part of a loop can be undecided. While UB semantics requires
that undecided arguments are attacked by an undecided argument, UB* semantics require
that they also attack an undecided argument.

W. Dvořák et al. / Non-Admissibility in Abstract Argumentation 133



Definition 9 Let F = (A,→) be an AF. A ub*-co labelling of F is a ub-co labelling of
F such that, for all x ∈ A, if L(x) = U, then L(y) = U for some y ∈ A s.t. x → y. A ub*-pr
labelling is a ub*-co labelling that is maximal with respect to I-labelled arguments.

Looking again at Table 1, we see that ub*-co and ub*-pr semantics of the AF (d)
no longer include {c} as an extension. Unfortunately, this scheme is not yet sufficient
to ensure that only arguments that are part of a loop can be undecided. It also allows
arguments to be labelled U if they lie on a directed path between two cycles. For instance,
the AF ({a,b,c},{(a,a),(a,b),(b,c),(c,c)}) has a ub-co labelling where b is labelled U.
Another problem is that the ub*-pr semantics is not directional. To see why, let F be the
AF (e) from Figure 1. This AF has a ub*-pr labelling where a and b are U, while F↓{a,b}
does not have a ub*-pr labelling where a and b are U. To ensure that an argument is unde-
cided only if it is part of a cycle, we combine the UB* semantics with the SCC-recursive
scheme. We refer to them as loop semantics. The complete and preferred loop semantics,
denoted ub2*-co and ub2*-pr, are defined as in Definition 8 but replacing Lub-co(F)
and Lub-pr(F) in condition 1 with Lub*-co(F) and Lub*-co(F). By virtue of being SCC-
recursive, both of these semantics are directional. Furthermore, arguments are labelled U

only if they are part of a loop. For example, the AF ({a,b,c},{(a,a),(a,b),(b,c),(c,c)})
does not posses a ub*-co labelling in which b is labelled U.

5. UB-Admissibility

While Dondio et al. [11] define complete and preferred variants of the UB semantics, as
well as a grounded variant (defined as an U-maximal ub-co labelling) they do not define
the concept UB admissibility. Note that the notion of “weak admissibility” defined in [10]
is in fact a kind of UB completeness, and was renamed as such in [11]. Here we propose
a notion of admissibility corresponding to the UB semantics. Having such a notion is
useful because, as in Dung’s semantics, admissibility leads to local explanations as to
why an argument is acceptable in AB semantics. That is, to check whether an argument
belongs to a complete extension, we do not have to compute complete extension in their
entirety: all we need to do is to find an admissible set containing the argument.

Standard admissibility is defined in terms of conflict-freeness and defence. In WA
semantics, however, it is the other way around, in the sense that WA defence is defined
in terms of weak admissibility. In both AB and WA approaches, complete extensions are
defined in terms of (regular or weak) admissibility. In the definition of UB admissibility
we introduce here, it is the other way around. We define UB admissibility in terms of
complete UB extensions. The following definition defines UB-admissibility in terms of
the UB-preferred semantics. Note that the same definition can also be applied in combi-
nation with the other semantics we have defined.

Definition 10 Let F = (A,→) be an AF. An UB-admissible set of F is a set E ⊆ A such
that for some UB-preferred set E ′ of F we have that (1) E ⊆ E ′; and (2) for all x ∈ A
such that x → E and E ′ → x, we have E → x.

To illustrate, consider the AF (e) from Figure 1, which has the UB-admissible exten-
sions /0, {a}, {b}, {a,d}, {b,d} and {c}, where only the latter three are UB-preferred.
We leave a more detailed study of this notion of admissibility for future work.

