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Abstract. Probabilistic rules are at the core of probabilistic structured ar-
gumentation. With a language L, probabilistic rules describe conditional
probabilities Pr(σ0|σ1, . . . , σk) of deducing some sentences σ0 ∈ L from
others σ1, . . . , σk ∈ L by means of prescribing rules σ0 ← σ1, . . . , σk

with head σ0 and body σ1, . . . , σk. In Probabilistic Assumption-based
Argumentation (PABA), a few constraints are imposed on the form of
probabilistic rules. Namely, (1) probabilistic rules in a PABA frame-
work must be acyclic, and (2) if two rules have the same head, then
the body of one rule must be the subset of the other. In this work, we
show that both constraints can be relaxed by introducing the concept
of Rule Probabilistic Satisfiability (Rule-PSAT) and solving the under-
lying joint probability distribution on all sentences in L. A linear pro-
gramming approach is presented for solving Rule-PSAT and computing
sentence probabilities from joint probability distributions.

Keywords. Probabilistic Argumentation, Probabilistic Satisfiability

1. Introduction

Probabilistic Assumption-based Argumentation (PABA) [1] provides a probabilis-
tic extension to the Assumption-based Argumentation (ABA) framework [2] by
allowing probabilistic rules in argument construction. As a form of probabilistic
structured argumentation (along with p-ASPIC [3] and probabilistic argumenta-
tion with logic [4,5]) PABA was shown to admit as instances several other proba-
bilistic argumentation approaches and with an implementation engine developed
[6], and complexity results studied in [7].

A few design choices have been made in PABA to ensure its semantics and
inference approaches sound. Namely:

1. if there are two rules with the same head having different probabilities, then
the body of one rule must be the subset of the other (Definition 2.1, [1]);

2. there is no infinite path starting from a probabilistic parameter in its de-
pendency graph in a PABA framework (Lemma 2.1, [1]).
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Constraint 1 specifies that a probability sentence can only be deduced from at
most one set of antecedents; whereas Constraint 2 specifies that paths leading to
probability sentences must be acyclic. In this work, we show that both constraints
can be relaxed by considering Probabilistic Satisfiability [8]. We see that the two
constraints given by [1] are design choices to ensure probabilistic satisfiability.
However, as we illustrate in this work, without these two constraints, there are
cases where probabilistic satisfiability can still hold with well-understood inference
processes available. In other words, we show that there is no intrinsic reason to
disallow multiple rules with the same heads and cyclic graphs when constructing
probabilistic extensions to ABA. Thus, this work provides a generalisation to the
probabilistic rules given in PABA with a sound inference method for sentence
probability calculation.

The rest of this paper is organised as the follows. Section 2 reviews two con-
cepts introduced in the literature that are needed in this work. Section 3 intro-
duces of Rule-PSAT that describe probabilistic consistency. Section 4 presents an
inference approach for reasoning Rule-PSAT. Section 5 compares our work with
Nilsson’s probabilistic logic / satisfiability in detail. We conclude in Section 6.

2. Background

In this work, we need two notions, deduction for a sentence, and complete con-
junction set of a language introduced in the literature as follows.

Given a language L, and a set of rulesR built with sentences in L, a deduction
[2] for σ ∈ L supported by S ⊆ L and R ⊆ R denoted S �R σ is a finite tree with

� nodes labelled by sentences in L or by a special symbol τ that is not in L,
� the root labelled by σ,
� leaves either labelled by τ or sentences in S,
� non-leaves labelled by σ′ with, as children, the elements of the body of some
rule in R with head σ′, and R the set of all such rules.

Deduction is a fundamental concept in rule-based systems. We will refer to it in
Section 3.

Given a language L with n sentences, the Complete Conjunction Set (CC
Set) [9] of L is the set of 2n conjunction of sentences such that each conjunction
contains n distinct sentences. For instance, for L = {σ0, σ1}, the CC set of L =
{¬σ0 ∧¬σ1,¬σ0 ∧ σ1, σ0 ∧¬σ1, σ0 ∧ σ1}. As we will discuss in the next section, a
CC set defines the universe of all possible worlds given by the language.

3. Rule-PSAT

We start by introducing the core representation of this work, namely the notion
of a probabilistic rule (p-rule), as follows.

