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Abstract. Today AI systems are rarely made without Machine Learning (ML) and
this inspires us to explore what aptly called composite argumentation systems with
ML components. Concretely, against two theoretical backdrops of PABA (Prob-
abilistic Assumption-based Argumentation) and DST (Dempster-Shafer Theory),
we present a framework for such systems called c-PABA. It is argued that c-PABA
lends itself to a development tool as well and to demonstrate we show that DST-
based ML classifier combination and multi-source data fusion can be implemented
as simple c-PABA frameworks.

1. Introduction

Today AI systems are rarely made without Machine Learning (ML) though one may
criticize the overuse of ML especially in tasks demanding explainability. On the other
hand, Argumentation is widely viewed as an inherently explainable AI formalism, how-
ever practical argumentation systems are still hard to develop. This inspires us to ex-
plore a synthesis of ML and Argumentation that fosters AI systems with the elements of
both formalisms. Concretely, against two theoretical backdrops of PABA (Probabilistic
Assumption-based Argumentation [5]) and DST (Dempster-Shafer Theory), we present
a framework for composite argumentation systems with ML components called c-PABA.
It is argued that c-PABA lends itself to a development tool for these systems as well
and to demonstrate we show that DST-based ML classifier combination and multi-source
data fusion can be implemented as simple c-PABA frameworks. The rationale behind our
selection of two theoretical backdrops (DST and PABA) is as follows. DST, which alone
is often described as a generalisation of the probability theory, has long been proven
very suitable for representing knowledge under uncertainty and ignorance. Predictions
of ML models belong to knowledge of this kind, and hence ML models can be viewed
as sources generating DST data. Since a composite argumentation system in our view
can contain many components some of which may be ML models, DST lends itself to an
appropriate model for the information exchanged between these components. To model
the workings of these components as well as the whole composite argumentation system,
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we choose PABA rather than an abstract PA model such as [10] because of two reasons:
a) PABA deals the material out of which arguments are constructed, and hence allows us
to go down to the level of DST data exchanged between components; b) PABA reasoning
engines for precise results [7] as well as approximate any-time results [9] are recently
available. Such engines can run c-PABA frameworks (since as will be seen, c-PABA can
be translated back to PABA), and hence one can use c-PABA as a design as well as de-
velopment tool for the above described kind of composite argumentation systems. The
remaining of this paper is structured as follows. We recall DST and PABA in Section
2. Then we develop three complementary techniques respectively for: translating DST
data to PABA (Section 3), generating DST data from PABA, and fusing DST data with
existing PABA frameworks (Section 4). We then accumulate these techniques to present
the c-PABA framework (Section 5). Due to the lack of space, the proofs of theorems and
lemmas are moved to an on-line appendix2.

2. Background

2.1. Dempster Shafer Theory (DST [3,13])

Definition 1. A Demspter’s structure is a tuple D = (W,Pr,Γ,Θ) where Θ is an ex-
haustive set of mutually exclusive answers for some question (Frame of Discernment or
FoD for short); W is a finite set of possible worlds; Pr : W → [0,1] is a probability dis-
tribution; Γ : W → 2Θ is a multi-valued mapping from W into Θ. For X ⊆ Θ, the degree
of belief and the degree of plausibility in X are defined as follows.

BelD(X)� ∑
ω∈W: /0�=Γ(ω)⊆X

Pr(ω) and PlD(X)� ∑
ω∈W: /0�=Γ(ω)∩X

Pr(ω)

Intuitively Γ says that if ω is the actual world, then the answer is in Γ(ω). The in-
terval [BelD(X),PlD(X)] delineates the probability that the answer is in X . For example,
suppose that a sensor which is unreliable in 20% of the times, is installed to check a
valve’s status. If the sensor indicates “valve open”, the best conclusion one can make is
0.8 ≤ Prob(open)≤ 1 because if the sensor is unreliable, one has no information about
the valve’s status. Hence one does not want to represent the observation by a standard
probability distribution over space Θ = {open,closed} but by a Dempster’s structure de-
picted in Fig. 1 with: Θ = {open,closed}, Γ = {reliable �→ {open},unreliable �→ Θ},
and W = {reliable,unreliable} with two possible worlds having probabilities 0.8 and
0.2. Clearly [BelD({open}),PlD({open})] = [0.8,1].