W. Dvořák et al. / Non-Admissibility in Abstract Argumentation134



Table 2. Complexity of weak-admissible based semantics compared to classical semantics (“c” is used as a
shorthand for “complete”)

σ Credσ Sceptσ Verσ

co NP-c P-c in P

pr NP-c ΠP
2 -c coNP-c

adw PSPACE-c trivial PSPACE-c

cow PSPACE-c PSPACE-c PSPACE-c

prw PSPACE-c PSPACE-c PSPACE-c

cow∀ PSPACE-c PSPACE-c PSPACE-c

co∃ PSPACE-c PSPACE-c PSPACE-c

co∀ PSPACE-c PSPACE-c PSPACE-c

q-co NP-c P-c in P

q-pr NP-c ΠP
2 -c coNP-c

σ Credσ Sceptσ Verσ

sq-co ΔP
2 -c in ΔP

2 in ΔP
2

sq-pr ΔP
2 -c ΠP

2 -c in ΔP
2

ub-co in P in P in P

ub-pr in P coNP-c in P

ub2-co NP-c in P in P

ub2-pr NP-c coNP-c in P

ub*-co NP-c in P in P

ub*-pr NP-c in ΠP
2 in coNP

ub2*-co NP-c in P in P

ub2*-pr NP-c in ΠP
2 in coNP

6. Complexity Results

We start by briefly recalling some complexity classes. We assume that the reader is fa-
miliar with the basic concepts of computational complexity theory (see e.g. [13]) as
well as the standard classes P, NP and coNP. In addition, we will consider the classes:
ΔP

2 = PNP of problems that can be solved in deterministic polynomial time when the
algorithm has access to an NP oracle; ΠP

2 = coNPNP of problems that can be solved in
non-deterministic polynomial time when the algorithm has access to an NP oracle; and
PSPACE of problems that can be solved using only the polynomial space of memory and
exponential time. We have P ⊆ NP/coNP ⊆ΔP

2 ⊆ ΠP
2 ⊆ PSPACE. The standard deci-

sion problems studied for an AF F and a semantics σ are: (1) Credulous/sceptical accep-
tance Credσ/Sceptσ (does a given argument appear in at least one extension?); and (2)
Verification Verσ : (does a given extension appear in σ(F)?) In what follows we study the
complexity of these problems with regards to the semantics we consider (see Table 2).

Completeness notions based on BBU weak admissibility. To the best of our knowl-
edge, the only existing complexity results for the semantics under consideration are
those of [14] which show that the semantics of Baumann, Brewka and Ulbricht [5] are
PSPACE-complete. By carefully inspecting the reductions in [14], we obtain that the dif-
ferent notions of weakly complete semantics of Dauphin et al. [9] are also PSPACE-hard,
which is not surprising since these semantics are defined on top of weak admissibility.
Moreover, it is easy to verify that the different notions of defence in the semantics of
Dauphin et al. can be tested within PSPACE and thus PSPACE-completeness follows.

Qualified Semantics. We now turn to the complexity of qualified semantics, which are
similar to the original semantics and thus it is not surprising that the complexity is un-
changed. That is, we can verify a q-co labelling in polynomial time by processing the
SCCs in topological order and, for each argument, check whether its label is valid w.r.t.
its neighbours (differentiating between outparents and non-outparents). To verify a q-pr

labelling, we also verify maximality, which can be done in coNP by the standard al-
gorithm. The upper bounds for the reasoning problems are then arrived at by standard
guessing and checking algorithms, taking into account that the unique minimal q-co can
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be computed via fixed-point iteration. The hardness results are obtained due to (a) the
hardness results for co and pr semantics hold for strongly connected graphs and (b) on
strongly connected graphs, qualified semantics coincide with the base semantics.1

Proposition 1 The complexity results for q-co and q-pr semantics in Table 2 hold.

Semi-qualified semantics. For semi-qualified semantics, verifying a labelling gets
harder. In order to test whether a labelling is sq-co, it is not sufficient to validate the labels
of the arguments with respect to the labels of the other arguments in the same labelling
scheme, but we have to consider also the other labellings. However, once we know which
of the arguments in the earlier SCCs are credulously accepted (and thus which are also
labelled O at least once), we can verify the label of an argument in polynomial time.