Definition 1. Given a language L, a probabilistic rule (p-rule) is

σ0 ← σ1, . . . , σk : [θ]
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for k ≥ 0, σi ∈ L, 0 ≤ θ ≤ 1. σ0 is referred to as the head of the p-rule, σ1, . . . , σk

the body, and θ the probability.
Given a language L and a set of p-rules R, we say that R is defined over L

iff all sentences in p-rules in R are in L.

The rule in Definition 1 states that the probability of σ0, when σ1 . . . σk all
hold, is θ. In other words, this rule states that Pr(σ0|σ1, . . . , σk) = θ. Note that
this is the same interpretation of probabilistic rules introduced in [1].

To introduce Rule-PSAT, we need to consider the set of sentences that are
“deducible”. This is constructed with the notion of deduction as follows.1

Definition 2. Given a language L and a set of p-rules R defined over L, the
deducible set L0 = {σ ∈ L|∅ �R σ, where R ⊆ R}.

The deducible rules R0 = {σ0 ← σ1, . . . , σk : [·] ∈ R|σi ∈ L0, i = 0 . . . k}.

We illustrate deducible set and rules in Example 1.

Example 1. Let L = {σ0, σ1, σ2, σ3}, R = {σ0 ← σ1 : [α];σ1 ←: [β];σ2 ← σ3 :
[γ]}. We have L0 = {σ0, σ1} and R0 = {σ0 ← σ1 : [α];σ1 ←: [β]}.

Definition 3. Given a language L and a set of p-rules R, let Ω be the CC set of
L0. A function π : Ω → [0, 1] is a consistent probability distribution with respect
to R on L for Ω iff:2

1. For all ωi ∈ Ω,

0 ≤ π(ωi) ≤ 1. (1)

2. It holds that:

∑
ωi∈Ω

π(ωi) = 1. (2)

3. For each p-rule σ0 ←: [θ] ∈ R0, it holds that:

∑
ωi∈Ω,ωi|=σ0

π(ωi) = θ. (3)

4. For each p-rule σ0 ← σ1, . . . , σk : [θ] ∈ R0, (k > 0), it holds that:

∑
ωi∈Ω,ωi|=σ0∧...∧σk

π(ωi)∑
ωi∈Ω,ωi|=σ1∧...∧σk

π(ωi)
= θ. (4)

1We use the notion of “deduction” with the symbol “�R” introduced in Section 2 without
modification by treating p-rules as non-probabilistic rules in this context.

2In this work, symbols ¬, ∧, and |= take their standard meaning as in classical logic.
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Our notion of consistency as given in Definition 3 consists of two parts. Equa-
tions 1 and 2 assert π being a probability distribution over the CC set of L0;
whereas equations 3 and 4 assert that each p-rule should be viewed as defining
conditional probabilities for which the probability of the head of the p-rule condi-
tioned on the body is the probability. In particular, Equation 3 can be viewed as
a special case of 4 as when the body is empty, the head is conditioned on the uni-
verse. In other words, for p-rule σ0 ←: [θ], we assert Pr(σ0) = θ with Equation 3;
for σ0 ← σ1, . . . , σk : [θ], we assert Pr(σ0|σ1, . . . , σk) = θ with Equation 4.

Example 2. (Example 1 continued.) Ω = {¬σ0 ∧¬σ1, σ0 ∧¬σ1,¬σ0 ∧σ1, σ0 ∧σ1}.
From σ0 ← σ1 : [α], we have

π(σ0 ∧ σ1)

π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1)
= α. (5)

From σ1 ←: [β], we have

π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = β. (6)

π is a consistent probability distribution iff Equations 5 and 6 hold, as well as

π(¬σ0 ∧ ¬σ1) + π(σ0 ∧ ¬σ1) + π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = 1, (7)

and

0 ≤ π(¬σ0 ∧ ¬σ1), π(σ0 ∧ ¬σ1), π(¬σ0 ∧ σ1), π(σ0 ∧ σ1) ≤ 1. (8)

With consistency defined, we are ready to define Rule-PSAT as follows.