Figure 1. A Dempster’s structure D = (W ,Pr,Γ,Θ)
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Definition 2. A mass function over FoD Θ is a function m : 2Θ → [0,1] such that
∑

X⊆Θ
m(X) = 1. For X ⊆ Θ, Belm(X)� ∑

Y⊆Θ: /0�=Y⊆X
m(Y ) and Plm(X)� ∑

Y⊆Θ: /0�=X∩Y
m(Y ).

And here are some more definitions. X ⊆ Θ is said to be a focal element of m :
2Θ → [0,1] iff m(X) �= 0. The set of all focal elements of m is denoted by f ocal(m). The
set {(Xi,μi)}| f ocal(m)|

i=1 where Xi ∈ f ocal(m) and μi = m(Xi) is called the focal specifica-

tion of m. For a Demspter’s structure D = (W,Pr,Γ,Θ), mD denotes the mass function:
mD(X) = ∑

ω∈Θ:Γ(ω)=X
Pr(ω). Clearly BelD(X) = BelmD (X) and PlD(X) = PlmD (X).

Example 1. Consider D = (W,Pr,Γ,Θ) where Θ = {θ1,θ2,θ3}; (W,Pr) is generated
from two independent events α1,α2 with Pr(α1) = 0.4 and Pr(α2) = 0.7; and Γ is shown
in the table below. The focal specification of mD is {( /0,0.28),({θ2},0.12),({θ2,θ3},0.6)}.

W Pr(ωi) Γ(ωi)
ω1 = {α1,α2} 0.4×0.7 = 0.28 {}

ω2 = {α1,¬α2} 0.4×0.3 = 0.12 {θ2}
ω3 = {¬α1,α2} 0.6×0.7 = 0.42 {θ2,θ3}

ω4 = {¬α1,¬α2} 0.6×0.3 = 0.18 {θ2,θ3}
In general mass functions can represent real-world data directly. Moreover those

over the same FoD can be combined using various combination rules. Due to the lack of
space, we focus on only the Smet’s rule.

Definition 3. Given two mass functions m1,m2 over the same FoD Θ, Smet’s rule returns
a combined mass function m1 ⊗m2(X)� ∑

B∩C=X
m1(B)m2(C), ∀X ⊆ Θ.

For a set M of mass functions over the same FoD (aka a DST evidence base), any
order of applying ⊗ yields the same result, denoted

⊗M. Hence the Smet’s rule derives
two functions BelM(X)� Bel⊗M(X) and PlM(X)� Pl⊗M(X), which together define
the Smet’s semantics for M.

2.2. Argumentation frameworks

An Abstract Argumentation (AA [4]) framework a pair (Arg,Att) of a set Arg of ar-
guments and an attack relation Att ⊆Arg×Arg. An argument A∈Arg is acceptable wrt
to S ⊆Arg iff S attacks every argument attacking A. S is admissible iff S does not attack
itself (aka conflict-free) and each argument in S is acceptable wrt S; a preferred exten-
sion iff S is a maximal (wrt ⊆) admissible set. A ∈ Arg is credulously (resp. skeptically)
acceptable if it is acceptable wrt a preferred extension (resp. any preferred extension).

Assuming a logical language L, an Assumption-based Argumentation (ABA [1])
framework is a tuple F = (R,A, ) where: R is a set of inference rules of the form
l0 ← l1, . . . , ln (n ≥ 0, li ∈ L); A ⊆ L is a set of assumptions; : A → L maps each
assumption to its contrary. In this paper we restrict ourselves to flat ABA frameworks
where assumptions do not appear in the heads of inference rules. An argument (Q,π) for
π ∈L supported by a set of assumptions Q ⊆A is a backward deduction from π to Q. An
argument (Q,π) attacks an argument (Q′,π ′) if π = a for some a ∈ Q′. A proposition π
is said to be credulously/skeptically acceptable, denoted F �cr π (resp. F �sk π) if in the
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AA framework consisting of above defined arguments and attacks, there is a credulously
(skeptically) acceptable argument (Q,π). For short we may specify an ABA framework
(R,A, ) by just a pair (R,A) and for each assumption a ∈ A, we write a in inference
rules of R as if a were a “legal” sentence (which of course refers to the one returned by
the omitted contrary function ). Inference rules of R with the same head are grouped
together by connecting their bodies with symbol | as demonstrated by the example below.