That is, for all reasoning tasks, we first process the SCCs in a topological ordering,
and for each SCC, we decide which of the arguments are credulously accepted. That is,
for each argument a, we nondeterministically guess a labelling that labels a as I and la-
bels all the arguments that are not in S or preceding SCCs as U. Such a labelling can then
be verified in polynomial time, given that we already know which of the arguments in
the preceding SCCs are credulously accepted. As we have to do this for each of the argu-
ments, this part takes a linear number of NP oracle calls, i.e. we have a ΔP

2 algorithm for
credulous acceptance. Given that we have computed all credulously accepted arguments,
for sq-co, we can then run a polynomial time algorithm to verify a given labelling, while
for sq-pr, we have to perform an additional maximality check which just requires an
additional NP-oracle call. In total, this gives a ΔP

2 algorithm for the verification problem.
The standard guessing and checking algorithm for sceptical acceptance now provides
an ΠP

2 algorithm for sq-pr while for sq-co, we can run a polynomial time fixed-point
iteration to compute the unique minimal labelling, which results in a ΔP

2 algorithm.
The hardness of Sceptsq-pr holds because the hardness results for pr semantics hold

even for single-SCC AFs. Next, consider the ΔP
2 -hardness of Credsq-pr = Credsq-co. This

is by a reduction from the ΔP
2 -complete problem of deciding whether for a propositional

formula in CNF ϕ given by a set of clauses C over atoms x1, . . . ,xn, the lexicographical
maximum satisfying assignment of φ sets xn to true. The reduction builds n SCCs, each
corresponding to an adaptation of the standard translation from SAT to AFs, but which
are in a linear order. The AF Gϕ = (A,R) is constructed as follows: A = {x j

i | 1 ≤ i ≤ j ≤
n}∪{x̄ j

i | 1 ≤ i, j ≤ n, i 	= j} ∪{c j | 1 ≤ j ≤ n,c ∈C}∪{t j,b j | 1 ≤ j ≤ n}; and

R ={(x j
i , x̄

j
i ),(x̄

j
i ,x

j
i ) | x j

i ∈ A}∪{(x j
i ,c

j) | x j
i ∈ A,xi ∈ c ∈C} ∪

{(x̄ j
i ,c

j) | x̄ j
i ∈ A,¬xi ∈ c ∈C} ∪{(c j, t j),(t j,b j),(b j,b j) | 1 ≤ j ≤ n}∪

{(b j,x j
i ) | x j

i ∈ A}∪{(b j, x̄ j
i ) | x̄ j

i ∈ A}∪
{(xi

i,c
j) | xi ∈ c ∈C,1 ≤ i ≤ j ≤ n)}∪{(xi

i, x̄
j
i ) | 1 ≤ i < j ≤ n}.

Notice that the upper index of the arguments denote the SCC they belong to, and only
the last line in the definition of the attack relation introduces attacks between SCCs.

1Note that these hardness proofs construct AFs with an empty grounded extension. Then, one can add a self-
attacking argument g that symmetrically attacks all other arguments, without changing the complete extensions.
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ȳ3
1 ȳ3
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Figure 2. Illustration of the reduction Gϕ for the formula ϕ with clauses {{y1,¬y2,y3},{¬y1,y2,¬y3)}. At-
tacks between different SCCs are highlighted as dashed lines

The intuition is as follows. In the first SCC, we test whether some assignment sets
x1 to true. If so, we fix this assignment by adding x1

1 to the extension, which then attacks
all arguments x̄ j

1. If not, all arguments in the first SCC are labelled U, and we have to
pick x̄ j

1 (we may assume that C contains clauses (xi,¬xi) in the latter SCCs), we proceed
like that, and in the j-th SCC, we check whether some assignment sets x j to true given
the already fixed assignment on earlier variables. One can show that xn is true in the
lexicographic-maximum-satisfying assignment of ϕ iff xn

n is credulously accepted in Gϕ .

Proposition 2 The complexity results for sq-co and sq-pr semantics in Table 2 hold.

UB Semantics. While ub-semantics requires that defended arguments are labelled I,
they do not require that all I-labelled arguments are defended. It turns out that this lack
of admissibility reduces the complexity significantly. First, notice that by definition in
UB-complete labellings: (a) if an argument a is labelled I, then all arguments attacked
by a must be labelled O; and (b) if all attackers of an argument a are labelled O, then a
must be labelled I. We can compute UB-complete labellings by starting with a set S of I-
labelled arguments, and then use the two rules from above to propagate labels until either
we obtain that an argument must be both labelled I and O or a fixed point is reached.
In the former cases, we have that there is no UB-complete labelling that labels all the
arguments in S as I. In the latter case, we label the remaining arguments U to obtain UB-
complete labelling. By that, we have that the grounded labelling is the unique minimal
ub-co labelling, and thus sceptical acceptance is P-complete. To decide on credulous
acceptance w.r.t. ub-co (and ub-pr), one can fix the label of the query argument as I