Definition 4. The Rule Probabilistic Satisfiability (Rule-PSAT) problem is to de-
termine for a set of p-rules R on a language L, whether there exists a consistent
probability distribution for the CC set of L0 with respect to R.
Example 3. (Example 2 continued.) To test whether R is Rule-PSAT on L, we
need to solve Equations 5-8 for π as R is Rule-PSAT iff a solution exists. It is
easy to see that this is the case as:

π(σ0 ∧ σ1) = αβ

π(¬σ0 ∧ σ1) = β − αβ

π(σ0 ∧ ¬σ1) + π(¬σ0 ∧ ¬σ1) = 1− β

Since 0 ≤ α, β ≤ 1, we have 0 ≤ π(σ0 ∧ σ1), π(¬σ0 ∧ σ1) ≤ 1. We can let
π(σ0 ∧ ¬σ1) = 0, π(¬σ0 ∧ ¬σ1) = 1 − β and obtain one solution for π. As the
system is under-specified, we have infinitely many solutions to π(σ0 ∧ ¬σ1) and
π(¬σ0 ∧ ¬σ1) in the range of [0, 1− β].

The next example gives a p-rule set that is not Rule-PSAT.
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Example 4. Let R contain three p-rules: σ0 ← σ1 : [0.9], σ0 ←: [0.8], σ1 ←: [0.9].
From σ0 ← σ1 : [0.9] and Equation 4, we have

π(σ0 ∧ σ1)

π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1)
= 0.9. (9)

From σ1 ←: [0.9], we have

π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1) = 0.9. (10)

Substitute (10) in (9), we have π(σ0 ∧ σ1) = 0.81.
From σ0 ←: [0.8], we have

π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) = 0.8.

Thus, π(σ0 ∧ ¬σ1) = −0.01, which does not satisfy 0 ≤ π(ωi) ≤ 1.

From a Rule-PSAT solution, which characterises a probability distribution
over the CC set, one can compute sentence probabilities by marginalising over sen-
tences. In other words, we can compute the probability of sentences by summing
up π(ωi).

Given a language L and a set of p-rules R, if there is a consistent probability
distribution π for Ω, the CC set of L0, with respect to R, then for any σ ∈ L0,
its probability Pr(σ) is:

Pr(σ) =
∑

ωi∈Ω,ωi|=σ

π(ωi). (11)

Clearly, from Definition 3, we see that 0 ≤ Pr(σ) ≤ 1 and Pr(σ) + Pr(¬σ) = 1.
(Note that although Equation 11 is similiar to 3, 11 refers to all sentences σ ∈ L0,
whereas 3 refers to sentences that are heads of rules with an empty body.)

Example 5. (Example 3 continued.) Taking π shown in Example 3, (with π(σ0 ∧
¬σ1) = 0) the probabilities of σ0 and σ1 can be computed as follows.

Pr(σ0) = π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) = αβ

Pr(σ1) = π(¬σ0 ∧ σ1) + π(σ0 ∧ σ1) = β

If a set of p-rules R is satisfiable, then the range of the probability of any
sentence in L0 can be found with mathematical optimisation. The upper and the
lower bounds of the probability of a sentence σ ∈ L0 can be found by maximising
and minimising the RHS of Equation 11 subject to Equations 1-4, respectively.

Example 6. (Example 5 continued.) To compute the upper and lower bounds of
Pr(σ0), we maximise and minimise Pr(σ0) = π(σ0∧σ1)+π(σ0∧¬σ1), respectively.
We see that Pr(σ0) is at its max when π(σ0∧¬σ1) is. Since 0 ≤ π(σ0∧¬σ1) ≤ 1−β,
we have the upper bound of Pr(σ0) taking its value αβ +1− β. Similarly, Pr(σ0)
takes its min value when π(σ0∧¬σ1) = 0. Thus, the lower bound of Pr(σ0) is αβ.

X. Fan / Relaxing Rule Constraints in Probabilistic Assumption-Based Argumentation156



Note that there is no restriction imposed on the form of p-rules other than

the ones given in Definition 1, as illustrated in the next two examples (Examples 7

and 8) - a set of p-rules can be consistent even if there are rules in this set forming

cycles or having two rules with the same head.