Example 2. A flat ABA framework describing Θ= {θ1,θ2,θ3} as a set of exhaustive and
mutually exclusive propositions is F =(A,R) with A= {θ1,θ2,θ3,{θ1,θ2},{θ1,θ3},{θ2,θ3},
{θ1,θ2,θ3}} saying that one can assume any proposition θi ∈Θ to be true. Consequently
one can also assume any disjunction of these propositions. Note that these disjunctions
are written in the set-based clausal form (e.g. {θ1,θ2} means θ1 ∨ θ2) so that in the
general case (as in Def. 6) we can simply write A= 2Θ \{ /0}. R consists of two groups
of rules:

• θ1 ←¬θ1 | θ2 | θ3. θ2 ← θ1 | ¬θ2 | θ3. θ3 ← θ1 | θ2 | ¬θ3. saying that each
assumption θi ∈ Θ can be disproved by either proving its classical negation ¬θi
or proving any mutually exclusive assumption θ j , j �= i.

• {θ1,θ2} ← θ1,θ2. {θ1,θ3} ← θ1,θ3. {θ2,θ3} ← θ2,θ3. {θ1,θ2,θ3} ←
θ1,θ2,θ3. saying that a disjunction of several assumptions is disproved by proving
each and every contraries of the assumptions.

Some arguments of F are ({θi},{θ1,θ2,θ3}) and ({θi},θi) with i ∈ {1,2,3}.
Clearly F �sk {θ1,θ2,θ3} (saying that some element of Θ holds certainly) and F �cr θi
but F ��sk θi (saying that it is probable but not certain that θi holds).

2.3. PABA

A PABA [5] framework can be seen as a probability distribution of ABA frameworks. In
this paper, we focus on a class of PABA frameworks, called Bayesian.

Definition 4. A (Bayesian) PABA framework is a triple P =(V,Pr,F) where F =(R,A)
is an ABA framework, and

1. V is a finite set of so-called probabilistic assumptions such that no elements of
V ∪¬V3 occurs in A or in the head of a rule in R.

2. Pr is a probability distribution over the set of all possible worlds, where a possi-
ble world is a maximal (wrt set inclusion) consistent4 subset of V ∪¬V .

Definition 5. Given P = (V,Pr,F), the acceptability probability of a proposition π
under semantics s is Prob(P �s π)� ∑

ω∈W:Fω�sπ
Pr(ω), where W is the set of all possible

worlds and Fω is the ABA framework obtained from F by adding facts {α ←| α ∈ ω}.

Note that the above definitions leave it open the representation of Pr (hence they
do not demand any probabilistic relationships between probabilistic assumptions). How-
ever for convenience we shall specify Pr by a Problog [6] program, using especially
probabilistic facts and annotated disjunctions as done in [9]. Note that a probabilistic

3¬V = {¬α | α ∈ V}
4No α and ¬α co-exist in the set.
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fact of Prolog is a sentence of the form “p :: x.” where p ∈ [0,1] and x is a propo-
sition saying that x holds with probability p. An annotated disjunction is of the form
“p1 :: x1; . . . ; pi :: xi; . . . ; pn :: xn.” saying that propositions x1, . . . ,xi, . . .xn are mutually
exclusive and hold with respective probabilities p1, . . . , pi, . . . pn whose sum must equal
1. Let’s have an example for illustration.

Example 3. Consider PABA framework P = (V,Pr,F) where V = {α1,α2}; Pr is
Problog program {0.4 :: α1. 0.7 :: α2.} with two probabilistic facts (saying that α1,α2
hold with probabilities 0.4 and 0.7 respectively); F is obtained from the ABA framework
in Example 2 by adding the following rules:

¬θ1 ← α1,α2. ¬θ1 ← α1,¬α2. ¬θ1 ←¬α1,α2.
¬θ2 ← α1,α2. ¬θ3 ← α1,¬α2. ¬θ1 ←¬α1,¬α2
¬θ3 ← α1,α2.

From the acceptabilities of θ2 in different possible worlds shown in the table below,
we have Prob(P �sk θ2) = 0.12 but Prob(P �cr θ2) = 0.12+0.42+0.18.