and apply the characteristic function until a fixed point is reached. If the result is conflict
free, the argument is credulously accepted, otherwise it is not accepted. The conditions
for a ub-co labelling can be easily checked in polynomial time, When verifying ub-pr

labellings, we have to also check the maximality condition. Let S be the set of I-labelled
arguments. We can now test for each U-labelled argument a whether S∪{a} is contained
in some UB-complete labelling. This can be done simply by the above-mentioned fixed-
point iteration and is thus in polynomial time. Given that verification is in P, we can
solve Sceptub-pr with the standard guessing and checking approach in coNP. We next
show that Sceptub-pr is also coNP-hard. To this end, consider the following adaptation
of standard reduction (cf. Figure 2). Given a propositional formula ϕ in CNF given by
a set of clauses C over atoms Y , we define ϕ as Fϕ = (A,R) (cf. Figure 2 ), where
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A = {ϕ, ϕ̄1, ϕ̄2} ∪C ∪Y ∪ Ȳ and R = {(c, ϕ̄1) | c ∈ C} ∪ {(l,c),(c,c) | l ∈ c, c ∈C}∪
{(x, x̄),(x̄,x) | x ∈Y}∪{(ϕ̄1,ϕ),(ϕ, ϕ̄2),(ϕ̄2, ϕ̄1)}. If all clause arguments ci are labelled
O, none of the arguments in the cycle can be accepted. Otherwise, if at least one ci remains
U, we can accept ϕ set ϕ̄2 as O and ϕ̄1 as U. We thus have that the argument ϕ is sceptically
accepted iff formula ϕ is unsatisfiable.

Proposition 3 The complexity results for ub-co and ub-pr semantics in Table 2 hold.

UB2 semantics. We now turn to the SCC-recursive variants of the ub-semantics,
ub2-semantics. In order to verify a labelling, we can follow the SCC-recursive schema
and apply the verification of the base semantics in the base case. Since verification of
ub-semantics is in polynomial time, we obtain that ub2-semantics can also be verified
in polynomial time. The NP/coNP-membership of credulous/sceptical reasoning is then
verified by the standard guessing and checking algorithms, and the matching hardness
results are verified by standard reductions for credulous and sceptical acceptance.

Proposition 4 The complexity results for ub2-co and ub2-pr semantics in Table 2 hold.

UB* and UB*2 semantics. Similarly, for the UB-complete semantics, we can verify
UB*-complete and UB*2-complete extensions in polynomial time, and thus the remain-
ing upper bounds are obtained by standard procedures.

Now, consider the verification of an UB*-preferred extension. The additional con-
dition that an U-labelled argument has to attack an U-labelled argument allows for a sim-
ilar behaviour to that of standard Dung complete and preferred semantics. Consider an
argument a that is labelled I and an argument b that attacks only argument a. We have
that b cannot be labelled U or I and thus has to be labelled O. That is, we have to find
an argument c that can be labelled I and defends a against b. With this observation, one
can easily adapt the standard translations such that the NP/coNP hardness results for the
reasoning tasks of complete and preferred semantics also transfer to UB* complete and
UB* preferred semantics (even for strongly connected graphs).

Proposition 5 The complexity results for ub*-co, ub*-pr ub2*-co and ub2*-pr seman-
tics in Table 2 hold.

7. Conclusion

We reviewed several recent proposals for non-admissible non-naive semantics for ab-
stract argumentation and studied their complexity. We focused in particular on seman-
tics that behave similar to the weakly complete and preferred semantics, but are based
on undecidedness blocking mechanisms. Our complexity results (Table 2) show that this
approach has significantly lower complexity than the weak admissibility based approach.
We also defined a variant called loop semantics, that (1) assigns the label U only to ar-
guments that are part of a loop, and (2) allows arguments labelled I to be attacked by
U-labelled arguments. Unlike the weakly complete semantics, the complete variant of
this semantics satisfies directionality. We plan to investigate the properties of this new
semantics, as well as the derived notion of UB-admissibility, in future work.
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