Example 7. Consider a set of p-rules R = {σ0 ← σ1 : [0.7], σ1 ← σ0 : [0.6],

σ1 ←: [0.5]}. We can see that there are infinitely many different (finite) deductions

for both σ0 and σ1 due to the cycle formed by deduce σ0 from σ1 and deduce σ1

from σ0. However, we can still compute a (unique) solution for π over the CC set

of {σ0, σ1}. Using Equations 2 to 4, we have:

0.7 = π(σ0 ∧ σ1)/(π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1)),

0.6 = π(σ0 ∧ σ1)/(π(σ0 ∧ σ1) + π(σ0 ∧ ¬σ1)),

0.5 = π(σ0 ∧ σ1) + π(¬σ0 ∧ σ1),

1 = π(¬σ0 ∧ ¬σ1) + π(¬σ0 ∧ σ1) + π(σ0 ∧ ¬σ1) + π(σ0 ∧ σ1).

Solutions found are: π(¬σ0∧¬σ1) = 0.27, π(σ0∧¬σ1) = 0.23, π(¬σ0∧σ1) = 0.15,

π(σ0 ∧ σ1) = 0.35.

Example 8. Consider a set of p-rules R = {σ0 ← σ1 : [0.6], σ0 ← σ2 : [0.5], σ1 ←:

[0.7], σ2 ←: [0.6]}, There are two p-rules with head σ0. They have different bodies

and probabilities. We set up equations as follows.3

0.6 = (π(111) + π(110))/(π(010) + π(011) + π(110) + π(111)),

0.5 = (π(101) + π(111))/(π(001) + π(011) + π(101) + π(111)),

0.7 = π(010) + π(011) + π(110) + π(111),

0.6 = π(001) + π(011) + π(101) + π(111),

1 = π(000) + π(001) + π(010) + π(011) + π(100) + π(101) + π(110) + π(111).

Solve these, a solution maximising Pr(σ0) is follows: (Pr(σ0) = 0.7)

π(000) = 0, π(001) = 0.02, π(010) = 0, π(011) = 0.28,
π(100) = 0.15, π(101) = 0.13, π(110) = 0.25, π(111) = 0.17.

A solution minimising Pr(σ0) is: (Pr(σ0) = 0.42)

π(000) = 0.14, π(001) = 0.16, π(010) = 0.14, π(011) = 0.14,
π(100) = 0, π(101) = 0, π(110) = 0.12, π(111) = 0.3.

3To simplify the presentation, Boolean values are used as shorthand for the sentences. E.g.,
111, 011, and 001 denote σ0 ∧ σ1 ∧ σ2, ¬σ0 ∧ σ1 ∧ σ2, and ¬σ0 ∧ ¬σ1 ∧ σ2, respectively.

X. Fan / Relaxing Rule Constraints in Probabilistic Assumption-Based Argumentation 157



4. Solve Rule-PSAT

Given a set of p-rules R = {ρ1, . . . , ρm} constructed on some language L such
that L0 contains n sentences, to test whether R is Rule-PSAT, we set up a linear
system

AΠ = B, (12)

where A is an (m+ 1)× 2n matrix, Π = [π(ω1), . . . , π(ω2n)]
T , B an (m+ 1)× 1

matrix.4 We construct A and B in a way such that R is Rule-PSAT iff Π has a
solution in [0, 1]2

n

, as follows.
For each rule ρi ∈ R, if ρi = σ0 ←: [θ] has an empty body, then

A[i, j] =

{
1, if ωj |= σ0;

0, otherwise;
(13)

and

B[i] = θ. (14)

Otherwise, ρi = σ0 ← σ1, . . . , σk : [θ], then

A[i, j] =

⎧⎪⎨
⎪⎩
θ − 1, if ωj |= σ0 ∧ σ1 ∧ . . . ∧ σk;

θ, if ωj |= ¬σ0 ∧ σ1 ∧ . . . ∧ σk;

0, otherwise;

(15)

and

B[i] = 0. (16)

Row m+ 1 in A and B are 1 . . . 1 and 1, respectively.

Example 9. (Example 6 continued.) Let ρ0 = σ0 ← σ1 : [α], ρ1 = σ1 ←: [β]. Here,
m = 2, n = 2. From Equations 12 to 16, we have

A =

⎡
⎣

1
0
0

1
1
α

1
0
0

1
1

α− 1
⎤
⎦ ,

Π = [π(¬σ0 ∧ ¬σ1), π(¬σ0 ∧ σ1), π(σ0 ∧ ¬σ1), π(σ0 ∧ σ1)]
T , and B = [0, β, 1]T . It

is easy to see that Π has solutions as shown in Example 3.