ω Fω �cr θ2? Fω �sk θ2? Pr(ω)
ω1 = {α1,α2} No No 0.28

ω2 = {α1,¬α2} Yes Yes 0.12
ω3 = {¬α1,α2} Yes No 0.42

ω4 = {¬α1,¬α2} Yes No 0.18

3. Translating DST data into PABA

In this section we show that any DST data, be it a Dempster’s structure, a DST mass
function or a DST evidence base, can always be translated into a PABA framework.
Let’s start by translating FoDs - the basic component of all forms of DST data, to ABA
frameworks. As suggested by Example 2, each possible answer θ of the given FoD Θ
is represented by an assumption the contrary of which can be proven by either proving
either the classical negation ¬θ , or by assuming an alternative answer θ ′ from Θ.

Definition 6. For a FoD Θ = {θ1, . . . ,θi, . . . ,θk}, the canonical ABA translation of Θ,
denoted FDΘ, is the ABA framework (AΘ,RΘ) where

1. AΘ = 2Θ −{ /0} saying that any non-empty subset of Θ may contain the actual
answer (For simplicity, a singleton set {θ} ∈ AΘ is written as θ 5).

2. RΘ is the minimal set such that

(a) For each θi ∈ Θ, RΘ contains θi ← θ1 | · · · | θi−1 | ¬θi | θi+1 | · · · | θk.
saying that θi can be disproved by proving its classical negation ¬θi or taking
an alternative assumption θ j , j �= i.

(b) For each subset X ∈ AΘ where |X | ≥ 2, RΘ contains a rule with head X
and body {θ | θ ∈ X} saying that the answer is not in X if every θ ∈ X is
disproved.

Example 4. For FoD Θ = {θ1,θ2,θ3}, FDΘ coincides with the ABA framework given
in Example 2.

5So Θ is a subset as well as an element of AΘ.
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The following lemma asserts that FDΘ and FoD Θ are “semantically equivalent”

Lemma 1. Let Θ = {θ1, . . . ,θk} be a FoD. For any X ∈ 2Θ,

1. If X �= Θ, /0, then FDΘ �cr X but FDΘ ��sk X (representing that X possibly but
not surely contains the answer).

2. If X = Θ, then FDΘ �sk X (representing that Θ surely contains the answer); If
X = /0, then FDΘ ��s X for any semantics s.

Note that there are different ABA frameworks with the same semantics as FDΘ, for
example the one obtained from FDΘ by adding a rule ¬θi ← f alse. However FDΘ is
clearly the most obvious. Likewise, a Dempster’s structure D can be translated to PABA
in many ways but the PABA framework PABAD defined below is the most obvious.

Definition 7. Let D = (W,Pr,Γ,Θ) be a Demspter’s structure. The canonical PABA
translation of D is the PABA framework PABAD = (V,Pr,F) where

1. PABAD and D have the same set of possible worlds W and probability distribu-
tion Pr, and

2. F = (AΘ,RΘ ∪ RΓ) is the ABA framework obtained from ABA framework
FDΘ = (AΘ,RΘ) by adding a set of rules RΓ =

⋃

ω∈W
{¬θ ←ω | θ ∈Θ−Γ(ω)}.

Here RΓ represents the multi-valued function Γ : W → 2Θ. Recall that for a possible
world ω , Γ says that the answer must be in Γ(ω) or equivalently must not be some
θ ∈ Θ−Γ(ω). Hence ¬θ ← ω occurs as an inference rule in RΓ.

Example 5. For the Demspter’s structure D in Example 1, PABAD coincides with the
PABA framework in Example 3.

The theorem below asserts that Demspter’s structure D is semantically equivalent to
the PABA framework PABAD.

Theorem 1. Let D = (W,Pr,Γ,Θ) be a Demspter’s structure. Then for any X ∈ 2Θ,
PlD(X) = Prob(PABAD �cr X) and BelD(X) = Prob(PABAD �sk X).

Now let’s switch our attention to the remaining forms of DST data - mass functions
and evidence bases. Recall that any mass function, say m, can be specified by a set of
ordered pairs {(Xi,μi)}| f ocal(m)|

i=1 with Xi being a focal element and μi ∈ [0,1] being the
mass of Xi. Obviously m can be translated to PABA in many ways, and the so-called
canonical PABA translation PABAm defined below uses a set of probabilistic assumptions
{φ m

i | i ∈ {1, . . . , | f ocal(m)|}} where the probability of φ m
i is set to μi. To represent the

mutually exclusiveness of focal elements, PABAm uses a Problog annotated disjunction
“μ1 :: φ m

1 ; μ2 :: φ m
2 ; . . . ; μ| f ocal(m)| :: φ m

| f ocal(m)|.”. Finally the content of each focal element
Xi is represented in PABAm by a set of rules {¬θ ← φ m

i | θ ∈ Θ−Xi}, where ¬θ ← φ m
i

says that if the ith focal element of m occurs then any θ ∈ Θ−Xi cannot be the answer.

Definition 8. Let m = {(Xi,μi)}| f ocal(m)|
i=1 be a mass function with FoD Θ. The canonical

PABA translation of m, denoted PABAm, is the PABA framework (Vm,Prm,Fm) where

1. Vm = {φ m
1 , . . . ,φ m

| f ocal(m)|} and Prm is a Problog program consisting of only one
annotated disjunction: μ1 :: φ m

1 ; μ2 :: φ m
2 ; . . . ; μ| f ocal(m)| :: φ m

| f ocal(m)|.

N.D. Hung et al. / Composite Argumentation Systems with ML Components 169



2. Fm is the ABA framework obtained from the canonical ABA translation FDΘ of
Θ by adding a set of rules

⋃

1≤i≤| f ocal(m)|
{¬θ ← φ m

i | θ ∈ Θ−Xi}.

The canonical PABA translation of a DST evidence base M (a set of mass functions
over the same FoD Θ) defined below is simply the set union of the canonical PABA
translations of individual mass functions.

Definition 9. The canonical PABA translation of a DST evidence base M is the PABA
framework PABAM = (VM,PrM,FM) where VM =

⋃

m∈M
Vm, PrM =

⋃

m∈M
Prm and

FM =
⋃

m∈M
Fm (where Vm, Prm and Fm are defined in Def. 8).

Theorem 2 asserts the semantic equivalence between m and the above defined canon-
ical PABA translation of m.

Theorem 2. Let m be a mass function over FoD Θ. Then for any X ⊆ Θ, Belm(X) =
Prob(PABAm �sk X) and Plm(X) = Prob(PABAm �cr X).

More generally, for a DST evidence base M, the Smet’s semantics of M and the
semantics of PABAM coincide.

Theorem 3. Let M be a DST evidence base over FoD Θ. Then for any X ⊆ Θ,
BelM(X) = Prob(PABAM �sk X) and PlM(X) = Prob(PABAM �cr X).

4. Fusion and generation of DST data

In this section we present two techniques for: 1) fusing DST data with; and 2) generating
DST data from existing PABA frameworks.

4.1. DST data fusion with PABA frameworks

Given a DST evidence base M and a PABA framework P , the so-called the s-union of P
and M defined below is a structure obtained by taking set unions of the corresponding
components of P and PABAM.

Definition 10. Let M be a DST evidence base and P = (V,Pr,F) be a PABA frame-
work. The s-union of P and M, denoted P �M, is simply the triple (V ∪VM,Pr ∪
PrM,F∪FM) obtained by taking set-unions of the corresponding components of P and
the canonical PABA translation PABAM = (VM,PrM,FM) of M.

Let’s introduce a condition to ensure that P�M is a well-formed PABA framework.

Definition 11. We say that a PABA framework P = (V,Pr,F) syntactically complies
with a FoD Θ iff: 1) all assumptions and rules occurring FDΘ also occur in F; and 2)
for any θ ∈ Θ, ¬θ is not an assumption of F .

Lemma 2. Let M be a DST evidence base over FoD Θ and P be a PABA framework
that is syntactically complies with Θ. Then P �M is a well-formed PABA framework
syntactically complying with Θ.
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Hence � can be viewed as a knowledge fusion operator. Though its applicability is
limited (e.g. � cannot fuse two arbitrary PABA frameworks), � suffices for our purpose
which is to fuse a DST evidence base M with an existing PABA framework P . Now
let’s examine several properties of �. Lemma 3 below says that � in fact encapsulates
the translation technique from DST data to PABA presented in the previous section.