Theorem 1. Given a set of p-rules R on some language L, R is Rule-PSAT iff
Equation 12 has a solution for Π in [0, 1]2

n

.

4We let {ω1, . . . , ω2n} be the CC set of L0. We consider elements in this set being ordered
with their Boolean values. E.g., for L0 = {σ0, σ1}, the four elements in the CC set are ordered
such that {ω1 = ¬σ0 ∧ ¬σ1, ω2 = ¬σ0 ∧ σ1, ω3 = σ0 ∧ ¬σ1, ω4 = σ0 ∧ σ1}.
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Table 1.: Performance Demonstration for Solving Rule-PSAT with the Python
scipy linprog Library with an Interior-point Method.

Number of Sentences 6 7 8 9 10 11 12
Run Time (s) 0.014 0.022 0.041 0.11 0.55 3.32 22.38

Proof. (Sketch.) Equations 1 to 4 are satisfied by a Π solution in [0, 1]2
n

as follows.

1. If Π ∈ [0, 1]2
n

, then 0 ≤ π(ωi) ≤ 1 for all ωi.

2. Since Row m+ 1 in A and B are 1s, we have the sum of all π(ωi) being 1.

3. For each p-rule σ0 ←:[θ], Equations 13 and 14 ensure that Equation 3 is
satisfied.

4. For each p-rule σ0 ← σ1, . . . , σk:[θ], Equation 15 and 16 ensure that Equa-
tion 4 is satisfied with simple algebra.

Thus, we see that Equation 12, AΠ = B, is nothing but a linear system represen-
tation of Equations 1-4, which characterise probability distributions over the CC
set of L0 with conditionals.

Table 1 demonstrates the performance of a Python implementation of the
linear system approach for solving Rule-PSAT introduced in this section. The im-
plementation is built with the open source scipy linprog library5, using an interior-
point method. We observe that the average running time grows exponentially as
the number of sentences in a set of p-rules. This is expected as the size of the
CC set is 2n (n the number of sentences in L0); and interior-point method has
a super-linear complexity [10]. P-rules in this experiment are randomly gener-
ated with maximum length of rule body 4, the average time of 10 runs for each
configuration is reported.

5. Discussion

Many works have been published on probabilistic argumentation in recent years,
e.g. [11,12,13,14,15,16,17,4]. With very few exceptions, notably [4,5], existing
works are predominantly defined with abstract argumentation, having probabil-
ity distributions defined over argumentation graphs. In [4,5], arguments are con-
structed with probabilistic logic. As probabilistic rules are also used to construct
arguments, we compare our work with probabilistic logic.

Nilsson [8] introduces Probabilistic Satisfiability with probabilistic logic, con-
sidering knowledge bases in Conjunctive Normal Form. A modus ponens exam-
ple,6

If σ1, then σ0. σ1. Therefore, σ0.

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.

html
6This example is used in [8]. The figure on the left hand side of Table 2 is a reproduction of

Figure 2 in [8].
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Table 2.: Comparison of Consistent Probability Regions between Nilsson’s Prob-
abilistic Logic and Probabilistic Rules on an modus ponens instance.

Probabilistic Logic Probabilistic Rule

¬σ1 ∨ σ0 : [α], σ1 : [β], σ0 : [γ]. σ0 ← σ1 : [α], σ1 ←: [β], σ0 ←: [γ].

is shown in Table 2. The probabilities of the conditional claim is α, the antecedent
β and the consequent γ. With Nilsson’s probabilistic logic, this is interpreted as:

¬σ1 ∨ σ0 : [α], σ1 : [β], σ0 : [γ],

which gives rise to equations

π(¬σ1 ∧ σ0) + π(σ1 ∧ σ0) + π(¬σ1 ∧ ¬σ0) = α, (17)

π(σ1 ∧ σ0) + π(σ1 ∧ ¬σ0) = β, (18)

π(σ1 ∧ σ0) + π(¬σ1 ∧ σ0) = γ. (19)

With probabilistic rules discussed in this work, the interpretation to modus po-
nens is the three p-rules as follows.