Lemma 3. Let M be a DST evidence base over FoD Θ and P = ( /0, /0,FDΘ). Then
M�P is exactly the canonical PABA translation of M.

As the underlying operation in � is set union, � inherits many desirable properties
from ∪. For example, P � /0 = P; and P �M= (P �M1)�M2 if M1 ∪M2 =M.

4.2. DST data generation from PABA frameworks

Obviously a Dempster’s structure generated from a PABA framework should share the
same probability space with the framework.

Definition 12. We say that a PABA framework P = (V,Pr,F) generates a Dempster’s

structure D = (W,Pr,Γ,Θ), written P Θ−→D, if

1. D and P have the same set of possible worlds W and the same probability dis-
tribution Pr : W → [0,1], and

2. for each ω ∈W , Γ(ω) = {θ ∈ Θ | Fω �cr θ}.

That is, we add θ into Γ(ω) just in case there is a credulously accepted argument for
θ in Fω . Generated Dempster’s structures can be converted into mass functions, and so:

Definition 13. A PABA framework P generates a mass function m, written P Θ−→ m, if
P Θ−→D and m coincides mD.

It is easy to see that:

Lemma 4. Let PABAM be the canonical PABA translation of DST evidence base M
over FoD Θ. Then PABAM

Θ−→⊗
SM (hence for any m ∈M, PABAm

Θ−→ m).

It is worth noting that the generating PABA framework P does not have to satisfy
any constraint with respect to the FoD Θ of the generated DST data. Concretely:

Lemma 5. Let P be a PABA framework. For any FoD Θ, there is an unique Dempster’s
structure D (resp. mass function m) such that P Θ−→D (resp. P Θ−→ m).

Hence a PABA framework can generate DST data over any FoD. This flexibility,
however, may lead to possible semantic differences between the generated DST data and
the generating PABA framework. Let’s study conditions for preventing such differences.

4.3. Relationships between generated DST data and generating PABA framework

Theorem 4 below says that the degree of plausibility wrt generated DST data and the
credulous semantics of the generating PABA framework always coincide.
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Theorem 4. Suppose P Θ−→ m. Then for any θ ∈ Θ, Plm(θ) = Prob(P �cr θ).

However in general Belm(θ) and Prob(P �sk θ) may be different as illustrated by
the following example.

Example 6. Consider P = ( /0, /0,F) with F = ( /0,{a ←,b ←}). For Θ = {a,b}, we

have P Θ−→ m = {{a,b} �→ 1}. Hence Belm(a) = Belm(b) = 0. However Prob(P �sk a) =
Prob(P �sk b) = 1.

Now let’s introduce a condition that ensures that Belm(θ) = Prob(P �sk θ).

Definition 14. We say that a PABA framework P semantically complies with a FoD Θ
if for each possible world ω and θ ∈ Θ, Fω �sk θ iff {x ∈ Θ | Fω �cr x}= {θ}.

For example, it is easy to see that for a DST evidence base M over FoD Θ, the
PABA canonical translation PABAM of M always semantically complies with Θ.

Theorem 5 given below and the previous Theorem 4 say that semantic compliance
is a sufficient condition for ensuring the semantic coincidence between generated DST
data and its generating PABA framework.

Theorem 5. Suppose P Θ−→ m. If P semantically complies with Θ then for any θ ∈ Θ,
Belm(θ) = Prob(P �sk θ).

One might ask whether syntactic compliance (defined in Def. 11) ensures semantic
compliance. The following example shows that it does not.

Example 7. Consider FoD Θ = {θ1,θ2} and P = ( /0, /0,F) where F is the ABA frame-
work obtained from FDΘ by adding rules {¬θ1 ← . ¬θ2 ← a. a ← b. b ← a} and as-
sumptions a,b. Clearly P syntactically complies with Θ. However P does not semanti-
cally comply with Θ. To see this consider the possible world ω = {} (the only possible
world of P), clearly {x ∈ Θ | Fω �cr x}= {θ2} but Fω ��sk θ2.

However, syntactic compliance ensures a weaken version of semantic compliance
defined as follows.

Definition 15. We say that a PABA framework P semantically semi-complies with a FoD
Θ if for each possible world ω and θ ∈ Θ, if Fω �sk θ then {x ∈ Θ | Fω �cr x}= {θ}.