σ0 ← σ1 : [α], σ1 ←: [β], σ0 ←: [γ],

which gives rise to equations 5, 18 and 19. The two shaded polyhedrons shown in
Table 2 illustrate probabilistic consistent regions for α, β and γ, with probabilistic
logic and probabilistic rule, respectively, as defined by their corresponding equa-
tions together with equations 1 and 2. The consistent region in the probabilistic
logic case is a tetrahedron, with vertices (0,0,1), (1,0,0), (1,1,0) and (1,1,1). The
consistent region in the probabilistic rule case is an octahedron, with vertices
(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0) and (1,1,1). It is argued in [18] that the
conditional probability interpretation to modus ponens is more reasonable than
the probabilistic logic interpretation in practical settings.
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The principal benefit of this analysis comes from observing that both methods
are nothing but imposing constraints on the feasible regions of the spaces defined
by clauses (in the case of probabilistic logic) or p-rules (in the case of probabilistic
rules). In this sense, reasoning on such probability and logic combined forms is
about identifying feasible regions determined by solutions to Π in AΠ = B.7

It is recognised that solving Π with large matrix A is difficult. The size of A is
exponential to the number of sentences in the language; and linear programming
methods are super-linear to the size of the CC set (as we illustrate in Section 4).
Nilsson suggests that partition could be considered on B so Π can be solved
with divide-and-conquer techniques. However, as [19] show that PSAT is NP-
complete in its general form, it becomes more plausible to consider important
and/or practically useful instances of the generic PSAT problem where reasoning
does not rely on exact solution to the probability distribution on the CC set.

A few such instances are considered in the literature. For example, Williamson
[20] discusses the case when sentences are disjoint. In such cases, for any two
sentences σ0, σ1 in a language, we have

Pr(σ0 ∧ σ1) = 0.

Henderson et.al [9,21,22] discuss the case when sentences are independent. In such
cases, for any two sentences σ0, σ1 in a language,

Pr(σ0 ∧ σ1) = Pr(σ0) Pr(σ1).

Both settings can greatly reduce the complexity of reasoning as one does not
need to explicitly consider joint probabilities amongst sentences and thus one can
work in the space defined by n sentences in the language, instead of considering
solutions in the 2n space formed by the CC set.

However, we believe neither of the two is suitable in probabilistic rule settings
such as the one discussed in this work, as they both trivialise conditional prob-
abilities. In other words, as Pr(σ0|σ1) = Pr(σ0 ∧ σ1)/Pr(σ1) by the definition of
conditional probability, assuming Pr(σ0 ∧ σ1) = 0 makes Pr(σ0|σ1) = 0; whereas
assuming Pr(σ0 ∧ σ1) = Pr(σ0) Pr(σ1) makes Pr(σ0|σ1) = Pr(σ0). Effectively,
these two assumptions make us commit to

σ ← : [0] and σ ← : [Pr(σ)]8

for all p-rules over all sentences σ, respectively. Since neither of the two seems
realistic in practical settings, we stay with solving the joint distribution on the
CC set for computing sentence probabilities.9

7Constructions of A differ between Nilsson’s probabilistic logic and this work. However, both
are designed for solving the full joint probability distribution over the CC set.

8Here, stands for an anonymous variable as in Prolog.
9On this note, PABA also forces independence between their probabilistic parameters by

having Pr(ω) =
∏

(Q,[a:x])∈GEω
x, where (Q, [a : x]) is a deduction for a and GEω is the set of

grounded extensions containing all possible worlds, in which a possible world ω is an element
in the CC set of all probabilistic parameters (Definition 2.1 and Lemma 2.1 in [1]). However, as
PABA also supports non-probabilistic rules and assumptions, the independence assumption is
not imposed on all sentences in a PABA framework as some of them are not probabilistic.
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6. Conclusion

In this work, we introduce a generalisation to probabilistic rules (p-rule) used
in Probabilistic Assumption-based Argumentation. We show that by introducing
Rule Probabilistic Satisfiability, we can accommodate probabilistic rules forming
cycles and allow multiple rules with the same head but different bodies in the
same p-rule set. A reasoning method using linear programming is introduced with
a software implementation developed. This work can be viewed as a building
block for probabilistic structured argumentation frameworks that use rules to
construct arguments. Future work will focus on (more) efficient reasoning and /
or approximation approaches.
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