Basically P semantically semi-complies but not semantically complies with Θ if for
some possible world ω and answer θ ∈ Θ, {x ∈ Θ | Fω �cr x}= {θ} but Fω ��sk θ . The
PABA framework in Example 7 falls into this case.

Lemma 6. If a PABA framework P syntactically complies with Θ, then P semantically
semi-complies with Θ.

Obviously semantic semi-compliance could not ensure that Belm(θ) = Prob(P �sk
θ). However it ensures a half of this equality as follows.

Lemma 7. Suppose P Θ−→ m. If P semantically semi-complies with Θ then ∀θ ∈ Θ,
Belm(θ)≥ Prob(P �sk θ).
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So a corollary of the above lemmas is that if P Θ−→ m and P syntactically complies
with Θ, then for any θ ∈ Θ, Belm(θ)≥ Prob(P �sk θ) and Plm(θ) = Prob(P �cr θ).

5. Composite PABA frameworks

In this section, we accumulate three presented techniques to propose so-called c-PABA
which lends itself to a development tool for composite argumentation systems.

5.1. Structure and Semantics

A c-PABA framework contains components of two kinds: data-consuming and data-
generating. The latter provides DST data which is consumed by the former.

Definition 16. A composite PABA (c-PABA) framework is a structure of the form S =
({(Θi,Si)}k

i=1,P) where P , which is referred to as the data-consuming component of S,
is a PABA framework; Pi, which is referred to as a data-generating component of S, is
a c-PABA framework; and Θi is a FoD.

The set of all mass functions {mi | i ∈ {1, . . . ,k},Si
Θi−→ mi} generated by all data-

generating components is referred to as the internal information flow in S.

For example, a c-PABA framework ({},P), which shall be written as P for short,
is just a PABA framework. In general, we want to see a c-PABA framework as the com-
bination of its main module and its internal information flow. To ensure that this com-
bination can be computed by the s-fusion operator and always results in a well-formed
PABA framework, let’s introduce a class of well-formed c-PABA frameworks.

Definition 17. A c-PABA framework S = ({(Θi,Si)}k
i=1,P) is said to be well-formed

if for each i, j ∈ {1, . . . ,k}, P syntactically complies with FoD Θi and Si semantically
complies with Θi; further either Θi = Θ j or Θi ∩Θ j = /0 for any j ∈ {1, . . . ,k}.

For example, c-PABA framework S = ({(Θ,PABAmi)}k
i=1,( /0, /0,FDΘ)) represent-

ing a DST evidence base M = {mi}k
i=1 over FoD Θ, is well-formed6. The following

lemma follows directly from Lemma 2.

Lemma 8. Let S = ({(Θi,Si)}k
i=1,P) be a well-formed c-PABA framework with internal

information flow M, and {M1,M2, . . . ,Mn} be the partition on M such that Mi is a DST
evidence base7. Then P �M1 �·· ·�Mn is a well-formed PABA framework.

The above PABA framework P �M1 � ·· · �Mn will be referred to as the PABA
representation of the given c-PABA framework S and denoted by PABAS . The semantics
of S is then defined by that of PABAS , concretely:

Definition 18. Let S = ({(Θi,Si)}k
i=1,P) be a well-formed c-PABA framework and π is

a proposition. Define Prob(S �s π)� Prob(PABAS �s π).

Of course we will say that S generates a mass function m over FoD Θ if PABAS
Θ−→

m; S semantically/syntactically complies with Θ if so does PABAS ; and so on.

6It is easy to see that the internal information flow of S coincides with M because PABAmi
Θ−→ mi

7That is, the mass functions in Mi share the same FoD.
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5.2. Two sample applications: DST-based data fusion and ML classifier combination

DST-based data fusion can be implemented by a simple c-PABA framework as follows.

Lemma 9. Let M = {mi}k
i=1 be a DST evidence base over FoD Θ. For any X ⊆ Θ,

BelM(X) = Prob(S �sk X) and PlM(X) = Prob(S �cr X) where S is the c-PABA frame-
work ({(Θ,PABAmi)}k

i=1,( /0, /0,FDΘ)).

ML classifier combination can be implemented by c-PABA as well. Note that a clas-
sifier is an algorithm that assigns to each input pattern x a single class from a set of classes
Θ = {θ1, . . . ,θ|Θ|} - which can be viewed as a FoD. In practice, however a classifier built
by ML often returns a vector [s1, . . . ,s|Θ|] where si indicates some kind of confidence de-
gree that x belongs to class θi. It is a common practice to test a ML classifier against test
datasets, computing various performance indexes such as recognition rate r, substitution
rate s and rejection rate q = 1− r− s. Such indexes are then used to interpret what the
classifier actually says. For example, in [16] Xu et al argue that [s1, . . . ,s|Θ|] should be
interpreted as such a mass function m that: if [s1, . . . ,s|Θ|] = [0, . . . ,0], then m = {(Θ,1)};
if [s1, . . . ,s|Θ|] = [0, . . . ,si = 1, . . . ,0], then m = {({θi},r),(Θ −{θi},s),(Θ,q)}. Now
as different classifiers potentially offer complementary information about patterns to be
classified, one wants to combine the outputs of multiple classifiers for the classification
problem at hand. This combination problem is formalized as follows: given classifiers,
f1, . . . , fk, return a combined classifier f ∗ that for a given input x, assigns a class θ ∗ ∈ Θ
to x, by: 1) for each output vector fi(x), construct a mass function mi; and 2) combine
m1, . . . ,mk to obtain one mass function m∗ which then derives θ ∗. Clearly both steps al-
low choices. Suppose that step (1) uses Xu et al’s rule to compute mi; and step (2) uses
Smet’s rule to compute m∗ then returns θ ∗ = argmaxθ∈ΘPlm∗(θ). The lemma below says
that f ∗ can be implemented in c-PABA.

Lemma 10. Suppose f ∗ combines classifiers f1, . . . , fk (by using Xu et al’s rule, Smet’s
rule to arrive at a combined mass function m∗) where fi has recognition/substitution/rejection
rates fi.r, fi.s, fi.q. Then

f ∗(x)� argmaxθ∈ΘPlm∗(θ) = argmaxθ∈ΘProb(S �cr θ)

where S = ({(Θ,Pi)}k
i=1,( /0, /0,FDΘ)), with Pi being any PABA framework that

generates mi - the mass function that Xu et al’s rule derives from the output vector fi(x) =
[si1, . . . ,si|Θ|] of fi.

For example, Pi may be (V,Pr,OIΘ∪{op([si1, . . . ,si|Θ|])←)}) with V = {reg,sub,re j},
Pr = { fi.r : reg; fi.s :: sub; fi.q :: re j.} (saying that the probabilities of random variables
reg,sub,re j coincide with the recognition/substitution/rejection rates of fi), and OIΘ is
the ABA framework obtained from FDΘ by adding the following rules for each vector
[0, . . . ,si = 1, . . . ,0]:

• ¬θ j ← reg,op([0, . . . ,si = 1, . . . ,0]) where j �= i representing that θi is the right
class with probability equal the recognition rate.

• ¬θi ← sub,op([0, . . . ,si = 1, . . . ,0]) representing that Θ−{θi} contains the right
class with probability equal the substitution rate.

Note that op([si1, . . . ,si|Θ|])← is a just a fact encoding the output vector of fi.
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6. Conclusion and related work

Against two theoretical backdrops: PABA and DST, we present a development tool called
c-PABA for composite argumentation systems with ML components. Demonstratively
we use c-PABA to implement two key applications of DST: multi source data fusion and
multi-classifier combination. To the best of our knowledge, the only work in the cur-
rent literature that involves both DST and PABA is [8] which uses PABA to re-construct
DST, but does not deal with composite argumentation systems as in the current paper.
However there is a rich line of work combining DST and logic-based reasoning (but not
necessarily argumentative). For example, in [15,2,14] the authors combine DST with de-
ductive reasoning. [11] associate probability mass with formula and compute measures-
like belief degrees of the reasoning with these formula. The notion of arguments of this
work, however, is limited to conjunctions of literals. In [12] the authors define argumen-
tation semantics for subjective logic, a logic that incorporates measures from DST. It
is argued that reasoning systems in these above reasoning formalisms can be viewed as
components in composite argumentation systems that our c-PABA proposal captures.
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